How to Use This Manual

The 94 ACCORD COUPE Shop Manual (Maintenance, Repair and Construction) is divided into 23 sections. The first page of each section is marked with a black tab that lines up with its corresponding thumb index tab on this page. You can quickly find the first page of each section without looking through a full table of contents. The symbols printed at the top corner of each page can also be used as a quick reference system.

Each section includes:

1. A table of contents, or an exploded view index showing:

- Parts disassembly sequence.
- Bolt torques and thread sizes.
- Page references to descriptions in text.

2. Disassembly/assembly procedures and tools.
3. Inspection.
4. Testing/troubleshooting
5. Repair.
6. Adjustments.

Special Information

A warning Indicates a strong possibility of severe personal injury or loss of life if instructions are not followed.

CAUTION: Indicates a possibility of personal injury or equipment damage if instructions are not followed.

NOTE: Gives helpful information.
CAUTION: Detailed descriptions of standard workshop procedures, safety principles and service operations are not included. Please note that this manual contains warnings and cautions against some specific service methods which could cause PERSONAL IN,UWRY, damage a vehicle or make it unsafe. Please understand that these warnings cannot cover all conceivable ways in which service. whether or not recommended by HONDA might be done, or of the possible hazardous consequences of every conceivable way, nor could HONDA investigate all such ways. Anyone using service procedures or tools, whether or not recommended by HONDA. 'must satisfy himself thoroughly that neither personal safety nor vehicle safety will be jeopardized.

All information contained in this manual is based on the latest product information available at the time of printing. We reserve the right to make changes at any time without notice. No part of this publication may be reproduced, stored in retrieval system, or transmitted, in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. This includes text, figures and tables.

HONDA MOTOR CO., LTD. Service Publication Office

As sections with * include SRS components; special precautions are required when servicing.

Special Tools

Specifications

Engine

Cooling

Fuel and Emissions

*Steering

Suspension

* Brakes (Including ABS)
 ABS

*Body

* Heater and
 Air Conditioning

* Electrical (Including SRS)

General Information

Chassis and Engine Numbers 1-2
Identification Number Locations 1-3
Warning/Caution Label Locations 1-4
Lift and Support Points
Lift 1-10
Floor Jack 1-11
Safety Stands 1-12
Towing 1-13
Abbreviations 1-14

Chassis and Engine Numbers

European Model

Except European Model

Engine Number

Warning／Caution Label Locations

A：CABLE REEL CAUTION A

SRS

REFER TO SERVICE（SHOP）MANUAL FOR DETAILED IN－ STRUCTIONS．

POUR LES INSTRUCTIONS DETAILL＇EES，SE REPORTER AU MANUEL DE REPARATIONS．
aUSFÜHRLICHE ANWEISUNGEN SIND DEM WERKSTAT－ THANBUCH ZU ENTNEMEN．

RAADPLEEG HET WERKPLAATSHANDBOEK VOOR NA－ DERE AANWIJZINGEN．
取扱いはサービスマニュアルを参照願います。

B：DRIVER MODULE DANGER （KH）

[^0]（KG，KE）
－DANGER
EXPLOSIVE／FLAMMABLE POISON
REFER TO SHOP MANUAL．
－DANGER
EXPLOSIF ET INFLAMMABLE
POISON
SE REPORTER AU MANUEL D＇ATELIER．
－GEFAHR
EXPLOSIV／ENTZUNDBAR
GIFT
WERKSTATTHANDBUCH LESEN．
－GEVAAR
EXPLOSIEGEVAAR／BRANDBAAR GIFTIG
LEES HET WERKPLAATSHANDBOEK．

C：DRIVER MODULE WARNING
（KH）

\triangle WARNING

THE AIRBAG INFLATOR IS EXPLOSIVE AND，IF ACCIDEN－ TALLY DEPLOYED，CAN SERIOUSLY HURT OR KILL YOU．
－DO NOT USE ELECTRICAL TEST EQUIPMENT OR PROB－ ING DEVICES．
THEY CAN CAUSE ACCIDENTAL DEPLOYMENT．
－NO SERVICEABLE PARTS INSIDE．DO NOT DISAS－ SEMBLE．
－PLACE AIRBAG UPRIGHT WHEN REMOVED．
－FOLLOW SERVICE（SHOP）MANUAL INSTRUCTIONS CAREFULLY．
\triangle ATTENTION
LE GONFLEUR DE COUSSIN D＇AIR EST EXPLOSIBLE ET S＇LL SE DEPLOIE ACCIDENTELLEMENT，IL RISQUE DE PROVO－ QUER DES BLESSURES GRAVES OU DE TUER．
－NE PAS UTILISER DE MATERIEL D＇ESSAI ELECTRIQUE NI DE SONDE．ILS POURRAIENT PROVOQUER UN DEPLOIMENT ACCIDENTEL DU COUSSIN D＇AIR．
－IL N＇Y A PAS DE PIECES REPARABLES A L＇INTERIEUR． NE PAS DEMONTER．
－QUAND ON RETIRE LE COUSSIN D＇AIR，LE TENIR A LA VERTICALE．
－SUIVRE ATTENTIVEMENT LES INSTRUCTIONS DU MANUEL D＇ENTRETIEN．
(KG, KE)

```
WARNING SRS
- REFER TO THE SHOP MANUAL.
- SE REPORTER AU MANUEL D'ATELIER.
- WERKSTATTHANDBUCH LESEN.
- LEES HET WERKPLAATSHANDBOEK.
```

D: INFLATOR BAM LABEL
(KE, KG only)
ISI manufactured inflator:

AIRBAG GAS GENERATOR GG7-100 ISI

HERSTELLUNGSJAHR: 1993
EINFÜHRER: HONDA DEUTSCHLAND
GMBH/OFFENBACH
BAM PT 1 - 0469
DER GASGENERATOR DART NUR FÜR INSASSENRÜCKHALTESYSTEME MIT LUFTSACK IN KRAFTFAHRZEUGE MONTIERT WERDEN.
DIE MONTAGE UND DEMONTAGE DES GASGENERATORS DARF NUR VON DAFÜR GESCHULTEM PERSONAL VORGENOMMEN WERDEN.
CAUTION THE GAS GENERATOR SHOULD ONLY BE

CONTAINS FLAMMABLE SOLIDS US DOT-E-9066 ATTENTION CONTENT DE SOLIDES FLAMMABLES US
DOT-E-9066 INSTALLED IN VEHICLES EQUIPPED WITH THE AIRBAG SYSTEM. THE GAS GENERATOR IS TO BE INSTALLED AND/OR DISASSEMBLED ONLY BY TRAINED PERSONNEL.
LE GENERATEUR DE GAZ NE PEUT ETRE INSTALLE QUE SUR DES VEHICULES EQUIPES D'UN SYSTEME AIRBAG LE MONTAGE ET LE DEMONTAGE DU GENERATEUR DE GAZ NE PEUT ETRE EFFECTUE QUE PAR UN PERSONNEL QUALIFIE.

MORTON International manufactured inflator:

```
AIRBAG GAS GENERATOR UT11600
MORTON INTERNATIONAL INC OGDEN UT. USA
HERSTELLUNGSJAHR: }199
EINFÜHRER: HONDA DEUTSCHLAND
    GMBH/OFFENBACH
BAM PT,-0388
```

DER GASGENERATOR DARF NUR FÜR INSASSENRÜCK-
HALTESYSTEME MIT LUFTSACK IN KRAFTFAHRZEUGE
MONTIERT WERDEN.
DIE MONTAGE UND DEMONTAGE DES GASGENERATORS
DARF NUR VON DAFÜR GESCHULTEM PERSONAL VOR-
GENOMMEN WERDEN.
CAUTION THE GAS GENERATOR SHOULD ONLY BE
CONTAINS
FLAMMABLE
SOLIDS US THLED IN VEHICLES EQUIPPED WITH THE AIRBAG SYSTEM. THE GAS GENERASOLIDS US TOR IS TO BE INSTALLED AND/OR DISAS-DOT-E-8214 SEMBLED ONLY BY TRAINED PERSONNEL. ATTENTION LE GENERATEUR DE GAZ NE PEUT ETRE INCONTENT DE STALLE QUE SUR DES VEHICULES EQUIPES SOLIDES D'UN SYSTEME AIRBAG LE MONTAGE ET FLAMMABLES LE DEMONTAGE DU GENERATEUR DE GAZ US NE PEUT ETRE EFFECTUE QUE PAR UN PERSONNEL QUALIFIE.

TRW Safety Systems manufactured inflator:
AIRBAG GAS GENERATOR
TRW SAFETY SYSTEMS/MESA
HERSTELLUNGSJAHR:
EINFÜHRER: HONDA DEUTSCHLAND

GMBH/OFFENBACH

BAM PT, 0538
DER GASGENERATOR DARF NUR FÜR INSASSENRÜCKHALTESYSTEME MIT LUFTSACK IN KRAFTFAHRZEUGE MONTIERT WERDEN.
DIE MONTAGE UND DEMONTAGE DES GASGENERATORS DARF NUR VON DAFÜR GESCHULTEM PERSONAL VORGENOMMEN WERDEN.

CAUTION	THE GAS GENERATOR SHOULD ONLY BE
CONTAINS	INSTALLED IN VEHICLES EQUIPPED WITH
FLAMMABLE	THE AIRBAG SYSTEM.
SOLIDS US	THE GAS GENERATOR IS TO BE INSTALLED
DOT-E-8236	ANDIOR DISASSEMBLED ONLY BY TRAINED PERSONNEL.
ATTENTION	LE GENERATEUR DE GAZ NE PEUT ETRE IN-
CONTENT DE	STALLE OUE SUR DES VEHICULES EQUIPES
SOLIDES	D'UN SYSTEME AIRBAG. LE MONTAGE ET
FLAMMABLE	LE DEMONTAGE DU GENERATEUR DE GAZ
US	NE PEUT ETRE EFFECTUE QUE PAR UN PER-
DOT-E-8236	SONNEL QUALIFIE.

E: STEERING WHEEL WARNING
(KE, KG)

WARNING SRS

- REFER TO THE SHOP MANUAL.
- SE REPORTER AU MANUEL D'ATELIER.
- WERKSTATTHANDBUCH LESSEN.
- LEES HET WERKPLAATSHANDBOEK.

E: STEERING WHEEL NOTICE (KH)

NOTICE

IMPROPER STEERING WHEEL REMOVAL OR INSTALLATION CAN DAMAGE SRS COMPONENTS.
FOLLOW SERVICE MANUAL INSTRUCTIONS CAREFULLY.

F: SRS WARNING (HOOD)
(KH)
SUPPLEMENTAL RESTRAINT SYSTEM (SRS)
THIS VEHICLE IS EQUIPPED WITH DRIVER AND FRONT SEAT PASSENGER AIRBAGS.
ALL SRS ELECTRICAL WIRING AND CONNECTORS ARE COLORED YELLOW.
TAMPERING WITH, DISCONNECTING OR USING ELECTRICAL TEST EQUIPMENT ON THE SRS WIRING CAN MAKE THE SYSTEM INOPERATIVE OR CAUSE ACCIDENTAL FIRING OF THE INFLATOR.
A WARNING
THE AIRBAG INFLATOR IS EXPLOSIVE AND, IF ACCIDENTALLY DEPLOYED, CAN SERIOUSLY HURT YOU. FOLLOW SERVICE MANUAL INSTRUCTIONS CAREFULLY.

Warning/Caution Label Locations

(cont'd)

G: Steering column notice (KE, KH)

NOTICE

TO PREVENT DAMAGE, REMOVE STEERING WHEEL BEFORE REMOVING STEERING SHAFT CONNECTING BOLT.

REMARQUE

POUR EVITER TOUT DOMMAGE DU SRS, RETIRER LE VOLANT AVANT DE RETIRER LE BOULON DE RECCORDEMENT DE L'ARBRE DE DIRECTION.

G: STEERING COLUMN CAUTION (KG)

ACHTUNG SRS

UM BESCHÄDIGUNGEN DER S.R.S.-KABELROLLE ODER DES KABELS. WELCHE DAS S.R.S.-SYSTEM AUBER FUNKTION SETZEN WÜRDEN. ZU VERMEIREN, VOR ARBEITEN AN DER LENKSPINDEL DAS LENKRAD AUSBAUEN.

WAARSCHUWING SRS

OM TE VOORKOMEN DAT DE S.R.S.-KABEL OF- HASPEL BESCHADIGD WORDEN, HETGEEN ERTOE ZOU LEIDEN DAT HET SYSTEEM UITVALT, DIENT U HET STUUR TE VERWIJDEREN VOORDAT U DE STUURSCHACHTCONNECTORBOUT VERWIJDERT.

H: FRONT SEAT PASSENGER AIRBAG MODULE DANGER (KH)

\triangle DANGER

EXPLOSIVE/FLAMMABLE
CONTACT WITH ACID. WATER OR HEAVY METALS SUCH AS COPPER, LEAD OR MERCURY MAY RPODUCE HARMFUL AND IRRITATING GASES OR EXPLOSIVE COMPOUNDS. STORAGE TEMPERATURES MUST NOT EXCEED $200^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$. FOR PROPER HANDLING, STORAGE AND disposal procedures refer to service manual, SRS SUPPLEMENT.
POISON
CONTAINS POISONOUS SODIUM AZIDE AND POTASSIUM NITRATE.
FIRST AID
IF CONTENTS ARE SWALLOWED, INDUCE VOMITING. FOR EYE CONTACT, FLUSH EYES WITH WATER FOR 15 MINUTES. IF GASES (FROM ACID OR WATER CONTACT) are inhaled, seek fresh air. in every case, get PROMPT MEDICAL ATTENTION.
KEEP OUT OF REACH OF CHILDREN.

\triangle WARNING

THE AIRBAG INFLATOR IS EXPLOSIVE AND, IF ACCIDEN-
TALLY DEPLOYED. CAN SERIOUSLY HURT OR KILL YOU.

- DO NOT USE ELECTRICAL TEST EQUIPMENT OR PROBING DEVICES.
THEY CAN CAUSE ACCIDENTAL DEPLOYMENT
- NO SERVICEABLE PARTS INSIDE. DO NOT DISASSEMBLE.
- PLACE AIRBAG UPRIGHT WHEN REMOVED.
- FOLLOW SERVICE MANUAL INSTRUCTIONS CAREFULLY
(KE)

```
- DANGER
    EXPLOSIVE/FLAMMABLE
    POISON
    REFER TO THE SHOP MANUAL.
- DANGER
    EXPLOSIF ET INFLAMMABLE
    POISON
    SE REPORTER AU MANUEL D'ATELIER.
- GEFAHR
    EXPLOSIV/ENTZÜNDBAR
    GIFT
    WERKSTATTHANDBUCH LESEN.
- GEVAAR
    EXPLOSIEGEVAAR/BRANDBAAR
    GIFTIG
    LEES HET WERKPLAATSHANDBOEK.
```

I: LABEL AIRBAG
J: INFLATOR BAM LABEL
(KE only)
MORTON INTERNATIONAL manufactured inflator:
AIRBAG GAS GENERATOR UT11873
MORTON INTERNATIONAL, OGDEN, USA
HERSTELLUNGS (JAHR)
EINFÜHRER: HONDA DEUTSCHLAND
GMBH/OFFENBACH
BAM PT ${ }_{1-0} 0437$
DER GASGENERATOR DART NUR FÜR INSASSENRÜCK-
HALTESYSTEME MIT LUFTSACK IN KRAFTFAHRZEUGE
MONTIERT WERDEN.
DIE MONTAGE UND DEMONTAGE DES GASGENERATORS
DARF NUR VON DAFÜR GESCHULTEM PERSONAL VOR-
GENOMMEN WERDEN

CAUTION THE GAS GENERATOR SHOULD ONLY BE CONTAINS INSTALLED IN VEHICLES EQUIPPED WITH FLAMMABLE THE AIRBAG SYSTEM. THE GAS GENERASOLIDS TOR IS TO BE INSTALLED AND/ OR DISASSEMBLED ONLY BY TRAINED PERSONNEL.
ATTENTION LE GENERATEUR DE GAZ NE PEUT ETRE INCONTENT DE STALLE QUE SUR DES VEHICULES EQUIPES SOLIDES FLAMMABLES LE DEMONTAGE DU GENERATEUR DE GAZ NE PEUT ETRE EFFECTUE QUE PAR UN PERSONNEL QUALIFIE.

Warning/Caution Label Locations

(cont'd)

K: DRIVER INFORMATION

SRS ALWAYS WEAR YOUR SEAT BELT

- THIS CAR IS EQUIPPED WITH A DRIVER AIRBAG AND A FRONT SEAT PASSENGER AIRBAG AS A SUPPLEMENTAL RESTRAINT SYSTEM (SRS).
- IT IS DESIGNED TO SUPPLEMENT THE SEAT BELT. - BEFORE DRIVING READ LABEL INSIDE THE GLOVE BOX.

SRS ALWAYS WEAR YOUR SEAT BELT

- THIS CAR IS EQUIPPED WITH A DRIVER AIRBAG AND A FRONT SEAT PASSENGER AIRBAG AS A SUPPLEMENtAL RESTRAINT SYSTEM (S.R.S.).
- IT IS DESIGNED TO SUPPLEMENT THE SEAT BELT.
- IF YOUR SRS INDICATOR LIGHTS WHILE DRIVING SEE YOUR AUTHORIZED HONDA DEALER.
SRS ATTACHEZ TOUJOURS VOTRE CEITURE
- CE VEHICULE EST EQUIPE D'UN COUSSIN D'AIR POUR LE PASSAGER AVANT, QUI CONSTITUENT UN SYSTEME DE RETENUE COMPLEMENTAIRE (S.R.S.).
- CE COUSSIN D'AIR COMPLETE LA FONCTION DE LA CEINTURE DE CECURITE.
- SI LE TEMOIN SRS S'ALLUME PENDANT LA CONDUITE, adressez-vous a votre conssionnalre honda OFFICIEL.
SRS SICHERHEITSUGRTE BEI JEDER FAHRT ANLEGEN - DIESES FAHRZEUG BESITZT JE EINEN AIRBAG FÜR FAHRER UND BEIFAHRER ALS ZUSÄTZLICHES RÜCKHAL TESYSTEM (S.R.S.).
- DAS RÜCKHALTESYSTEM IST EINE ERGÄNZUNG ZUM SICHERHEITSGURT.
- SOLLTE WAHREND DER FAHRT DIE SRSKONTROLLEUCHTE AUFLEUCHTEN SUCHEN SIE BITTE UNGEHEND EINEN HONDA-HÄNDLER SUF.
SRS DRAAG ALTIJD UW VEILIGHEIDSGORDEL
- DIT VOERTUIG IS UITGERUST MET AIRBAG (SRS) AAN BESTUURDERSZIJDE EN PASSAGIERSZIJDE VOOR EXTRA VEILIGHEID.
- ONTWORPEN ALS EXTRA BESCHERMING NAAST DE VEILIGHEIDSGORDELS.
- alS he Srs-wairschuwingsLampje gait branden onder het rijden. NEEM DAN KONTAKT OP MET EEN HONDA DEALER.

L: GLOVE BOX INFORMATION
(KH)
AIRBAG INFORMATION
SUPPLEMENTAL RESTRAINT SYSTEM (SRS)

- THE SRS MUST BE INSPECTED TEN YEARS AFTER IT IS INSTALLED. THE DATE OF INSTALLATION IS SHOWN ON THE CERTIFICATION PLATE, LOCATED ON THE DRIVER'S DOOR JAMB.
- DIAGNOSTIC CHECKS AND REPLACEMENT OF SRS COMPONENTS MUST BE DONE BY AN AUTHORIZED DEALER.
- SEE YOUR OWNER'S MANUAL FOR ADDITIONAL SRS INFORMATION.

M: MONITOR NOTICE
NOTICE SRS

- NO SERVICEABLE PARTS INSIDE.
- REFER TO SERVICE MANUAL FOR DETAILED INSTRUCTIONS.

TIRE INFORMATIONS:

RHD:

LHD:

Lift and Support Points

Lift

A WARNING When heavy rear components such as suspension, fuel tank, spare tire and trunk lid are to be removed, place additional weight in the trunk before hoisting. When substantial weight is removed from the rear of the car, the center of gravity may change and can cause the car to tip forward on the hoist.

NOTE: Since each tire/wheel assembly weighs approximately $30 \mathrm{lbs}(14 \mathrm{~kg})$, placing the front wheels in the trunk can assist with weight distribution.

1. Place the lift blocks as shown.
2. Raise the hoist a few inches (centimeters) and rock the car to be sure it is firmly supported.
3. Raise the hoist to full height and inspect lift points for solid support.

(cont'd)

Floor Jack

1. Set the parking brake and block the wheels that are not being lifted.
2. When lifting the rear of the car, put the gearshift lever in reverse (Automatic transmission in position).
3. Raise the car high enough to insert the safety stands.
4. Adjust and place the safety stands as shown on page 1.15 so the car will be approximately level, then lower the car onto them.

A warning

Always use safety stands when working on or under any vehicle that is supported only by a jack.

- Never attempt to use a bumper jack for lifting or supporting the car.

Front

Rear

Lift and Support Points

Safety Stands

If the car needs to be towed, call a professional towing service. Never tow the car behind another car with just a rope or chain. It is very dangerous.

Emergency Towing

There are three popular methods of towing a car:
Flat-bed Equipment - The operator loads the car on the back of a truck. This is the best way of transporting the car.

Wheel Lift Equipment - The tow truck uses two pivoting arms that go under the tires (front or rear) and lifts them off the ground. The other two wheels remain on the ground.

Sling-type Equipment - The tow truck uses metal cables with hooks on the ends. These hooks go around parts of the frame or suspension, and the cables lift that end of the car off the ground. The car's suspension and body can be seriously damaged if this method of towing is attempted.

If the car cannot be transported by flat-bed, it should be towed with the front wheels off the ground. If due to damage, the car must be towed with the front wheels on the ground, do the following:

Manual Transmission

- Release the parking brake.
- Shift the transmission to Neutral.

Automatic Transmission

- Release the parking brake.
- Start the engine.
- Shift to D_{4} position, then N position.
- Turn off the engine.

NOTICE: Improper towing preparation will damage the transmission. Follow the above procedure exactly. If you cannot shift the transmission or start the engine (automatic transmission), your car must be transported on a flat-bed.

- It is best to tow the car no farther than 50 miles (80 km), and keep the speed below $35 \mathrm{mph}(55 \mathrm{~km} / \mathrm{h})$.

NOTICE: Trying to lift or tow the car by the bumpers will cause serious damage. The bumpers are not designed to support the car's weight.

Abbreviations

List of automotive abbreviations which may be used in shop manual.

A/C	Air Conditioning, Air Conditioner	F	Front
ALT	Alternator	FP	Fuel Pump
ABS	Anti-lock Brake System	FWD	Front Wheel Drive
A/T	Automatic Transmission	FR	Front Right
ATF	Automatic Transmission Fluid	FL	Front Left
A/F	Air Fuel Ratio	FSR	Fail Safe Relay
AMP	Ampere (s)	FIA	Fuel Injection Air
ANT	Antenna		
ASSY	Assembly	GAL	Gallon
AUX	Auxiliary	GND	Ground
APPROX.	Approximately		
ATDC	After Top Dead Center	H/B	Hatchback
AUTO	Automatic	HO2S	Heated Oxygen Sensor
ATT	Attachment	HC	Hydrocarbons
ACL	Air Cleaner		
API	American Petroleum Institute	IAB	Intake Air Bypass
		IAC	Idle Air Control
BARO	Barometric	IAR	Intake Air Resonator
BAT	Battery	ICM	Ignition Control Module
BTDC	Before Top Dead Center	IAT	Intake Air Temperature
BDC	Bottom Dead Center	IMA	Idle Mixture Adjustment
		IN	Intake
CKP	Crankshaft Position	IG or IGN	Ignition
CYP	Cylinder Position	ID	Identification
CAT	Catalytic Converter	ID or I.D.	Inside Diameter
or CATA		INJ	Injection
CO	Carbon Monoxide	INT	Intermittent
CYL	Cylinder		
CPC	Clutch Pressure Control	KS	Knock Sensor
CARB	Carburetor		
COMP	Complete	L	Left
CPU	Central Processing Unit	LH	Left Handle
CHG	Charge	LHD	Left Handle Drive
		L/C	Lock-up Clutch
DI	Distributor Ignition	LSD	Limited Slip Differential
DLC	Data Link Connector	LF	Left Front
DTC	Diagnostic Trouble Code	LR	Left Rear
DIFF	Differential	L-4	In-line Four Cylinder (engine)
DOHC	Double Overhead Camshaft	LED	Light Emitting Diode
DPI	Dual Point Injection		
EVAP	Evaporative		
EGR	Exhaust Gas Recirculation		
ECM	Engine Control Module		
ECT	Engine Coolant Temperature		
EX	Exhaust		
ELD	Electrical Load Detector		
EFI	Electronic Fuel Injection		
EPS	Electrical Power Steering		

M/S	Manual Steering
MAP	Manifold Absolute Pressure
MIL	Malfunction Indicator Light
M/T	Manual Transmission
MCK	Motor Check
MAX.	Maximum
MIN.	Minimum
MPI	Multi Point Injection
N	Neutral
NOX	Nitrogen, Oxides of
O2S	Oxygen Sensor
OBD	On-board Diagnostic
OD or O.D.	Outside Diameter
P	Park
PAIR	Pulsed Secondary Air Injection
PSP	Power Steering Pressure
PCV	Positive Crankcase Ventilation Proportioning Control Valve
P/S	Power Steering
PGM-FI	Programmed-fuel Injection
PGM-IG	Programmed Ignition
PRI	Primary
P/N	Part Number
PL	Pilot Light
PMR	Pump Motor Relay
PSW	Pressure Switch
PSF	Power Steering Fluid
Qty	Quantity
R	Right
RR	Rear Right
RHD	Right Handle Drive
REF	Reference
RL	Rear Left
RON	Research Octane Number
SAE	Society of Automotive Engineers
SOHC	Single Overhead Camshaft
SOL	Solenoid
SPEC	Specification
S/R	Sun Roof
SRS	Supplemental Restraint System
STD	Standard
SW	Switch

SCS	Service Check Signal
SEC	Second
	Secondary
T	Torque
TCM	Transmission Control Module
TWC	Three Way Catalytic Converter
TDC	Top Dead Center
TB	Throttle Body
TP	Throttle Position
TC	Torque Converter
T/B	Timing Belt
T/N	Tool Number
TCS	Traction Control System
VSS	Vehicle Speed Sensor
VTEC	Viriable Valve Timing \& Valve Lift Electronic Control
VC	Viscous Coupling
VIN	Vehicle Identification Number
VVIS	Variable Volume Intake System
W	With
W/O	Without
WOT	Wide Open Throttle
2WD	Two Wheel Drive
4WD	Four Wheel Drive
2WS	Two Wheel Steering
4WS	Four Wheel Steering
4AT	4-speed Automatic Transmission
5MT	5-speed Manual Transmission
P	Park
R	Reverse
N	Neutral
D_{4}	Drive (1st through 4th gear)
D3	Drive (1st through 3rd gear)
2	Second
1	First
1ST	Low (gear)
2ND	Second (gear)
3RD	Third (gear)
4 TH	Fourth (gear)
5 TH	Fifth (gear)

Special Tools

Individual tool lists are located at the front of each section.

Specifications

Standards and Service Limits 3-2
Design Specifications 3-13
Body Specifications 3-17

Standards and Service Limits

	MEASUREMENT			STANDARD (NEW)	SERVICE LIMIT
Compression	$200 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and wide open throttle $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$ Nominal Minimum Maximum variation			$\begin{aligned} & 1,230(12.5,178) \\ & 930(9.5,135) \\ & 200(2.0,28) \end{aligned}$	
Cylinder head	Warpage Height			$\overline{99.95-100.05 ~(3.935-3.939) ~}$	$\underline{0.05(0.002)}$
Camshaft				$\begin{aligned} & 0.05-0.15(0.002-0.006) \\ & 0.050-0.089(0.0020-0.0035) \\ & 0.03(0.001) \text { max. } \\ & 37.775(1.4872) \\ & 39.725(1.5640) \\ & 34.481(1.3575) \\ & 38.366(1.5105) \\ & 38.526(1.5168) \\ & 38.778(1.5267) \\ & 39.165(1.5420) \\ & 39.356(1.5494) \\ & 38.741(1.5252) \\ & 38.972(1.5343) \end{aligned}$	$0.5(0.02)$ $0.15(0.006)$ $0.04(0.002)$ $=$ \square \square \square \square \square
Valve	Valve clearance (Cold) Valve stem O.D. Stem-to-guide clearance		IN EX IN EX IN EX	$\begin{aligned} & 0.24-0.28(0.009-0.011) \\ & 0.28-0.32(0.011-0.013) \\ & 5.485-5.495(0.2159-0.2163) \\ & 5.450-5.460(0.2146-0.2150) \\ & 0.020-0.045(0.0008-0.0018) \\ & 0.055-0.080(0.0022-0.0031) \end{aligned}$	\square $5.455(0.2148)$ $5.420(0.2134)$ $0.08(0.003)$ $0.12(0.005)$
Valve seat	Width Stem installed height F22B1 engine Except F22B1 engine		IN EX IN EX N EX	$\begin{aligned} & 1.25-1.55(0.049-0.061) \\ & 1.25-1.55(0.049-0.061) \\ & 46.75-47.55(1.841-1.872) \\ & 46.68-47.48(1.838-1.869) \\ & 48.08-48.88(1.893-1.924) \\ & 50.15-50.95(1.974-2.006) \end{aligned}$	$2.00(0.079)$ $2.00(0.079)$ $47.80(1.882)$ $47.73(1.879)$ $49.13(1.934)$ $51.20(2.016)$
Valve spring	Free length F22B1 engine Except F22B1, F22B5 engines F22B5 engine		IN EX IN EX IN EX	$51.08(2.011)$ $55.58(2.188)$ $53.42(2.103)^{* 1}$ $54.82(2.158)^{* 2}$ $54.66(2.152)^{* 1}$ $56.28(2.216)^{* 2}$ $53.16(2.093)^{* 3}$ $53.15(2.093)^{* 4}$ $55.80(2.197)^{* 3}$ $55.78(2.196)^{* 4}$	
Valve guide	I.D. Installed height F22B1 engine Except F22B1 engine		IN EX IN EX IN EX	$5.515-5.530(0.2171-0.2177)$ $5.515-5.530(0.2111-0.2177)$ $21.20-22.20(0.835-0.874)$ $20.63-21.63(0.812-0.852)$ $23.50-24.50(0.925-0.965)$ $14.80-15.80(0.583-0.622)$	$5.55(0.219)$ $5.55(0.219)$ \square \square
Rocker arm	Arm-to-shaft clearance F22B1 engine Except F22B1 engine		$\begin{aligned} & \text { IN } \\ & \text { EX } \\ & I N \\ & E X \end{aligned}$	$0.026-0.067(0.0010-0.0026)$ $0.018-0.054(0.0007-0.0021)$ $0.017-0.050(0.0007-0.0020)$ $0.018-0.054(0.0007-0.0021)$	$0.08(0.003)$ $0.08(0.003)$ $0.08(0.003)$ $0.08(0.003)$

*1: Except Associated Spring manufactured valve spring
*2: Associated Spring manufactured valve spring
*3: CHUO HATSUJO manufactured valve spring
*4: NIHON HATSUJO manufactured valve spring

Standards and Service Limits

	MEASUREMENT		STANDARD (NEW)	SERVICE LIMIT
Balancer shaft	I.D.	No. 1 front journal	42.800-42.820 (1.6850-1.6858)	42.83 (1.686)
bearing		No. 1 rear journal	21.000-21.013 (0.8268-0.8273)	21.02 (0.828)
		No. 2 front and rear journals	$38.800-38.820$ (1.5276-1.5283)	38.83 (1.529)
		No. 3 front and rear journals	$34.800-34.820$ (1.3701-1.3709)	34.83 (1.371)

	MEASUREMENT	STANDARD (NEW)	SERVICE LIMIT
Engine oil	Capacity ℓ (US qt, Imp qt) F22B1 engine Except F22B1 engine	$5.6(5.9,4.9)$ for engine overhaul 4.3 (4.5, 3.8) for oil change, including filter 4.0 (4.2, 3.5) for oil change, without filter $4.9(5.2,4.3)$ for engine overhaul $3.8(4.0,3.3)$ for oil change, including filter $3.5(3.7,3.1)$ for oil change, without filter	
Oil pump	inner-to-outer rotor clearance Pump housing-to-outer rotor clearance Pump housing-to-rotor axial clearance	$\begin{aligned} & 0.02-0.16(0.001-0.006) \\ & 0.10-0.19(0.004-0.007) \\ & 0.02-0.07(0.001-0.003) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.20(0.008) \\ & 0.21(0.008) \\ & 0.12(0.005) \end{aligned}$
Relief valve	Pressure setting at engine oil temp. $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ $\mathrm{kPa}\left\{\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right.$) at idle at $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$	$69(0.7,10) \mathrm{min}$. $340(3.5,50) \mathrm{min}$.	

	MEASUREMENT	STANDARD (NEW)
Radiator	$\begin{aligned} & \text { Coolant capacity } \ell(\mathrm{US} \mathrm{qt}, \mathrm{Imp} \mathrm{qt}) \\ & {\left[\begin{array}{l} \text { Including engine, heater, } \\ \text { cooling line and reservoir } \end{array}\right]} \\ & \text { Reservoir capacity: } 0.6 \ell(0.63 \text { US qt, } 0.53 \mathrm{Imp} \mathrm{qt}) \end{aligned}$	M/T: 6.9 (7.4, 6.1) for overhaul : $5.4(5.7,4.8)$ for coolant change $\mathrm{A} T$: $6.8(7.3,6.0)$ for overhaul : 5.3 (5.6, 4.7) for coolant change
Radiator cap	Opening pressure $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	93-123 (0.95-1.25, 14-18)
Thermostat	Start to open ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Fully open ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Valve lift at fully open	$\begin{aligned} & 70-80(169-176) \\ & 90(194) \\ & 8.0(0.31) \mathrm{min} . \end{aligned}$
Cooling fan	Thermoswitch "ON" temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Thermoswitch "OFF" temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Fan timer "ON" temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Fan timer "OFF" temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$90-96(194-205)$ Subtract 2-7(4-13) from actual "ON" temperature $103-109(217-228)$ Subtract 4-9(7-16) from actual "ON" temperature

	MEASUREMENT	STANDARD (NEW)
Pressure regulator	Pressure with regulator vacuum hose disconnected $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	265-314 (2.7-3.2, 38-46)
Fuel tank	Capacity ℓ (US gal, Imp gal)	64.5 (17.1, 14.2)
Engine	Idle speed with headlight and cooling fan off rpm $\left(\mathrm{min}^{-1}\right)$	F22B1, F22B2 engines 700 ± 50 (M/T: neutral) 700 ± 50 (A/T: N or ${ }^{\text {P }}$ position) F20B3, F22B5 engines 770 ± 50 (M / T : neutral) $770 \pm 50(\mathrm{~A} / \mathrm{T}: \mathrm{N}$ or P position)
	Fast idle rpm $\left(\mathrm{min}^{-1}\right)$	$1,400 \pm 200(\mathrm{M} / \mathrm{T}$: neutral) $1,400 \pm 200$ (A/T: N or P position)
	Idle CO \%	0.1 max.

	MEASUREMENT	STANDARD (NEW)	SERVICE LIMIT
Clutch pedal		$\begin{aligned} & \text { RHD: } 209(8.2), \text { LHD: } 184(7.2) \\ & 142.5-152.5(5.6-6.0) \\ & 9-15(0.4-0.6) \\ & \text { RHD: } 99(3.9) \text { min. } \\ & \text { LHD: } 74(2.9) \text { min. } \end{aligned}$	
Flywheel	Clutch surface runout	0.05 (0.002) max.	0.15 (0.006)
Clutch disc	Rivet head depth Thickness	$\begin{aligned} & 1.3-1.9(0.05-0.07) \\ & 8.4-9.0(0.33-0.35) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2(0.01) \\ & 6.0(0.24) \end{aligned}$
Pressure plate	Warpage Diaphragm spring finger alignment	$\begin{aligned} & 0.03(0.001) \text { max. } \\ & 0.6(0.02) \text { max. } \end{aligned}$	$\begin{aligned} & 0.15(0.006) \\ & 0.8(0.03) \end{aligned}$

Manual Transmission - Section 13

	MEASUREMENT	STANDARD (NEW)	SERVICE LIMIT
Transmission oil	Capacity ℓ (US qt, Imp qt)	1.9 (2.0, 1.7) for oil change $2.0(2.1,1.8)$ for overhaul	
Mainshaft	End play Diameter of ball bearing contact area Diameter of needle bearing contact area Diameter of ball bearing contact area Runout	$\begin{aligned} & 0.10-0.16(0.004-0.006) \\ & 27.977-27.990(1.1015-1.1020) \\ & 37.984-38.000(1.4954-1.4961) \\ & 27.987-28.000(1.1018-1.1024) \\ & 0.02(0.001) \text { max. } \end{aligned}$	Adjust $27.94(1.100)$ $37.93(1.493)$ $27.94(1.100)$ $0.05(0.002)$
Mainshaft 3rd and 4th gears	I.D. End play Thickness 3rd gear 4th gear	$\begin{aligned} & 43.009-43.025(1.6933-1.6939) \\ & 0.06-0.21(0.002-0.008) \\ & 32.42-32.47(1.276-1.278) \\ & 30.92-30.97(1.217-1.219) \end{aligned}$	$\begin{aligned} & 43.080(1.6961) \\ & 0.30(0.012) \\ & 32.3(1.27) \\ & 30.8(1.21) \end{aligned}$
Mainshaft 5th gear	I.D. End play Thickness	$\begin{aligned} & 43.009-43.025(1.6933-1.6939) \\ & 0.06-0.21(0.002-0.008) \\ & 30.92-30.97(1.217-1.219) \end{aligned}$	$\begin{aligned} & 43.080(1.6961) \\ & 0.30(0.012) \\ & 30.8(1.21) \\ & \hline \end{aligned}$
Countershaft	Diameter of needle bearing contact area Diameter of ball bearing and needle bearing contact area Diameter of 1st gear contact area Runout	$\begin{aligned} & 38.000-38.015(1.4961-1.4967) \\ & 24.987-25.000(0.9837-0.9843) \\ & 39.984-40.000(1.5742-1.5748) \\ & 0.02(0.001) \text { max. } \end{aligned}$	$\begin{aligned} & 37.95(1.494) \\ & 24.94(0.982) \\ & \\ & 39.93(1.572) \\ & 0.05(0.002) \end{aligned}$
Countershaft 1st gear	I.D. End play	$\begin{aligned} & 46.009-46.025(1.8114-1.8120) \\ & 0.04-0.10(0.002-0.004) \end{aligned}$	$\begin{aligned} & 46.08(1.814) \\ & \text { Adjust } \\ & \hline \end{aligned}$
Countershaft 2nd gear	I.D. End play Thickness	$\begin{aligned} & 47.009-47.025(1.8507-1.8514) \\ & 0.04-0.10(0.002-0.004) \\ & 28.92-28.97(1.139-1.141) \end{aligned}$	47.08 (1.854) Adjust 28.8 (1.13)

Standards and Service Limits

Manual Transmission - Section 13 (cont'd)

	MEASUREMENT	STANDARD (NEW)	SERVICE LIMIT
Spacer collar (Countershaft 2nd gear)	I.D. O.D. Length A B	$\begin{aligned} & 36.48-36.49(1.4362-1.4366) \\ & 41.989-42.000(1.6531-1.6535) \\ & 29.02-29.04(1.1425-1.1433) \\ & 29.07-29.09(1.1445-1.1453) \\ & \hline \end{aligned}$	$\begin{aligned} & 36.50(1.437) \\ & 41.94(1.652) \\ & \square \end{aligned}$
Spacer collar (Mainshaft 4th and 5th gears)	I.D. O.D. Length	$\begin{aligned} & 31.002-31.012(1.2205-1.2209) \\ & 37.989-38.000(1.4956-1.4961) \\ & 56.45-56.55(2.222-2.226) \\ & 26.03-26.08(1.025-1.027) \\ & \hline \end{aligned}$	31.06 (1.223) 37.94 (1.494) 26.01 (1.024)
Reverse idler gear	I.D. Gear-to-reverse gear shaft clearance	$\begin{aligned} & 20.016-20.043(0.7880-0.7891) \\ & 0.036-0.084(0.0014-0.0033) \end{aligned}$	$\begin{aligned} & 20.09(0.7909) \\ & 0.160(0.0006) \end{aligned}$
Syncro ring	Ring-to-gear clearance (ring pushed against gear)	0.85-1.10 (0.033-0.043)	0.40 (0.016)
Double cone synchro	Clearance (ring pushed against gear) Outer synchro ring-to-gear Synchro cone-to-gear Outer synchro ring-to-synchro cone	$\begin{aligned} & 0.95-1.68(0.037-0.066) \\ & 0.5-1.0(0.02-0.04) \\ & 0.5-1.0(0.02-0.04) \end{aligned}$	$\begin{aligned} & 0.6(0.02) \\ & 0.3(0.01) \\ & 0.3(0.01) \end{aligned}$
Shift fork	Finger thickness Fork-to-synchro sleeve clearance	$\begin{aligned} & 6.2-6.4(0.24-0.25) \\ & 0.35-0.65(0.014-0.026) \end{aligned}$	$1.0(0.039)$
Reverse shift fork	$\left.\begin{array}{ll}\begin{array}{l}\text { Pawl groove width } \\ \text { Fork-to-reverse idler gear clearance } \\ \text { Groove width*1 }\end{array} & \text { at A } \\ \text { Fork-to-5th/reverse shift shaft clearance*2 } & \text { at B }\end{array}\right\}$at A^{\prime} at B'	$\begin{aligned} & 13.0-13.3(0.51-0.52) \\ & 0.5-1.1(0.02-0.04) \\ & 7.05-7.25(0.278-0.285) \\ & 7.4-7.7(0.29-0.30) \\ & \\ & 0.05-0.35(0.002-0.014) \\ & 0.4-0.8(0.02-0.03) \end{aligned}$	1.8 (0.07) \qquad $\begin{aligned} & 0.5(0.02) \\ & 1.0(0.04) \end{aligned}$
Shift arm	I.D. Shift arm-to-shaft clearance Shift fork diameter at contact area Shift-arm-to-shift fork shaft clearance	$\begin{aligned} & 15.973-16.000(0.6289-0.6299) \\ & 0.005-0.059(0.0002-0.0023) \\ & 12.9-13.0(0.508-0.512) \\ & 0.2-0.5(0.008-0.019) \\ & \hline \end{aligned}$	\bar{Z}
Select lever	Shaft outer diameter Shift arm cover clearance	$\begin{aligned} & 15.941-15.968(0.6276-0.6287) \\ & 0.032-0.102(0.0013-0.0040) \end{aligned}$	
Shift lever	O.D. Transmission housing clearance	$\begin{aligned} & 15.941-15.968(0.6276-0.6287) \\ & 0.027-0.139(0.0011-0.0055) \\ & \hline \end{aligned}$	
Interlock	Bore diameter Shift arm clearance	$\begin{aligned} & 16.00-16.05(0.630-0.632) \\ & 0.032-0.109(0.0013-0.0043) \end{aligned}$	

*1: Measuring points
*2: Measuring points

	MEASUREMENT		STANDARD (NEW)	SERVICE LIMIT
Transmission fluid	Capacity ℓ (US qt, Imp qt)		$6.0(6.3,5.3)$ for overhaul $2.4(2.5,2.1)$ for fluid change	
Hydraulic pressure $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Line pressure at $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in \mathbb{N} or \cap position		$830(8.5,120)$ throttle fully-closed 880 (9.0, 130) throttle more than $2 / 8$ open	$780(8.0,110)$ throttle more than $2 / 8$ open
	4th clutch pressure at $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in D_{4} position		$520(5.3,75)$ throttle fully-closed $880(9.0,130)$ throttle more than 2/8 open	$460(4.7,67)$ throttle fully-closed 780 (8.0, 110) throttle more than $2 / 8$ open
	3rd and 2nd clutch pressure at 2,000 rpm (min ${ }^{-1}$) in D_{4} position		$490(5.0,71)$ throttle fully-closed $880(9.0,130)$ throttle more than $2 / 8$ open	
	2nd clutch pressure at $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in 2 position		$830-880(8.5-9.0,120-130)$	780 (8.0, 110)
	1st and 1st-hold clutch pressure at $2,000 \mathrm{rpm}$ in [1] position		830-880 (8.5-9.0, 120-130)	780 (8.0, 110)
	Throttle B pressure	Throttle fully closed Throttle fully open	$\begin{aligned} & 0(0,0) \\ & 830-880(8.5-9.0,120-130) \end{aligned}$	$780(8.0,110)$
Stall speed $\mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ (Check with car on level ground) F20B3 engine F22B1, F22B2, F22B5 engines			$\begin{aligned} & 2,550 \\ & 2,650 \end{aligned}$	$\begin{aligned} & 2,400-2,700 \\ & 2,500-2,800 \end{aligned}$
Clutch	Clutch initial clearance Clutch return spring free length Clutch disc thickness Clutch plate thickness	1st-hold 1st, 2nd 3rd, 4th 1st, 2nd, 3rd, 4th 1st, 1st-hold 2nd 3rd, 4th	$\begin{aligned} & 0.80-1.00(0.031-0.039) \\ & 0.65-0.85(0.026-0.033) \\ & 0.4-0.6(0.016-0.024) \\ & 33.5(1.32) \\ & 1.88-2.00(0.074-0.079) \\ & 1.95-2.05(0.077-0.081) \\ & 2.55-2.65(0.100-0.104) \\ & 2.25-2.35(0.089-0.093) \end{aligned}$	\qquad \qquad 31.5 (1.24) Until grooves worn out. Discoloration Discoloration Discoloration
	Clutch end plate thickness	Mark 1 Mark 2 Mark 3 Mark 4 Mark 5 Mark 6 Mark 7 Mark 8 Mark 9	$\begin{aligned} & 2.05-2.10(0.081-0.083) \\ & 2.15-2.20(0.085-0.087) \\ & 2.25-2.30(0.089-0.091) \\ & 2.35-2.40(0.093-0.094) \\ & 2.45-2.50(0.096-0.098) \\ & 2.55-2.60(0.100-0.102) \\ & 2.65-2.70(0.104-0.106) \\ & 2.75-2.80(0.108-0.110) \\ & 2.85-2.90(0.112-0.114) \end{aligned}$	
Valve body	Stator shaft needle bearing contact I.D. Torque converter side Oil pump side Oil pump gear thrust clearance Oil pump gear-to-body clearance Drive Driven Oil pump driven gear I.D. Oil pump shaft O.D.		$\begin{aligned} & 27.000-27.021(1.0630-1.1638) \\ & 29.000-29.013(1.1417-1.1422) \\ & 0.03-0.05(0.001-0.002) \\ & 0.210-0.265(0.0083-0.0104) \\ & 0.070-0.125(0.0028-0.0049) \\ & 14.016-14.034(0.5518-0.5525) \\ & 13.980-13.990(0.5504-0.5508) \end{aligned}$	Wear or damage \qquad 0.07 (0.003) \qquad \qquad Wear or damage Wear or damage
Shifting device, parking brake and throttle control system	Reverse shift fork finger thickness Parking brake pawl Parking brake gear Throttle cam stopper heighte		$\begin{aligned} & 5.90-6.00(0.232-0.236) \\ & \overline{17.0-17.1(0.669-0.673)} \end{aligned}$	$\left\{\begin{array}{l} \text { Wear or } \\ \text { other defect } \end{array}\right.$

(cont'd)

Standards and Service Limits

Automatic Transmission - Section 14 (cont'd)

	MEASUREMENT	STANDARD (NEW)	SERVICE LIMIT
Servo body	Shift fork shaft bore I.D. Shift fork shaft valve bore I.D.	$\begin{aligned} & 14.000-14.005(0.5512-0.5514) \\ & 14.006-14.010(0.5514-0.5516) \\ & 14.011-14.015(0.5516-0.5518) \\ & 37.000-37.039(1.4567-1.4582) \end{aligned}$	\qquad
Regulator valve body	Sealing ring contact I.D.	$35.000-35.025$ (1.3780-1.3789)	35.05 (1.3799)
Accumulator body	Sealing ring contact I.D.	$32.000-32.013(1.2598-1.2604)$	32.050 (1.2618)
Stator shaft	Sealing ring contact I.D.	29.000-29.013 (1.1417-1.1422)	29.050(1.1437)
Transmission	Diameter of needle bearing contact area On mainshaft of stator shaft On mainshaft of 3rd gear collar On mainshaft of 4th gear collar On countershaft of 1st gear collar On countershaft of 4th gear On countershaft of parking gear On countershaft of reverse gear On secondary shaft of 1st gear On secondary shaft of 2nd gear On reverse idler gear shaft Inside diameter Mainshaft 3rd gear Mainshaft 4th gear Countershaft 1st gear Countershaft 4th gear Countershaft reverse gear Countershaft idler gear Secondary shaft 1st gear Secondary shaft 2nd gear Reverse idler gear Reverse idler gear shaft holder	$\begin{aligned} & 22.984-23.000(0.9049-0.9055) \\ & 45.984-46.000(1.8104-1.8110) \\ & 31.984-32.000(1.2592-1.2598) \\ & 40.984-41.000(1.6135-1.6142) \\ & 31.975-31.991(1.2589-1.2595) \\ & 39.984-40.000(1.5742-1.5748) \\ & 35.979-36.000(1.4165-1.4173) \\ & 31.975-31.991(1.2589-1.2595) \\ & 31.975-31.991(1.2589-1.2595) \\ & 13.99-14.00(0.5508-0.5512) \\ & 52.000-52.019(2.0472-2.0480) \\ & 38.005-38.021(1.4963-1.4969) \\ & 47.000-47.016(1.8504-1.8510) \\ & 38.000-38.016(1.4961-1.4967) \\ & 42.000-42.016(1.6535-1.6542) \\ & 48.000-48.016(1.8898-1.8904) \\ & 36.000-36.016(1.4173-1.4179) \\ & 37.000-37.016(1.4567-1.4573) \\ & 20.007-20.020(0.7877-0.7881) \\ & 14.800-14.824(0.5827-0.5836) \end{aligned}$	Wear or damage Wear or damage
	Mainshaft 3rd gear collar length Mainshaft 4th gear collar length Countershaft 1st gear collar length Thrust washer thickness Countershaft 1st gear Countershaft idler gear Countershaft parking gear length Secondary shaft 1st gear distance collar length Secondary shaft 2nd gear thrust washer thickness	$\begin{aligned} & 19.50-19.55(0.768-0.770) \\ & 47.50-47.55(1.870-1.872) \\ & 27.50-27.55(1.083-1.085) \\ & \\ & 1.45-1.50(0.057-0.059) \\ & 3.45-3.55(0.136-0.140) \\ & 25.030-25.048(0.9854-0.9861) \\ & 4.95-5.00(0.195-0.197) \\ & \\ & 4.35-4.45(0.1713-0.1752) \\ & \hline \end{aligned}$	Wear or damage Wear or damage Wear or damage Wear or damage Wear or damage Wear or damage Wear or damage Wear or damage
	Secondary shaft 2nd gear spline washer thickness	$\begin{aligned} & 4.02-4.05(0.158-0.159) \\ & 4.07-4.10(0.160-0.161) \\ & 4.12-4.15(0.162-0.163) \\ & 4.17-4.20(0.164-0.165) \\ & 4.22-4.25(0.166-0.167) \\ & 4.27-4.30(0.168-0.169) \\ & 4.32-4.35(0.170-0.171) \\ & 4.37-4.40(0.172-0.173) \\ & 4.42-4.45(0.174-0.175) \end{aligned}$	

Automatic Transmission - Section 14		Unit of length: mm (in)			
		STANDARD (NEW)			
	MEASUREMENT	Wire Dia.	O.D.	Free Length	No. of Coils
Spring	Regulator valve spring A	1.8 (0.071)	14.7 (0.579)	88.6 (3.488)	16.5
	Regulator valve spring B	1.8 (0.071)	9.6 (0.378)	44.0 (1.732)	12.7
	Stator reaction spring	4.5 (0.177)	35.4 (1.394)	30.3 (1.193)	1.92
	Torque converter check valve spring	1.1 (0.043)	8.4 (0.331)	38.2 (1.504)	14.0
	Relief valve spring	1.0 (0.039)	8.4 (0.331)	39.1 (1.539)	15.1
	Cooler relief valve spring	1.1 (0.043)	8.4 (0.331)	46.8 (1.843)	17.0
	2nd orifice control valve spring	0.6 (0.024)	6.6 (0.260)	66.4 (2.614)	25.0
	Orifice control valve spring	0.7 (0.028)	6.6 (0.260)	52.5 (2.067)	18.4
	Servo control valve spring	1.0 (0.039)	8.1 (0.319)	52.6 (2.071)	22.4
	4th exhaust valve spring	0.8 (0.031)	7.1 (0.280)	48.8 (1.921)	17.2
	Throttle valve B adjusting spring	0.8 (0.031)	6.2 (0.244)	30.0 (1.181)	8.0
	Throttle valve B spring	1.4 (0.055)	8.5 (0.335)	41.5 (1.634)	10.5
		1.4 (0.055)	8.5 (0.335)	41.5 (1.634)	11.2
		1.4 (0.055)	8.5 (0.335)	41.6 (1.638)	12.4
	1-2 shift valve spring	0.9 (0.035)	8.6 (0.339)	40.4 (1.591)	14.5
	2-3/3-4 shift valve spring	0.9 (0.035)	7.6 (0.299)	57.0 (2.244)	26.8
	1st-hold accumulator spring	4.0 (0.157)	25.0 (0.984)	64.7 (2.547)	7.3
	1st accumulator spring A	2.3 (0.091)	16.3 (0.642)	109.6 (4.315)	20.0
	1st accumulator spring B	1.8 (0.071)	6.3 (0.248)	70.5 (2.776)	15.3
	4th accumulator spring	2.9 (0.114)	22.0 (0.866)	90.1 (3.547)	10.9
	2nd accumulator spring	3.5 (0.138)	22.0 (0.866)	91.0 (3.583)	10.8
	3rd accumulator spring	2.9 (0.114)	17.5 (0.689)	99.6 (3.921)	16.1
	Lock-up shift valve spring	0.9 (0.035)	7.6 (0.229)	73.7 (2.902)	32.0
	Lock-up timing valve spring	0.8 (0.031)	6.6 (0.260)	51.1 (2.012)	14.7
	CPC valve spring	1.4 (0.055)	9.4 (0.370)	33.0 (1.299)	10.5
	Modulator valve spring	1.4 (0.055)	9.4 (0.370)	33.0 (1.299)	10.5
	Lock-up control valve spring	0.7 (0.028)	6.6 (0.260)	36.3 (1.429)	14.1
		0.7 (0.028)	6.6 (0.260)	38.1 (1.500)	14.1
	3rd kick-down valve spring	1.0 (0.039)	7.6 (0.299)	48.3 (1.902)	15.6
	Main orifice control valve spring	1.1 (0.043)	7.1 (0.280)	49.1 (1.933)	22.7

	MEASUREMENT		STANDARD (NEW)	SERVICE LIMIT
Differential	Pinion shaft contact area I.D. Carrier-to-pinion clearence Driveshaft contact area I.D. Carrier-to-driveshaft clearance	Right Left	$\begin{aligned} & 18.000-18.018(0.7087-0.7094) \\ & 0.017-0.047(0.0007-0.0019) \\ & 28.005-28.025(1.1026-1.1033) \\ & 0.025-0.066(0.0010-0.0026) \\ & 0.055-0.091(0.0022-0.0036) \end{aligned}$	$\begin{aligned} & \overline{0.1(0.004)} \\ & \overline{0.12(0.005)} \\ & 0.15(0.006) \end{aligned}$
Differential pinion gear	Backlash I.D. Pinion gear-to-pinion shaft clearance		$\begin{aligned} & 0.05-0.15(0.002-0.006) \\ & 18.042-18.066(0.7103-0.7113) \\ & 0.055-0.095(0.0022-0.0037) \end{aligned}$	$\overline{]_{0}}$
Differential taper roller bearing preload Starting torque $\mathrm{N} \cdot \mathrm{m}$ ($\mathrm{kgf} \cdot \mathrm{cm}$, lbf.in)			1.4-2.5 (14-26, $12-23)$	Adjust

Standards and Service Limits

	MEASUREMENT	STANDARD (NEW)
Steering wheel	Rotational play at steering wheel circumference Starting load at steering wheel circumference N (kgf, lbf) Engine running	$\begin{aligned} & 0-10(0-0.39) \\ & 29(3.0,6.6) \end{aligned}$
Gear box	Angle of rack-guide-screw loosened from locked position	$20^{\circ} \pm 5^{\circ}$
Pump	Pump pressure with shut-off valve closed kPa (kgf/cm ${ }^{2}$, psi)	6,400-7,400 (65-75,924-1,067)
Power steering fluid	Recommended fluid Fluid capacity For overhaul $\ell \quad$ (US qt, Imp qt) For fluid change	Honda power steering fluid-V 1.1 (1.16, 0.97) 0.4 (0.42, 0.35)
Power steering belt*	Deflection with 98 N ($10 \mathrm{kgf}, 22 \mathrm{lbf}$) between pulleys	13.0-16.0 (0.51-0.63) with used belt 11.0-12.5 (0.43-0.49) with new belt
	Belt tension N(kgf, lbf) Measured with belt tension gauge	$390-540(40-55,88-121)$ with used belt 740-880 (75-90, 165-198) with new belt

	MEASUREMENT			STANDARD (NEW)	
Wheel alignment	Camber Caster Total toe Front wheel turning angle		Front Rear Front Front Rear Inward wheel Outward wheel	$\begin{aligned} & -0^{\circ} 00^{\prime} \pm 1^{\circ} \\ & -0^{\circ} 25^{\prime} \pm 30^{\prime} \\ & 3^{\circ} 00^{\prime} \pm 1^{\circ} \\ & 0 \pm 3(0 \pm 0.12) \\ & 1 N 2 \pm 2(0.08 \pm 0.08) \\ & 39^{\circ} 00^{\prime} \pm 2^{\circ} \\ & 30^{\circ} 00^{\prime} \text { (Reference) } \\ & \hline \end{aligned}$	
Wheel bearing	End play		Front Rear	$\begin{aligned} & 0-0.05(0-0.002) \\ & 0-0.05(0-0.002) \end{aligned}$	
				STANDARD (NEW)	SERVICE LIMIT
Wheel	Rim runout	Aluminum wheel Steel wheel	Axial Radial Axial Radial	$\begin{aligned} & \hline 0-0.7(0-0.03) \\ & 0-0.7(0-0.03) \\ & 0-1.0(0-0.04) \\ & 0-1.0(0-0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0(0.08) \\ & 1.5(0.06) \\ & 2.0(0.08) \\ & 1.5(0.06) \end{aligned}$

Air Conditioning - Section 22
Unit of length: mm (in)

	MEASUREMENT	STANDARD (NEW)
Air conditioning system	Lubricant type: NIPPONDENSO: ND-OIL8 (P/N 38899 - PR7 - 003) HADSYS: Dn. S10X (P/N 38899 - P0A - 003) Lubricant capacity Condenser me' (fl oz, Imp oz) Evaporator Line or hose Receiver	$\begin{aligned} & 25(5 / 6,0.9) \\ & 40(11 / 3,1.4) \\ & 10(1 / 3,0.4) \\ & 10(1 / 3,0.4) \end{aligned}$
Compressor (NIPPONDENSO)	Lubricant type: ND-OIL8 (P/N 38899 - PR7-003) Lubricant capacity $\mathrm{m} \ell$ ($\mathrm{fl} \mathrm{oz}, \mathrm{Impoz}$) Stator coil resistance at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) \quad \Omega$ Pulley-to-pressure plate clearance	$\begin{aligned} & 160_{0}^{+15}\left(51 / 3{ }_{0}^{+1 / 2}, 5.6_{0}^{+0.5}\right) \\ & 3.4-3.8 \\ & 0.5 \pm 0.15(0.02 \pm 0.006) \end{aligned}$
Compressor (HADSYS)	Lubricant type: Dn. S10X (P/N 38899 - P0A - 003) Lubricant capacity $m \ell(f l o z, ~ I m p ~ o z) ~$ Field coil resistance at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) \quad \Omega$ Pulley-to-pressure plate clearance	$\begin{aligned} & 160+20\left(51 / 33_{0}^{+2 / 3} 5.6{ }^{+0.7}\right) \\ & 2.85-3.15 \\ & 0.5_{-0.2}^{+0.1}\left(0.02{ }_{-0.008}^{+0.004}\right) \\ & \hline \end{aligned}$
Compressor belt*	Deflection with 98 N (10 kgf, 22 lbf) between pulleys	$8.0-10.5(0.31-0.41)$ with used belt 5.0-7.0(0.20-0.28) with new belt
	Belt tension N(kgf, lbf) Measured with belt tension gauge	440-590 (45-60,99-132) with used belt $930-1,130(95-115,209-254)$ with new belt

*: When using a new belt, adjust deflection or tension to new values. Run the engine for 5 minutes then turn it off. Readjust deflection or tension to used belt values.

Standards and Service Limits

	MEASUREMENT	STANDARD (NEW)	
Ignition coil	Rated voltage Primary winding resistance at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) \Omega$	12 F22B1 engine: $0.4-0.6$ F22B2 engine: 0.6-0.8 Except F22B1 and F22B2 engines: $0.6-0.8$ F22B1 engine: 22.4-33.6 F22B2 engine: 14.4-21.6 Except F22B1 and F22B2 engines: 13-19	
Ignition wire	Resistance at $68{ }^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right) \quad \mathrm{k} \Omega$	25 max.	
Spark plug	Type Gap	$\begin{aligned} & \text { See Section } 23 \\ & 1.1_{-0.1}(0.043-0.004) \end{aligned}$	
Ignition timing	$\begin{aligned} & \text { At idling } \\ & { }^{\circ} \text { BTDC (Red) -rpm (min }{ }^{-1} \text {) } \end{aligned}$	$\begin{aligned} & 15 \pm 2-700 \pm 50(\mathrm{M} / \mathrm{T}: \text { neutral)*1 } \\ & 15 \pm 2-700 \pm 50\left(\mathrm { A } / \mathrm { N } \text { or } \left(\mathrm{P} \text { position) }{ }^{* 1}\right.\right. \\ & 15 \pm 2-770 \pm 50(\mathrm{M} / \mathrm{T}: \text { neutral)*2 } \\ & 15 \pm 2-770 \pm 50\left(\mathrm{~A} / \mathrm{T} ; \mathrm{N} \text { or } \mathrm{P} \text { position) }{ }^{* 2}\right. \end{aligned}$	
Alternator belt ${ }^{* 3}$	Deflection with $98 \mathrm{~N}(10 \mathrm{kgf}, 22 \mathrm{lbf})$ between pulleys	10.5-12.5 (0.41-0.49) with used belt $8.0-10(0.31-0.39)$ with new belt	
	Belt tension N (kgf, lbf) Measured with belt tension gauge	290-440 (30-45, 66-99) with used belt 540-740 (55-75, 120-170) with new belt	
Alternator	Output 13.5 V at hot A Coil resistance (rotor) at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) \mathrm{k} \Omega$ Slip ring O.D. Brush length Brush spring tension N (kgf, lbf)	STANDARD (NEW)	SERVICE LIMIT
		$\begin{aligned} & 80^{* 4}, 90^{* 5} \\ & 2.8-3.0(0.11-0.12) \\ & 14.4(0.57) \\ & 10.5(0.41) \\ & 2.9-3.5(0.30-0.36,0.66-0.77) \end{aligned}$	$\begin{aligned} & \overline{14.0}(0.55) \\ & 1.5(0.002) \end{aligned}$
Starter $\quad \mathrm{M} / \mathrm{T}$	Output/Manufacturer Commutator mica depth Commutator runout Commutator O.D. Brush length Brush spring tension (new) $\quad \mathrm{N}$ (kgf, lbf)	1.4 kW/NIPPONDENSO $0.5-0.8(0.020-0.031)$ $0-0.02(0-0.001)$ 29.9-30.0 (1.177-1.181) 15.0-15.5 (0.59-0.61) 18-24 (1.8-2.4, 4.0-5.3)	$\begin{aligned} & 0.2(0.008) \\ & 0.05(0.002) \\ & 29.0(1.14) \\ & 10.0(0.39) \\ & \hline \end{aligned}$
AT	Output/Manufacturer Commutator mica depth Commutator runout Commutator O.D. Brush length Brush spring tension (new) N (kgf, lbf)	$\begin{aligned} & 1.4 \mathrm{~kW}^{* 6}, 1.6 \mathrm{~kW}{ }^{* 2} / \mathrm{MITSUBA} \\ & 0.4-0.5(0.016-0.020) \\ & 0-0.02(0-0.001) \\ & 28.0-28.1(1.102-1.106) \\ & 15.8-16.2(0.62-0.64) \\ & 16-18(1.6-1.8,3.5-4.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15(0.006) \\ & 0.05(0.002) \\ & 27.5(1.083) \\ & 10.0(0.39) \\ & \hline \end{aligned}$

*1: F22B1, F22B2 engines
*2: F20B3, F22B5 engines
*3: When using a new belt, adjust deflection or tension to new values. Run the engine for 5 minutes then turn it off. Readjust deflection or tension to used belt values.
*4: F20B3, F22B2, F22B5 engines
*5: F22B1 engine
*6: F22B1 engine

	ITEM	METRIC	ENGLISH	NOTES
DIMENSIONS	Overall Length Overall Width Overall Height Wheelbase Track Front/Rear Ground Clearance Seating Capacity		184.1 in 70.1 in 54.7 in 106.9 in $59.6 / 59.1 \mathrm{in}$ 6.3 in	
WEIGHT		1320 kg 1345 kg 1335 kg 1360 kg 1295 kg 1320 kg 1330 kg 1355 kg $1315 / 1330^{* 1}$ $1340 / 1355^{* 1}$ 1280 $1310 / 1325^{* 2}$ $1360 / 1370^{* 3}$	2910 lbs 2965 lbs 2943 lbs 2998 lbs 285 lbs 291 lbs 2932 lbs 2987 lbs $2899 / 2932 \mathrm{lbs}$ $2954 / 2987 \mathrm{lbs}$ 2822 $2888 / 2921^{\circ 2}$ $2999 / 3020^{* 3}$	${ }^{*}$ With SRS airbag system and leather ${ }^{2}$ With ABS ${ }^{*}$ With leather
		$800 / 520 \mathrm{~kg}$ $830 / 515 \mathrm{~kg}$ $825 / 510 \mathrm{~kg}$ $855 / 505 \mathrm{~kg}$ $790 / 505 \mathrm{~kg}$ $820 / 500 \mathrm{~kg}$ $815 / 515 \mathrm{~kg}$ $845 / 510 \mathrm{~kg}$ $810\left(820^{+1} / 1 / 505\left(1510^{-2}\right) \mathrm{kg}\right.$ $840\left(850^{\circ 1}\right) / 500\left(505^{* 1}\right) \mathrm{kg}$ $800 / 480 \mathrm{~kg}$ $825\left(840^{2}\right) / 485 \mathrm{~kg}$ $855\left(860^{-3}\right) / 505\left(510^{* 3}\right) \mathrm{kg}$	$1764 / 1146 \mathrm{lbs}$ $1830 / 1135 \mathrm{lbs}$ $1819 / 1124 \mathrm{lbs}$ $1885 / 1113 \mathrm{lbs}$ $1742 / 1113 \mathrm{lbs}$ $1808 / 1102 \mathrm{lbs}$ $1797 / 1135 \mathrm{lbs}$ $1863 / 1124 \mathrm{lbs}$ $1786\left(1808^{*}\right) / 1113\left(1124^{+}\right) \mathrm{lbs}$ $1852\left(1874^{*} 1\right) / 1102\left(1113^{* 1}\right) \mathrm{lbs}$ $1764 / 1058 \mathrm{lbs}$ $1819\left(1852^{* 2}\right) / 1069 \mathrm{lbs}$ $1885\left(1896^{* 3}\right) / 1114\left(1124^{* 3}\right) \mathrm{lbs}$	${ }^{*}$ With SRS airbag system and leather ${ }^{2}$ With ABS ${ }^{*}$ With leather
ENGINE	Type F22B1 engine Except F22B1 engine Cylinder Arrangement Bore and Stroke F20B3 engine F22B1, F22B2, F22B5 engines Displacement F20B3 engine F22B1, F22B2, F22B5 engines	Water-cooled, VTEC gaso Water-cooled, gasoline Inline 4-cylind $85.0 \times 88.0 \mathrm{~mm}$ $85.0 \times 95.0 \mathrm{~mm}$ $1,997 \mathrm{~cm}^{3}(\mathrm{~m} \ell)$ $2,156 \mathrm{~cm}^{3}(\mathrm{~m} \ell)$	4-stroke SOHC line engine 4-stroke SOHC engine der, transverse 3.35×3.46 in 3.35×3.74 in $122 \mathrm{cu}-\mathrm{in}$ 132 cu -in	

(cont'd)

Design Specifications

	ITEM		METRIC	ENGLISH	NOTES
TRANSMISSION (cont'd)	Automatic Transmission		F20B3, F22B5 engines	F22B1, F22B2 engines	
	Gear Ratio	1st	2.736	2.736	
		2nd	1.333	1.483	
		3 rd	1.026	1.026	
		4th	0.731	0.674	
		Reverse	2.047	2.047	
	Final Reduction Gear	Ratio	4.285	4.133	
		Type	Single helical gear		
AIR CONDITIONING	Cooling Capacity		4,130 Kcal/h	16,400 BTU/h	
	Compressor	Type/Manufacturer No. of Cylinder Capacity Max. Speed Lubricant Capacity Lubricant Type			Except F22B1 engine
	Compressor	Type/Manufacturer No. of Cylinder Capacity Max. Speed Lubricant Capacity Lubricant Type	Swas $170 \mathrm{ml} / \mathrm{rev}$ $160 \mathrm{ml} \ell^{7,8}$ Dn. S10X	ADSYS $10.4 \mathrm{cu}-\mathrm{in} / \mathrm{rev}$ in^{-1}) 5 1/3fl oz 5.61 mp oz - POA - 003)	F22B1 engine
	Condenser	Type	Corrugated fin		
	Evaporator	Type	Corrugated fin		
	Blower	Type Motor Input Speed Control Max. Capacity	Sirocso fan$200 \mathrm{~W} / 12 \mathrm{~V}$4 -speed		
	Temperature Control		Air-mix type		
	Compressor Clutch	Type Power Consumption	Dry, single plate, poly-V-belt drive 40 W max. 12 V		At $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
	Refrigerant	$\begin{aligned} & \text { Type } \\ & \text { Quantity } \end{aligned}$	$\underset{650{ }_{-50}{ }^{\mathrm{H}} \mathrm{gFO}}{ }$	$\begin{aligned} & \text { 134a) } \\ & 18.4-{ }_{-1.80 z} \end{aligned}$	
STEERING SYSTEM	Type Overall Ratio Turns, Lock-to-Lock Steering Wheel Dia.		Power assisted, rack and pinion380 mm16.3 3.11		

(cont'd)

Design Specifications

	ITEM	METRIC ENGLISH	NOTES
SUSPENSION	Type Front Shock Absorber Rear Front and Rear	Independent double wishbone, coil spring with stabilizer Independent double wishbone, coil spring with stabilizer Telescopic, hydraulic nitrogen gas-filled	
WHEEL ALIGNMENT	Camber Front Rear Caster Front Total Toe Front Rear Fron		
BRAKE SYSTEM	Type Front Rear Pad Surface Area Front Rear Rear Lining Surface Area Type Parking Brake	Power-assisted self-adjusting ventitated disc Power-assisted self-adjusting solid disc*1 Power-assisted self-adjusting drum $49 \mathrm{~cm}^{2} \times 2$	Disk brake Drum brake
TIRE	Size and Pressure	See tire label (see page 1-9)	
ELECTRICAL	Battery Starter Alternator Fuses In Under-dash Fuse/Relay Box In Under-hood Fuse/Relay Box In Under-hood ABS Fuse/Relay Box Headights Front Turn Signal Lights Front Side Marker Lights Front Position Lights Side Turn Signal Lights Rear Turn Signal Lights Stop/Taillights Rear Side Marker Lights High Mount Brake Light Back-up Lights Interior Lights (Front/Rear) Trunk Lights Door Coutesy Lights Vanity Mirror Light Gauge Lights Indicator Lights Illumination and Pilot Lights Heater Illumination Lights	$\begin{gathered} 12 \mathrm{~V}-55 \mathrm{AH} / 5 \mathrm{HR} \\ 12 \mathrm{~V}-1.4 \mathrm{~kW} / 1.6 \mathrm{~kW} \\ 12 \mathrm{~V}-80 \mathrm{~A}^{* 1} / 90 \mathrm{~A}^{* 2} \end{gathered}$ $7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 30 \mathrm{~A}$ $7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 30 \mathrm{~A}, 40 \mathrm{~A}$ $50 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$ $10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 40 \mathrm{~A}$ $12 \mathrm{~V}-55 \mathrm{~W}$ $12 V-60 / 55 W$ $12 \mathrm{~V}-21 \mathrm{~W}$ $12 V-5 W$ $12 V-5 W$ $12 V-5 W$ $12 \mathrm{~V}-21 \mathrm{~W}$ $12 \mathrm{~V}-21 / 5 \mathrm{~W}$ $12 V-5 W$ $12 V-21 W$ $12 V-21 W$ $12 V-5 W$ $12 \mathrm{~V}-3.4 \mathrm{~W}(5.0 \mathrm{~W})$ $12 \mathrm{~V}-3.4 \mathrm{~W}$ $12 \mathrm{~V}-1.8 \mathrm{~W}$ $12 \mathrm{~V}-1.4 \mathrm{~W}, 3.0 \mathrm{~W}$ $12 \mathrm{~V}-0.84 \mathrm{~W}, 1.12 \mathrm{~W}, 1.4 \mathrm{~W}$ $12 \mathrm{~V}-0.56 \mathrm{~W}, 0.84 \mathrm{~W}, 0.91 \mathrm{~W}, 1.12 \mathrm{~W}, 1.4 \mathrm{~W}$, LED $12 \mathrm{~V}-1.4 \mathrm{~W}$	

[^1]
Maintenance
Lubrication Points 4-2
Maintenance Schedule 4-4

Lubrication Points

For the details of lubrication points and type of lubricants to be applied, refer to the illustrated index and various work procedure (such as Assembly/Reassembly, Replacement, Overhaul, Installation, etc.) contained in each section.

No.	LUBRICATION POINTS	LUBRICANT
1	Engine	Always use a fuel-efficient oil is that says "API Service SG or SH." SAE Viscosity: See chart below.
2	Transmission Manual Automatic	API Service Grades: SF or SG SAE Viscosity: $10 \mathrm{~W}-30$ or $10 \mathrm{~W}-40$ Honda Premium Formula or DEXRON® II Automatic transmission fluid
3	Brake line (Includes Anti-lock brake line)	Brake fluid DOT3 or DOT4
4	Clutch line	Brake fluid DOT3 or DOT4
5	Power steering gearbox	Steering grease P/N 08733-B070E
6	Release fork (Manual transmission)	Urea Grease UM264 (P/N 41211-PY5-305)
7	Throttle wire end (Dashboard lower panel hole)	Silicone grease
$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	Throttle cable end (Throttle link) Brake master cylinder pushrod Clutch master cylinder pushrod Hood hinges and hood latch Battery terminals Fuel fill lid Trunk hinges Door hinges, upper and lower Door open detent	Multi-purpose grease
17	Rear brake calipers	Rust-preventive agent
18	Power steering system	Honda power steering fluid-V
19	Air conditioning compressor	Compressor oil: NIPPONDENSO: ND-OIL8 (P/N 38899-PR7-003) HADSYS: Dn. S10X (P/N 38899-POA-003) (For Refrigerant: HFC-134a (R-134a))
	Recommended engine oil Engine oil viscosity for ambient temperature ranges	CAUTION: Used engine oil may cause skin cancer if repeatedly left in contact with the skin for prolonged periods. Although this is unlikely unless you handle used oil on a daily basis, it is still advisable to thoroughly wash your hands with soap and water as soon as possible after handling used oil.

$R=$ Replace $I=$ Inspect: After inspection, clean, adjust, fill up, repair or replace if necessary.

Service at the interval listed $\times 1,000 \mathrm{~km}$ (or miles) or after that number of months, whichever comes first.		x $1,000 \mathrm{~km}$	20	40	60	80	100	120	140	160	180	200
		$\times 1,000$ miles	12	24	36	48	60	72	84	96	108	120
		months	12	24	36	48	60	72	84	96	108	120
- Engine oil and oil filter	For European models		Replace every $10,000 \mathrm{~km}$ (6,000 miles) or 12 months									
	For other than European models		Replace every $10,000 \mathrm{~km}(6,000$ miles) or 6 months									
- Transmission oil	For European models				R			R			R	
	For other than European models			R		R		R		R		R
Valve clearance	For European models			1		1		1		1		1
	For other than European models		1	1	1	1	1	1	1	1	1	1
Belt tension and conditions (Alternator, P/S pump, A/C compressor)				1		1		1		1		1
Timing belt and timing balancer belt							R					R
Water pump							1					1
Cooling system hoses and connections				1		1		1		1		1
- Engine coolant						R		R		R		R
Spark plugs				R		R		R		R		R
Ignition timing (For other than European models)				1		1		1		1		1
Air cleaner element				R		R		R		R		R
Tank, fuel lines and connections				1		I		I		1		1
Fuel filter				R		R		R		R		R
Positive crankcase ventilation valve							1					1
Idle speed and idle CO			1	1	1	1	1	1	1	1	1	1
Evaporative emission control system (For other than European models)							1					1
Distributor cap and rotor (For other than European models)				1		1		1		1		1
Ignition wiring (For other than European models)				1		1		1		1		1

[^2]| Service at the interval listed $\times 1,000 \mathrm{~km}$ (or miles) or after that number of months, whichever comes first. | $\times 1,000 \mathrm{~km}$ | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\times 1,000$ miles | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 |
| | months | 12 24 36 48 60 72 84 96 108 120 | | | | | | | | | |
| Front brake pads | | Inspect every $10,000 \mathrm{~km}$ (6,000 miles) or 12 months | | | | | | | | | |
| Front brake discs and calipers | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Rear brake discs, calipers and pads | | | 1 | | 1 | | 1 | | 1 | | 1 |
| Rear brake drums, wheel cylinders and linings | | | 1 | | 1 | | 1 | | 1 | | 1 |
| Parking brake operation | | 1 | 1 | | 1 | | 1 | | 1 | | 1 |
| Brake fluid (Including ABS) | | | R | | R | | R | | R | | R |
| Brake hoses and lines | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Anti-lock brake system operation (For cars with ABS) | | | 1 | | 1 | | 1 | | 1 | | 1 |
| Exhaust system and condition | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Catalytic converter heat shield | | | | | | 1 | | | | | 1 |
| Suspension components | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Steering function, tie-rod ends, gearbox and boots | | 1 | 1 | | 1 | | 1 | | 1 | | 1 |
| Power steering functions, hoses and connections | | 1 | 1 | 1 | $1 \quad 1$ | | 11 | | 1 | 1 | 1 |
| All fluid levels | | Inspect every 10,000 km (6,000 miles) or 12 months | | | | | | | | | |
| Battery condition | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | I |
| Tires condition, wear and pressure (Including spare) | | Inspect every $10,000 \mathrm{~km}$ (6,000 miles) or 12 months | | | | | | | | | |
| Lights operation and headlight beam | | Inspect every $10,000 \mathrm{~km}$ (6,000 miles) or 12 months | | | | | | | | | |
| Paint damages and body work | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | I | 1 | 1 |
| Test drive (noise, stability, dashboard operations) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Cleanliness of controls, door handles etc | | Inspect after every Service | | | | | | | | | |
| Supplemental Restraint System | | Inspect system 10 years first registration | | | | | | | | | |

Severe Driving Conditions
The following items must be serviced more frequently on cars normally used under severe driving conditions. Refer to the chart below for the appropriate maintenance intervals.
D: Driving in areas using road salt or other corrosive materials.
E: Driving in rough and/or muddy roads.
F: Towing a trailer.
$R=$ Replace $C=$ Clean $I=$ Inspect: After inspection, clean, adjust, fill up, repair or replace if necessary.

Condition	Maintenance Item		Operation	Interval
A B • • F	Engine oil and oil filter	For European models	R	Every $5,000 \mathrm{~km}(3,000$ miles) or 6 months
		For other than European models	R	Every $5,000 \mathrm{~km}(3,000$ miles) or 3 months
-•••F	Transmission oil		R	Every $20,000 \mathrm{~km}$ (12,000 miles) or 12 months
- B • - -	Air cleaner element		C	Every $20,000 \mathrm{~km}$ (12,000 miles) or 12 months
			R	Every $40,000 \mathrm{~km}$ (24,000 miles) or 24 months
$A B \cdot D E F$	Front brake discs and calipers		1	Every $10,000 \mathrm{~km}(6,000$ miles) or 6 months
AB - DEF	Rear brake discs, calipers and pads		1	Every $20,000 \mathrm{~km}$ (12,000 miles) or 12 months
ABC•EF	Clutch release arm travel		1	Every $10,000 \mathrm{~km}(6,000$ miles) or 6 months
- BC•E•	Power steering system		1	Every $10,000 \mathrm{~km}(6,000$ miles) or 6 months

Engine

Construction and Function (F22B1 engine) 5-1
Engine Removal/Installation 5-11
Cylinder Head/Valve Train 6-1
Engine Block 7-1
Engine Lubrication 8-1
Intake Manifold/Exhaust System 9-1
Cooling 10-1
Construction and Function (F22B1 engine)
Outline
Description 5-2
VTEC
Description 5-4
Mechanism 5-6
Control System 5-7
Explanation of Timing Mechanism Operation 5-8

Outline

Description

The new F22B1 engine is an in-line 4 -cylinder SOHC design displacing 2,156 cm^{3} (131.5 cu -in). It is water cooled and equipped with a center plug type pent-roof combustion chamber. It is specified to use unleaded fuel and uses a PGM-FI (Sequential Multiport Fuel Injection) system. This engine incorporates a mechanism called Honda Variable Valve Timing and Valve Lift Electronic Control (VTEC) System.
The design of other engine models are basically the same as F22B1 engine except the displacements and VTEC system. This system allows the timing and lift of the intake valves to be changed simultaneously.

F22B1 engine:

Major Specifications

Type	Water cooled 4-stroke, In-line 4-cylinder gasoline engine
Displacement	$2,156 \mathrm{~cm}^{3}(131.5 \mathrm{cu}-\mathrm{in})$
Bore \times Stroke	$85.0 \times 95.0 \mathrm{~mm}(3.35 \times 3.74 \mathrm{in})$
Compression Ratio	$8.8: 1$
Cam, Valve Mechanism	Single over-head camshaft, VTEC
Valve Train	Belt Driven
Fuel Supply System	Sequential Multiport Fuel Injection (SFI)

Main Features:

- The cylinder head is made of aluminum alloy, a center plug type, pentroof-shaped combustion chamber is used, and the 4 -valve system uses 2 intake valves and 2 exhaust valves.
- The camshaft and the valve train are driven by a timing belt, and the two balancer shafts are driven by a timing balancer belt.
- The cylinder block is made of aluminum alloy using cast iron sleeves.
- The crankshaft is made by forging, is supported at five points and has eight balancer weights.
- The balancer shafts employ a gear-type reverse mechanism to reduce secondary engine vibration.
- The intake manifold is made of aluminum alloy.
- The electronic fuel injection system is a sequential multiport type. It injects fuel into all four cylinders. The throttle body is a one-barrel, side-draft type.
- The ignition system is a fully-transistorized, contactless type. The spark advance is electronic.
- The air cleaner is equipped with a resonator.
- The radiator is a corrugated type, and the cooling fan is electrically powered.

Description

This engine has a normal 4 valves per cylinder arrangement. At low engine speed, the primary intake valve operates at normal lift while the secondary intake valve opens only slightly to prevent fuel accumulation in the intake port. At high engine speed the primary and secondary intake rocker arms are connected to the mid intake rocker arm to allow high valve lift. A synchronizing piston connects/disconnects the three intake rocker arms. Hydraulic pressure against a timing piston moves the synchronizing piston A and B one direction, while a stopper piston and return spring moves the synchronizing piston back when hydraulic pressure is reduced.

A variable valve timing and lift mechanism is used so the engine achieves both low fuel consumption and high output. This system has achieved high combustion efficiency and low fuel consumption in the low engine speed range while maintaining high output equivalent to that of a conventional 4 -valve engine in the high engine speed range. This was made possible by providing a great lift difference between the primary intake valve and secondary intake valve in the low engine speed range to create a swirling fuel/air flow.

	High Power Engine	VTEC Engine	2-valve Engine
Valve Timing (exhaust/intake) Valve Lift			
Max. Power	\bigcirc	\bigcirc	\times
Low rpm Torque	\times	\bigcirc	\bigcirc
Idling Stability	\times	\bigcirc	\bigcirc
Fuel consumption	\times	\bigcirc	\bigcirc

*TDC $=$ Top Dead Center \quad *BDC $=$ Bottom Dead Center
O = Optimum Characteristic
$x=$ Worst Characteristic

Rocker arms with roller bearings reduce friction losses.

INTAKE

Rocker Arm	Type
(1) Primary	Roller
(2) Secondary	Slider
(3) Mid	Roller

EXHAUST

Rocker Arm	Type
(4) A	Roller
(5) B	Roller

VTEC

Mechanism

At Low Speed:

As shown, the primary and secondary rocker arms are not connected to the mid rocker arm, but are driven separately by cam lobes A and B at different timing and lift. The lift of the secondary cam lobe is small so that one intake valve slightly opens (one-valve controll. Although the mid rocker arm is following the center cam lobe with the lost motion assembly, it has no effect on the opening and closing of the valves in the low rpm range.

At High Speed:

When driving at high speed, the timing piston moves in the direction shown by the arrow in the figure below. As a result, the primary, secondary, and mid rocker arms are linked by 2 synchronizing pistons (like a skewer) and the 3 rocker arms move as a single unit. In this state, all the rocker arms are driven by cam lobe C, opening and closing the valves at the valve timing and valve lift set for high operation.

Connected by hydraulic piston, and driven only by the mid cam.

Control System

The control system for this mechanism, as shown below, constantly monitors the changes in engine status such as load, rpm and vehicle speed. This information is transmitted to the Engine Control Module (ECM).

Valve Timing Change Conditions
Engine Speed: 2,300 ~ 3,200 rpm (depending on manifold pressure)
Vehicle Speed: $6.2 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h}$) or faster
Engine Coolant Temperature: $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ or higher
Engine Load: Judged by intake manifold negative pressure

Control System

VTEC

Explanation of Timing Mechanism Operation

The variable valve timing and lift mechanism switches intake valve operation between single valve operation and two valve operation depending upon engine speed. To help achieve switch-over, a timing plate is installed on the primary rocker arm.

Hydraulic Pressure ON
(1) Lift 0: Switch-over is impossible as the timing Plate is into the timing piston.

(2) Lift process begins: The timing plate is desengaged, and the timing piston starts shifting. The synchronizing piston does not move because of the lift.

(3) Lift 0 : Since the timing plate is pulled out, the valve operating mode starts to change from 1 -valve operation to 2 -valve operation at the moment the lift becomes zero.

(4) Lift 0 : Switch-over is complete.

Hydraulic pressure OFF
1] Lift 0: Switch-over is impossible as the timing is inserted into the timing piston.

[2] Lift process begins: The timing plate alone starts shifting. The synchronizing piston does not move because of the load imposed.

(3) Lift 0 : The synchronizing piston is pushed back by the return spring and the valve operation mode starts to change from 2 -valve operation to 1 -valve operation from the moment when the lift becomes zero.

(4) Lift 0: Switch-over is completed.

Engine Removal/Installation

Special Tools 5-12
Engine Removal/Installation
Removal 5-13
Installation 5-23
Engine Mount Control System (A/T)
Component Location Index 5-28
Description 5-29
Circuit Diagram 5-31
Troubleshooting 5-32
Diaphragm Actuator Test 5-35

Special Tools

Removal

A warning

- Make sure jacks and safety stands are placed properly and hoist brackets are attached to the correct positions on the engine.
- Make sure the car will not roll off stands and fall while you are working under it.

CAUTION:

- Use fender covers to avoid damaging painted surfaces.
- Unspecified items are common.
- Unplug the wiring connectors carefully while holding the connector portion to avoid damage.
- Mark all wiring and hoses to avoid misconnection. Also, be sure that they do not contact other wiring or hoses, or interfere with other parts.

1. Secure the hood as open as possible.
2. Disconnect the battery negative terminal first, then the positive terminal.
3. Remove the battery, battery base and engine ground cable.
$8 \times 1.25 \mathrm{~mm}$
$22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{~kg} \cdot \mathrm{~m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$

4. Remove the throttle cable and cruise control cable by loosening the locknuts, then slip the cable end out of the throttle linkage.

NOTE:

- Do not loosen the adjusting nut.
- Take care not to bend the cable when removing it. Always replace any kinked cable with a new one.
- Adjust the throttle cable and cruise control cable when installing (see section 11 and 23).

(cont'd)

Engine Removal/Installation

Removal (cont'd)

5. Remove the intake air duct B and intake air duct/air cleaner housing assembly.
$6 \times 1.0 \mathrm{~mm}$
$12 \mathrm{~N} \cdot \mathrm{~m}$ ($12 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

INTAKE AIR
DUCT B
6. Disconnect the intake air resonator (IAR) control solenoid valve connector, then remove the vacuum hose and IAR (F22B1, F22B5 engines).

7. Remove the battery cables from the under-hood fuse/relay box and under-hood ABS fuse/relay box.

8. Remove the engine wire harness connectors on the right side of the engine compartment.

$6 \times 1.0 \mathrm{~mm}$

$12 \mathrm{~N} \cdot \mathrm{~m}(12 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

9. Remove the brake booster vacuum hose and vacuum hoses.

10. Relieve fuel pressure by loosening the service bolt on the fuel filter about one turn (see section 11).

A warning Do not smoke while working on fuel system. Keep open flame or spark away from work area. Drain fuel only into an approved container.
11. Remove the fuel feed hose and fuel return hose.

12. Remove the engine wire harness connectors, terminal and clamps on the left side of the engine compartment.
13. Remove the injector resistor connector on the left side of the engine compartment.

14. Remove the vacuum hoses and power steering (P/S) hose clamp.

(cont'd)

Engine Removal/Installation

Removal (cont'd)

15. Remove the mounting nuts and adjusting boit, then remove the power steering (P / S) pump belt and pump.

- Do not disconnect the P/S hoses.

16. Loosen the alternator mounting bolt, nut and adjusting bolt, then remove the alternator belt.

17. (Manual transmission) Remove the shift cable and select cable.

NOTE: Take care not to bend the cable when removing it. Always replace any kinked cable with a new one.
$8 \times 1.25 \mathrm{~mm}$
$22 \mathrm{~N} \cdot \mathrm{~m}$ ($2.2 \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft}$)

18. Disconnect the back-up light switch connectors and starter motor cable (M/T).

19. Remove the clutch slave cylinder and pipe/hose assembly (M/T).

NOTE:

- Do not disconnect the pipe/hose assembly.
- Do not operate the clutch pedal once the slave cylinder has been removed.
- Take care not to bend the pipe.

$22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$

20. Disconnect the vehicle speed sensor (VSS) connector.
21. Remove the radiator cap.

A WARNING Use care when removing the radiator cap to avoid scalding by hot coolant or steam.
22. Raise the hoist to full height.
23. Remove the front tires/wheels and the splash shield.

24. Drain the engine coolant (see page $10-5$).

- Loosen the drain plug in the radiator.

25. Drain the transmission oil or fluid. Reinstall the drain plug using a new washer (see section 13 or 14).
26. Drain the engine oil. Reinstall the drain plug using a new washer (see page 8-4).

CAUTION: Do not overtighten the drain plug.
27. Lower the hoist, then remove the upper and lower radiator hoses and the heater hoses.

28. (Automatic transmission) Remove the ATF cooler hoses.

- Refer to section 14 when installing.

(cont'd)

Engine Removal/Installation

Removal (cont'd)

29. Remove the radiator assembly (see page 10-4).
30. Remove the air conditioning (A / C) compressor. - Do not disconnect A / C hoses.

31. Raise the hoist to full height, then remove the center beam.

32. Remove the exhaust pipe A.

NOTE: Refer to pages 9-5 thru 9-7 before installing.
33. Disconnect the heated oxygen sensor (HO2S) connector (F22B1, F22B5, F20B3 engines).

- Refer to pages 9-5 thru 9-7 when installing.

$10 \times 1.25 \mathrm{~mm}$
$54 \mathrm{~N} \cdot \mathrm{~m}$ (5.5 kgf.m, $40 \mathrm{lbf} \cdot f \mathrm{ft})$
Replace.

34. Remove the shift cable (A/T).

NOTE:

- Take care not to bend the cable when removing it. Always replace any kinked cable with a new one.
- Adjust the shift cable when installing (see section 14).

35. Remove the damper fork (see section 18).
36. Disconnect the suspension lower arm ball joints with the special tool. Refer to section 18 for the proper procedure.

NOTE: Adjust the tool so the jaws are parallel to each other.

BALL JOINT REMOVER, $\mathbf{3 2} \mathbf{~ m m}$ 07MAK - PY30100
37. Remove the driveshafts.

CAUTION:

- Do not pull on the driveshaft, the CV joint may come apart.
- Use care when prying out the assembly. Pull it straight to avoid damaging the differential oil seal or intermediate shaft dust seal.

NOTE: Coat all precision-finished surfaces with clean engine oil. Tie plastic bags over the driveshaft ends.

(cont'd)

Engine Removal/Installation

Removal (cont'd)
38. Lower the hoist.
39. Attach the chain hoist to the engine as shown.

40. Remove the rear mount bracket.

41. Remove the front mount bracket.

42. Remove the side engine mount.

(cont'd)

5-21

Engine Removal/Installation

Removal (cont'd)

43. Remove the transmission mount and bracket.

M/T:

A/T:

44. Check that the engine is completely free of vacuum hoses, fuel and engine coolant hoses, and electrical wiring.
45. Slowly raise the engine approximately 150 mm (6 in). Check once again that all hoses and wires are disconnected from the engine.
46. Raise the engine all the way and remove it from the car.

Installation

Engine Removal/Installation

Installation (cont'd)

Engine Installation

Install the engine in the reverse order of removal. Reinstall the mount bolts/nuts in the following sequence. Failure to follow these procedures may cause excessive noise and vibration, and reduce bushing life.

1. Position the side engine mount.
2. Tighten the mount bolt, then remove the 6×100 mm bolt.

NOTE: Do not tighten the bolt/nut on the engine side.

3. Position the transmission mount.
4. Tighten the mount bolt, then remove the 6×100 mm bolt.

NOTE: Do not tighten the nuts on the transmission side.

5. Install the rear mount bracket, then tighten the bolts in the numbered sequence as shown (1) - (2)).

6. Install the front mount bracket, then tighten the mount bolt.

NOTE: Do not tighten the bolts on the engine side.

7. Tighten the bolt/nut on the side engine mount.

8. Tighten the nuts on the transmission mount.

M/T:

A/T:
$10 \times 1.25 \mathrm{~mm}$
$38 \mathrm{~N} \cdot \mathrm{~m}(3.9 \mathrm{kgf} \cdot \mathrm{m}$, $28 \mathrm{lbf} \cdot \mathrm{ft})$

(cont'd)

Engine Removal/Installation

Installation (cont'd)

9. Tighten the bolts on the front mount bracket.

$38 \mathrm{~N} \cdot \mathrm{~m}$ ($3.9 \mathrm{kgf} \cdot \mathrm{m}, 28 \mathrm{lbf} \cdot \mathrm{ft})$

- Check that the spring clip on the end of each driveshaft clicks into place.

CAUTION: Use new spring clips.

- Bleed air from the cooling system at the bleed bolt with the heater valve open (see page 10-5).
- Adjust the throttle cable (see section 11).
- Check the clutch pedal free play (see section 12).
- Check that the transmission shifts into gear smoothly.
- Adjust the tension of the following drive belts. Alternator belt (see section 23).
P/S pump belt (see section 17).
A/C compressor belt (see section 22).
- Clean battery posts and cable terminals with sandpaper, assemble, then apply grease to prevent corrosion.
- Inspect for fuel leakage (see section 11).
- After assembling fuel line parts, turn on the ignition switch (do not operate the starter) so that the fuel pump operates for approximately two seconds and the fuel line pressurizes.
Repeat this operation two or three times, and check for fuel leakage at any point in the fuel line.

Mount and Bracket Bolts/Nuts Torque Valve Specifications:

Engine Mount Control System (A/T)

Component Location Index

ENGINE MOUNT CONTROL
SOLENOID VALVE
Troubleshooting, page 5-32

ENGINE CONTROL
MODULE (ECM)

REAR MOUNT
DIAPHRAGM ACTUATOR
Test, page 5-35

Description

As opposed to previous liquid engine mounts, this engine mount control system remarkably reduces vibration in the idling range without affecting vibration damping in rpm ranges above idling.
The system is comprised of the ECM, the solenoid valve and the rear mount with built-in diaphragm actuator.
The ECM receives the engine rpm signals and sends a signal to the solenoid valve to open only at idling rpm. When the solenoid valve opens, intake manifold vacuum is applied to the diaphragm actuator, and the rotor valve located in the rear mount rotates 80 degrees. The mount has Chamber A on its upper part and Chamber B on the lower part. The rotor valve located between these two chambers controls quantity of liquid that flows between them.

At idling rpm:

At idling rpm, the rotor valve opens, and liquid flows through passages 1 and 2. The quantity of liquid increases, and vibration in the idling range is reduced.

(cont'd)

Engine Mount Control System (A/T)

Description (cont'd)

Above idling rpm:

Above idling rpm, passage 1 is closed, and liquid flows only through passage 2. The quantity of liquid decreases, and vibration in ranges above idling is reduced.

Circuit Diagram

BATTERY* F22B1 engine (100 A)	
	Except F22B1 engine (80 A)
No. $4^{*} \ldots . ~ E C U ~(C R U I S E ~ C O N T R O L) / E A T ~ E C U ~(T C M) ~$	

Engine Mount Control System (A/T)

Troubleshooting

NOTE:

- Check the vacuum hoses and pipes for damage and proper connections.
- Refer to page 11-18 thrn 11-25 before troubleshooting.

Warm up engine to normal operating temperature (the cooling fan comes on).

Disconnect the vacuum hose leading to the rear engine mount from the solenoid valve, and connect a vacuum pump/gauge to the solenoid valve.

NO with the engine idling (700 rpm)?

(cont'd)

Engine Mount Control System (A/T)

Troubleshooting (cont'd)
(From page 5-34)

The solenoid valve is OK; test the diaphragm actuator (see page 5-35).
(From page 5-34)

Disconnect the 26P connector from the ECM, and connector the test harness only to the body harness.

Check for voltage between terminal A10 and body ground.

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

Diaphragm Actuator Test

1. Disconnect the vacuum hose from the solenoid valve, and remove the rear mount (see page 5-27).
2. Clean and oil the diaphragm actuator rod, rear mount rotor lever, and lever linkage.
3. With a vacuum pump/gauge, apply vacuum of about 230 mmHg , and check if the rotor lever turns 80 degrees.

- Replace the rear mount if the rotor lever dose not operate.

Cylinder Head/Valve Train

Special Tools 6-2Variable Valve Timing and Valve LiftElectronic Control (VTEC): F22B1 EngineTroubleshooting Flowchart- VTEC Solenoid Valve6-4

- VTEC Pressure Switch 6-6
VTEC Solenoid Valve Inspection 6-9
Rocker Arms
- Manual Inspection 6-10
- Inspection Using Special Tools 6-10
Valve Clearance Adjustment 6-13
Crankshaft Pulley and Pulley Bolt Replacement 6-15
Timing Belt and Balancer Belt
Illustrated Index 6-16
Timing Belt Inspection 6-17
Timing Balancer Belt Inspection 6-17
Tension Adjustment 6-18
Removal 6-19
Installation 6-21
Cylinder Head
Illustrated Index 6-24
Removal 6-28
Warpage 6-42
Installation 6-47
Rocker Arm Assembly
Removal 6-32
Rocker Arms
Overhaul 6-33
Inspection 6-35
Lost Motion Assemblies Inspection 6-35
Rocker Arms and Shafts Clearance Inspection 6-36
Camshafts
Inspection 6-37
Valves, Valve Springs and Valve Seals Removal 6-39
Installation Sequence 6-44
Valve Installation 6-44
Valve Seats
Reconditioning 6-40
Valve Guides
Valve Movement 6-42
Replacement 6-43
Reaming 6-43
Camshaft/Rocker Arms andCamshaft Seal/Pulley
Installation 6-45

Special Tools

Variable Valve Timing and Valve Lift Electronic Control (VTEC): F22B1 Engine

Troubleshooting Flowchart - VTEC Solenoid Valve

Refer to page 11-16 thru 11-23 before troubleshooting.
Sole Malforion Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 21: A problem in the VTEC

- MIL has been reported on.
- With the SCS short connector
connected, code 21 is indicat-
ed.

Warm up engine to normal operating temperature (the cooling fan comes on).

*Road Test:
Accelerate in 1st gear to an engine speed over $4,000 \mathrm{rpm}$. Hold that engine speed for at least two seconds. if the MIL does not come on during the first road test, repeat this test two more times.

Intermittent failure, system is OK at this time.
Check for poor connections or loose wires at VTEC solenoid valve and ECM.

(From page 6-4)

heck for continuity between VTEC solenoid valve connector terminal and A4 terminal.

Repair open in the GRN/YEL wire between ECM (A4) and VTEC solenoid valve connector.

VTEC

Troubleshooting Flowchart — VTEC Pressure Switch

Refer to page 11-16 thru 11-23 before troubleshooting.

Warm up engine to normal operating temperature (cooling fan
*Road Test: comes on).

Accelerate in 1st gear to an engine speed over 4,000 rpm. Hold that engine speed for at least two seconds. If the MIL does not come on during the first road test, repeat this test two more times.

Intermittent failure, system is OK at this time.
Check for poor connections or loose wires at VTEC pressure switch and ECM.

(To page 6-7)

VTEC

Troubleshooting Flowchart — VTEC Pressure Switch (cont'd)

NOTE:
Keep measuring time as short as possible because engine is running with no load (less than one minute).

Substitute a known-good ECM and recheck. If symptom/indication goes away replaces the original ECM.

- VTEC Solenoid Valve Inspection

1. Disconnect the 1P connector from the VTEC solenoid valve.
2. Measure resistance between the terminal and body ground.

Resistance: 14-30 Ω

3. If the resistance is within specifications, remove the VTEC solenoid valve assembly from the cylinder head, and check the VTEC solenoid valve/O-ring filter for clogging.

- If there is clogging, replace the engine oil filter and the engine oil.

4. If the filter is not clogged, push the VTEC solenoid valve with your finger and check its movement.

- If the VTEC solenoid valve is normal, check the engine oil pressure.

Rocker Arms - Manual Inspection

1. Set the No. 1 piston at TDC.
2. Remove the cylinder head cover.

NOTE: Refer to page 6-49 when installing cylinder head cover.
3. Push the intake mid rocker arm on the No. 1 cylinder manually.
4. Check that the intake mid rocker arm moves independently of the primary and secondary intake rocker arms.

5. Check the intake mid rocker arm of each cylinder at TDC.

- If the intake mid rocker arm does not move, remove the mid, primary and secondary intake rocker arms as an assembly, and check that the pistons in the mid and primary rocker arms move smoothly.
- If any rocker arm needs replacing, replace the primary, mid, and secondary rocker arms as an assembly.

Rocker Arms - Inspection Using Special Tools

CAUTION:

- Before using the Valve Inspection Tool, make sure that the air pressure gauge on the air compressor indicates over $400 \mathrm{kPa}\left(4 \mathrm{kgf} / \mathrm{cm}^{2}, 57 \mathrm{psi}\right)$.
- Inspect the valve clearance before rocker arm inspection.
- Cover the timing belt with a shop towel to protect the belt.
- Check the intake primary rocker arm of each cylinder at TDC.

1. Remove the cylinder head cover.

NOTE: Refer to page 6-49 when installing cylinder head cover.
2. Plug the relief hole with the special tool.

3. Remove the sealing bolt from the inspection hole, and connect the special tool

NOTE: Remove any oil the bolt threads and camshaft holder threads before retightening the sealing bolt.

4. Loosen the regulator valve on the valve inspection set and apply the specified air pressure to the rocker arm synchronizing piston A / B.

Specified Air Pressure: 400 kPa ($4 \mathrm{kgf} / \mathrm{cm}^{2}, 57 \mathrm{psi}$)
5. With the specified air pressure applied, push up the timing plate $2-3 \mathrm{~mm}(0.08-0.12 \mathrm{in})$ at plate end; the synchronizing piston will pop out and engage the intake mid, primary and secondary rocker arms. Visually check the engagement of the synchronizing piston A/B.

NOTE:

- The synchronizing piston can be seen in the gap between the mid, secondary and primary rocker arms.
- With the timing plate engaged in the groove on the timing piston, the piston is locked in the pushed out position.
- Do not apply too much force when pushing up the timing plate.

At High PRM:

(cont'd)

VTEC

Rocker Arms - Inspection Using Special Tools (cont'd)

6. Make sure that the intake primary and secondary rocker arms are mechanically connected by the piston and that the mid rocker arm does not move when pushed manually.

SECONDARY ROCKER ARM

- If any intake mid rocker arm moves independently of the primary and secondary rocker arms, replace the rocker arms as a set.

7. Stop applying air pressure and push up the timing plate; the synchronizing pistons will snap back to its original position.
Visually check the disengagement of the synchronizing pistons A / B.

NOTE:

- When the timing plate is pushed up, it releases the timing piston, letting the return spring move the synchronizing pistons to its original position.
- Replace the intake rocker arms as an assembly if either does not work correctly.

At Low RPM:

8. Remove the special tools.
9. Check for smooth operation of each lost motion assembly. It is compressed slightly when the intake mid rocker arm is lightly pushed and compressed deeply when the mid rocker arm is strongly pushed.

- Replace the lost motion assembly if it does not move smoothly.

10. After inspection, check that the MIL does not come on.

Adjustment

NOTE:

- Vaives should be adjusted cold when the cylinder head temperature is less than $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$.
- After adjusting, retorque the crankshaft pulley bolt to $245 \mathrm{~N} \cdot \mathrm{~m}$ ($25.0 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{Ibf} \cdot \mathrm{ft}$).

1. Remove the cylinder head cover.

NOTE: Refer to page 6-49 when installing cylinder head cover.
2. Set No. 1 piston at TDC. "UP" mark on the camshaft pulley should be at top, and TDC grooves on the camshaft pulley should align with cylinder head surface (F22B1 engine) or back cover upper surface (Except F22B1 engine).
Number 1 Piston at TDC:

3. Adjust valves on No. 1 cylinder.

Intake: $0.26 \mathrm{~mm}(0.010 \mathrm{in}) \pm 0.02 \mathrm{~mm}(0.0008 \mathrm{in})$ Exhaust: $\mathbf{0 . 3 0 ~ \mathbf { m m } (0 . 0 1 2 \mathbf { ~ i n }) ~} \pm 0.02 \mathbf{~ m m}(\mathbf{0 . 0 0 0 8} \mathbf{~ i n})$
4. Loosen the locknut, and turn the adjusting screw until the feeler gauge slides back and forth with a slight amount of drag.

Adjusting screw location:

INTAKE

EXHAUST
5. Tighten the locknut and check clearance again. Repeat adjustment if necessary.

Valve Clearance

Adjustment (cont'd)

6. Rotate crankshaft 180° counterclockwise (Camshaft pulley turns 90°). The "UP" mark should be on the exhaust side. Adjust valves on No. 3 cylinder.

Number 3 Piston at TDC:

7. Rotate crankshaft 180° counterclockwise to bring No. 4 piston to TDC. Both TDC grooves are once again visible. Adjust valves on No. 4 cylinder.

Number 4 Piston at TDC:

8. Rotate crankshaft 180° counterclockwise to bring No. 2 piston to TDC. The "UP" mark should be on the intake side. Adjust valves on No. 2 cylinder.

Number 2 Piston at TDC:

Crankshaft Pulley and Pulley Bolt

Replacement

When installing and tightening the pulley, follow the procedure below.
Clean, remove any oil and lubricate points shown below.
0 : Clean
x : Remove any oil

- : Lubricate

Crankshaft pulley bolt size and torque value:
$16 \times 1.5 \mathrm{~mm}$
$245 \mathrm{~N} \cdot \mathrm{~m}(25.0 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{lbf} \cdot \mathrm{ft})$
NOTE: Do not use the impact wrench when installing.

Timing Belt and Timing Balancer Belt

Illustrated Index

NOTE:

- Refer to page 6-21 for positioning crankshaft and pulley before installing the belt.
- Mark the direction of rotation on the belt before removing.
- Do not use the upper cover and lower cover for storing items disassembled.
- Clean the upper cover and lower cover before installing.
- Replace the camshaft seals and crankshaft seals if there is oil leakage.
- Refer to page 6-15 before installing timing belt and timing balancer belt.

Timing Belt Inspection

1. Disconnect the battery negative terminal first, then the positive terminal.
2. Disconnect the alternator terminal and the connector, then remove the engine wire harness from the cylinder head cover.
3. Remove the cylinder head cover

- Refer to page 6-49 when installing.

4. Remove the upper cover.
5. Inspect the timing belt for cracks and oil or coolant soaking.

NOTE:

- Replace the belt if oil or coolant soaked.
- Remove any oil or solvent that gets on the belt.

6. After inspecting, retorque the crankshaft pulley bolt to $245 \mathrm{~N} \cdot \mathrm{~m}(25.0 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{lbf} \cdot \mathrm{ft})$.

Timing Balancer Belt Inspection

1. Disconnect the battery negative terminal first, then the positive terminal.
2. Disconnect the alternator terminal and the connector, then remove the engine wire harness from the cylinder head cover.
3. Remove the cylinder head cover.

- Refer to page 6-49 when installing.

4. Remove the upper cover.
5. Remove the crankshaft pulley.
6. Remove the lower cover.
7. Install the crankshaft pulley.
8. Inspect the timing balancer belt for cracks and oil or coolant soaking.

NOTE:

- Replace the belt if oil or coolant soaked.
- Remove any oil or solvent that gets on the belt.

9. After inspecting, retorque the crankshaft pulley bolt to $245 \mathrm{~N} \cdot \mathrm{~m}$ ($25.0 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{lbf} \cdot \mathrm{ft}$).

Timing Belt and Timing Balancer Belt

Tension Adjustment

CAUTION: Always adjust timing belt tension with the engine cold.

NOTE:

- The tensioner is spring-loaded to apply proper tension to the belt automatically after making the following adjustment.
- Always rotate the crankshaft counterclockwise when viewed from the pulley side. Rotating it clockwise may result in improper adjustment of the belt tension.
- Inspect the timing balancer belt before adjusting the belt tension.
- Do not loosen the adjusting nut more than one full turn.

1. Disconnect the battery negative terminal first, then the positive terminal.
2. Disconnect the alternator terminal and the connector, then remove the engine wire harness from the cylinder head cover.
3. Remove the cylinder head cover. (Refer to page $6-49$ when installing.)
4. Set the No. 1 piston at TDC (see page 6-21).
5. Rotate the crankshaft $5-6$ revolutions to set the belt.
6. Set the No. 1 piston at TDC.
7. Loosen the adjusting nut $2 / 3$ - 1 turn.

ADJUSTING NUT $44 \mathrm{~N} \cdot \mathrm{~m}$ (4.5 kgf.m, $3.3 \mathrm{lbf} \cdot \mathrm{ft}$)

8. Rotate the crankshaft counterclockwise 3-teeth on the camshaft pulley.
9. Tighten the adjusting nut.
10. After adjusting, retorque the crankshaft pulley bolt to $245 \mathrm{~N} \cdot \mathrm{~m}$ ($25.0 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{lbf} \cdot \mathrm{ft})$.

Removal

NOTE:

- Turn the crankshaft pulley so the No. 1 piston is at top dead center (TDC) before removing the belt (see page 6-21).
- Inspect the water pump (see page 10-9).

1. Disconnect the battery negative terminal first, then the positive terminal.
2. Remove the wheelwell splash shield (see page 5-17).
3. Loosen the adjusting bolt and mounting nuts, then remove the power steering (P / S) pump belt.

4. Loosen the adjusting bolt, mounting bolt and locknut, then remove the alternator belt.

5. Remove the alternator terminal and connector.

(cont'd)

Timing Belt and Timing Balancer Belt

Removal (cont'd)

6. Remove the side engine mount (see page 5-21).

NOTE:

- Use the jack to support the engine before the side engine mount is removed.
- Make sure to place a cushion between the oil pan and the jack.

7. Remove the dipstick and the pipe.

8. Remove the cylinder head cover.

- Refer to page 6-49 when installing.

9. Remove the pulley bolt and crankshaft pulley (see page 6-15).
10. Remove the rubber seal from the adjusting nut, then remove the upper and lower covers.

NOTE: Do not use the upper and lower covers for storing items disassembled.

11. Loosen the adjusting nut $2 / 3-1$ turn. Push the tensioner to remove tension from the timing belt and timing balancer belt, then retighten the adjusting nut.

ADJUSTING NUT

$44 \mathrm{~N} \cdot \mathrm{~m}$ ($4.5 \mathrm{kgf} \cdot \mathrm{m}, 33 \mathrm{lbf} \cdot \mathrm{ft})$

NOTE: When removing the timing balancer belt only:

- Lock the timing belt adjuster arm in place by installing one of the $6 \times 1.0 \mathrm{~mm}$ bolts.
- Loosen the adjusting nut $2 / 3-1$ turn. Push the tensioner to remove tension from the timing balancer belt, then retighten the adjusting nut.

12. Remove the timing balancer belt and timing belt.

Installation

Install the timing belt and timing balancer belt in the reverse order of removal.
Only key points are described here.

- When installing only the timing balancer belt, go to step 13.

NOTE: Clean the upper and lower covers before installation.

1. Remove the timing balancer belt drive pulley (see page 6-16).
2. Set the timing belt drive pulley so that the No. 1 piston is at top dead center (TDC). Align the dimple on the tooth of the timing belt drive pulley with the ∇ pointer on the oil pump.

3. Set the camshaft pulley so that the No. 1 piston is at TDC.
Except F22B1 engine: Align the TDC mark on the camshaft pulley with the cylinder head upper surface.
F22B1 engine: Align the TDC mark on the camshaft pulley with the back cover upper surface.

4. Install the timing belt tightly in the sequence shown.
(1) Timing belt drive pulley (crankshaft) \rightarrow (2) Adjusting pulley \rightarrow (3) Water pump pulley \rightarrow (4) Camshaft pulley.

NOTE: Make sure the timing belt drive pulley and camshaft pulley are at TDC.

(cont'd)

Timing Belt and Timing Balancer Belt

Installation (cont'd)

5. Loosen and retighten the adjusting nut to tension the timing belt.
6. Install the timing balancer belt drive pulley and lower cover.

7 Install the crankshaft pulley, then tighten the pulley bolt (see page 6-15).
8. Rotate the crankshaft pulley about 5 or 6 turns counterclockwise so that the timing belt positions on the pulleys.
9. Adjust the timing belt tension (see page 6-18).
10. Make sure the crankshaft pulley and camshaft pulley are at TDC.

11. If the camshaft or crankshaft pulley is not positioned at TDC, remove the timing belt and adjust the positioning following the procedure on page $6-21$, then reinstall the timing belt.
12. Remove the crankshaft pulley and lower cover.
13. Set the timing belt drive pulley so that the No. 1 piston at TDC.
14. Lock the timing belt adjuster arm in place by installing one of the $6 \times 1.0 \mathrm{~mm}$ bolts.
15. Loosen the adjusting nut 2/3-1 turn, and verify that the timing balancer belt adjuster moves freely.
16. Push the tensioner to remove tension from the timing balancer belt, then retighten the adjusting nut.
17. Align the rear balancer shaft pulley by using a special tool. Insert the special tool into the maintenance hole to the fix the rear balancer shaft.

18. Align the groove on the front balancer shaft pulley with the pointer on the oil pump housing as shown.

19. Install the timing balancer belt. Loosen the adjusting nut $2 / 3-1$ turn to tension the timing balancer belt.
20. Remove the special tool, then install the 12 mm sealing bolt.
21. Install the crankshaft pulley, then tighten the pulley bolt (see page 6-15).
22. Turn the crankshaft pulley about one turn counterclockwise, then tighten the adjusting nut.
23. Remove the $6 \times 1.0 \mathrm{~mm}$ bolt from the timing belt adjuster arm.
24. Remove the crankshaft pulley, then install the lower cover.
25. Install the rubber seal around the adjusting nut.

NOTE: Do not loosen the adjusting nut.
26. Install the crankshaft pulley, then tighten the pulley bolt (see page 6-15).
27. After installation, adjust the tension of each belt.

- See section 23 for alternator belt tension adjustment.
- See section 22 for air conditioning (A / C) compressor belt tension adjustment.
- See section 17 for P/S pump belt tension adjustment.

Cylinder Head

Illustrated Index

CAUTION:

- To avoid damaging the cylinder head, wait until the engine coolant temperature drops below $\mathbf{3 8 ^ { \circ }} \mathbf{C}\left(100^{\circ} \mathrm{F}\right)$ before removing it.
- In handling a metal gasket, take care not to fold it or damage the contact surface of the gasket.

NOTE:

- Use new O-rings and gaskets when reassembling.
- Clean the oil control orifice before installing.

Except F22B1 engine:

HEAD COVER GASKET
Replace when leaking, damaged or deteriorated.
Apply liquid gasket at the four corners of the recesses, page 6-49

F22B1 engine:

(cont'd)

Cylinder Head

Illustrated Index (cont'd)

Prior to reassembling, clean all the parts in solvent, dry them and apply lubricant to any contact parts.

Except F22B1 engine:

F22B1 engine:

Cylinder Head

Removal

Engine removal is not required for this procedure.
A warning Make sure jacks and safety stands are placed properly and hoist brackets are attached to correct position on the engine.

CAUTION:

- Use fender covers to avoid damaging painted surfaces.
- Unplug the wiring connectors carefully while holding the connector portion to avoid damage.
- To avoid damaging the cylinder head, wait until the engine coolant temperature drops below $38^{\circ} \mathrm{C}$ $\left(100^{\circ} \mathrm{F}\right)$ before loosening the retaining bolts.

NOTE:

- Unspecified items are common between both engines.
- Mark all wiring and hoses to avoid misconnection. Also, be sure that they do not contact other wiring or hoses, or interfere with other parts.
- Inspect the timing belt before removing the cylinder head.
- Turn the crankshaft pulley so that the No. 1 piston is at top dead center (see page 6-21).

1. Disconnect the battery negative terminal first, then the positive terminal.
2. Drain the engine coolant (see page 10-5).

- Remove the radiator cap to speed draining.

3. Remove the throttle cable, throttle control cable (A/T) and cruise control cable.

NOTE:

- Take care not to bend the cable when removing it. Always replace any kinked cable with a new one.
- Adjust the throttle cable, throttle control cable and cruise control cable when installing (see section 11 and 23).

4. Remove the intake air duct.

5. Remove the breather hose, positive crankcase ventilation (PCV) hose and evaporative emission (EVAP) control canister hose.

6. Relieve fuel pressure (see section 11).

A warning Do not smoke while working on fuel system, keep open flame or spark away from work area. Drain fuel only into an approved container.
7. Remove the fuel feed hose, fuel return hose and vacuum hoses.

8. Remove the brake booster vacuum hose and vacuum hoses (see page 5-15).
9. Remove the power steering (P / S) hose clamp, wire harness clamp and engine ground cable.

10. Remove the battery cable and alternator connector (see page 6-19).
11. Remove the P/S pump belt and P/S pump (see page 5-16).
12. Remove the alternator belt (see page 6-19).
13. Remove the engine wire harness holder and water bypass hose.

(cont'd)

Cylinder Head

Removal (cont'd)

14. Remove the engine wire harness connectors and wire harness clamps from the cylinder head and the intake manifold.

- Four injector connectors
- Intake air temperature (IAT) sensor connector
- Idle air control (IAC) valve connector
- Throttle position sensor connector
- Manifold absolute pressure (MAP) sensor connector
- Heated oxygen sensor (HO2S) connector (F22B2 engine)
- Engine coolant temperature (ECT) sensor connector
- ECT switch connector
- ECT gauge sending unit connector
- VTEC solenoid valve connector (F22B1 engine)
- VTEC pressure switch connector (F22B1 engine)
- Exhaust gas recirculation (EGR) valve lift sensor connector
- TDC/CKP/CYP sensor connector
- Ignition coil connector
- Fuel injection air (FIA) control solenoid valve connector (F22B1 engine)

15. Remove the spark plug caps and distributor from the cylinder head.
16. Remove the upper and lower radiator hoses and heater hose.

17. Remove the water bypass hoses.

18. Remove the side engine mount (see page 5-21).

NOTE:

- Use the jack to support the engine before the side engine mount is removed.
- Make sure to place a cushion between the oil pan and the jack.

19. Remove the cylinder head cover.

20. Remove the timing belt (see page 6-19).
21. Remove the camshaft pulley and back cover.

22. Remove the splash shield (see page 5-17).
23. Remove the exhaust manifold.

24. Remove the intake manifold.

25. Remove the cylinder head bolts, then remove the cylinder head.

CAUTION: To prevent warpage, unscrew the bolts in sequence $1 / 3$ turn at a time; repeat the sequence until all bolts are loosened.

CYLINDER HEAD BOLT LOOSENING SEQUENCE

Rocker Arm Assembly

Removal

1. Loosen the adjusting screws, then remove the bolts and the rocker arm assembly.

NOTE:

- Unscrew the camshaft holder bolts two turns at a time, in a crisscross pattern to prevent damaging the valves or rocker arm assembly.
- When removing the rocker arm assembly, do not remove the camshaft holder bolts. The bolts will keep the camshaft holders, the springs and the rocker arms on the shafts.

Except F22B1 engine:

F22B1 engine:

CAMSHAFT HOLDER BOLT LOOSENING SEQUENCE
Except F22B1 engine:

F22B1 engine:

Overhaul

NOTE:

- Identify parts as they are removed to ensure reinstallation in original locations.
- Inspect rocker shafts and rocker arms (page 6-36).
- Rocker arms must be installed in the same position if reused.
- When removing or installing rocker arm assembly, do not remove the camshaft holder bolts. The bolts will keep the holders, springs and rocker arms on the shaft.
- When reassembling, fit the projection on the intake rocker shaft to the notch in the camshaft holder.

7o Prior to reassembling, clean all the parts in solvent, dry them and apply lubricant to any contact parts.
Except F22B1 engine:

Rocker Arms

Overhaul (cont'd)

NOTE:

- Identify parts as they are removed to ensure reinstallation in original locations.
- Inspect rocker shafts and rocker arms (page 6-35 and 36).
- Rocker arms must be installed in the same position if reused.
- When removing or installing rocker arm assembly, do not remove the camshaft holder bolts. The bolts will keep the holders, springs and rocker arms on the shaft.
- Bundle the rocker arms with a rubber band to keep them together as a set.

Lost Motion Assemblies

Inspection

NOTE: When reassembling the primary rocker arm, carefully apply air pressure to the oil passage of the rocker arm.

1. Inspect the rocker arm piston. Push it manually.

- If it does not move smoothly, replace the rocker arm assembly.

NOTE:

- Apply oil to the pistons when reassembling.
- Bundle the rocker arms with a rubber band to keep them together as a set.

NOTE: Set the timing plate and return spring as shown below.

Inspection

1. Remove the lost motion assembly from the cylinder head and inspect it. Pushing it gently with the finger will cause it to sink slightly. Increasing the force on it will cause it to sink deeper.

- If the lost motion assembly does not move smoothly, replace it.

Rocker Arms and Shafts

Clearance Inspection

Measure both the intake rocker shaft and exhaust rocker shaft.

1. Measure diameter of shaft at first rocker location.

2. Zero gauge to shaft diameter.

3. Measure inside diameter of rocker arm, and check for out-of-round condition.

Rocker Arm-to-Shaft Clearance:
Standard (New):
Except F22B1 engine:

Intake:	$0.017-0.050 \mathrm{~mm}$
	$(0.0007-0.0020 \mathrm{in})$
Exhaust:	$0.018-0.054 \mathrm{~mm}$
	$(0.0007-0.0021 \mathrm{in})$

F22B1 engine:
Intake: $\quad 0.026-0.067 \mathrm{~mm}$ (0.0010-0.0026 in)

Exhaust: $\quad 0.018-0.054 \mathrm{~mm}$ (0.0007-0.0021 in)

Service Limit: $0.08 \mathrm{~mm}(0.003 \mathrm{in})$

Repeat for all rockers.

- If over limit, replace rocker shaft and all overtolerance rocker arms.

NOTE: If any rocker arm needs replacement, replace all three rocker arms in that set (primary, mid, and secondary).

Inspection

NOTE:

- Do not rotate the camshaft during inspection.
- Remove the rocker arms and rocker shafts.

1. Put the camshaft and the camshaft holders on the cylinder head, then tighten the bolts to the specified torque.

Specified torque:

8 mm bolts: $22 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{2 . 2} \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$
6 mm bolts: $12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

Except F22B1 engine:

6 mm bolts: (3), (6), (9), (12), (17), (18)

F22B1 engine:

6 mm bolts: (11), (12), (13), (14)

2. Seat the camshaft by pushing it toward distributor end of cylinder head.
3. Zero the dial indicator against the end of distributor drive, then push the camshaft back and forth and read the end play.

Camshaft End Play:
Standard (New): $0.05-0.15 \mathrm{~mm}$

$$
(0.002-0.006 i n)
$$

Service Limit: $\quad 0.5 \mathrm{~mm}(0.02 \mathrm{in})$

CAMSHAFT
4. Remove the bolts, then remove the camshaft holders from the cylinder head.

- Lift camshaft out of cylinder head, wipe clean, then inspect lift ramps. Replace the camshaft if lobes are pitted, scored, or excessively worn.
- Clean the camshaft bearing surfaces in the cylinder head, then set camshaft back in place.
- Insert plastigage strip across each journal.

5. Install the camshaft holders, then tighten the bolts to the specified torque as shown in the left column of this page.
6. Remove the camshaft holders. Measure widest portion of plastigage on each journal.

Camshaft-to-Holder Oil Clearance:
Standard (New): $0.050-0.089 \mathrm{~mm}$

$$
(0.0020-0.0035 \mathrm{in})
$$

Service Limit: $0.15 \mathrm{~mm}(0.006 \mathrm{in})$

(cont'd)

Camshaft

Inspection (cont'd)

7. If camshaft-to-holder oil clearance is out of tolerance:

- And the camshaft has already been replaced, you must replace the cylinder head.
- If camshaft has not been replaced, first check total runout with the camshaft supported on V blocks.

Camshaft Total Runout:

Standard (New): 0.03 mm (0.001 in) max.
Service Limit: $\quad 0.04 \mathbf{~ m m}$ (0.002 in)

Rotate camshaft while measuring

- If the total runout of the camshaft is within tolerance, replace the cylinder head.
- If the total runout is out of tolerance, replace the camshaft and recheck, If the oil clearance is still out of tolerance, replace the cylinder head.

8. Measure cam lobe height.

Cam Lobe Height Standard (New):

	INTAKE	EXHAUST
F20B3 engine	$38.741(1.5252)$	$38.972(1.5343)$
F22B5 engine	$39.167(1.5420)$	$39.356(1.5494)$
F22B2 engine		$38.526(1.5168)$
F22B1 engine	PRI	$37.778(1.5267)$
	MID	$39.725(1.4872)$
	SEC	$34.481(1.3575)$

Removal

NOTE: Identify valves and valve springs as they are removed so that each item can be reinstalled in its original position.

1. Using an appropriate-sized socket and plastic mallet, lightly tap the valve‘retainer to loosen the valve keepers before installing the valve spring compressor.

2. Install the spring compressor. Compress the spring and remove the valve keepers.

Except F22B1 engine:
Intake Valve Dimensions
A Standard (New): 31.90-32.10 mm
(1.256-1.264 in)

B Standard (New): 107.82-108.32 mm ($4.245-4.265 \mathrm{in}$)
C Standard (New): 5.485-5.495 mm (0.2159-0.2163 in)

C Service Limit: $\quad 5.455 \mathrm{~mm}(0.2148 \mathrm{in}$
D Standard (New): 0.85-1.15 mm (0.033-0.045 in)

D Service Limit: $\quad 0.65 \mathrm{~mm}(0.026 \mathrm{in})$
Exhaust Valve Dimensions
A Standard (New): 28.90-29.10 mm (1.138-1.146 in)

B Standard (New): 116.95-117.45 mm ($4.604-4.624 \mathrm{in}$)
C Standard (New): 5.450-5.460 mm ($0.2146-0.2150 \mathrm{in}$)
C Service Limit: $\quad 5.420 \mathrm{~mm}$ (0.2134 in)
D Standard (New): 1.05 - 1.35 mm ($0.041-0.053 \mathrm{in}$)
D Service Limit: $\quad 0.95 \mathrm{~mm}(0.037 \mathrm{in})$

Valves, Valve Springs and Valve Seals

Removal (cont'd)

F22B1 engine:
Intake Valve Dimensions
A Standard (New): 33.90-34.10 mm (1.335-1.343 in)

B Standard (New): 110.30-110.80 mm (4.343-4.362 in)

C Standard (New): 5.485-5.495 mm
(0.2159-0.2163 in)

C Service Limit: $\quad 5.445 \mathrm{~mm}(0.2148 \mathrm{in})$
D Standard (New): 0.85 - 1.15 mm
(0.033-0.045 in)

D Service Limit: $\quad 0.65 \mathbf{~ m m}(0.026 \mathrm{in})$

Exhaust Valve Dimensions
A Standard (New): 28.90-29.10 mm
(1.138-1.146 in)

B Standard (New): 108.30-108.80 mm
(4.264-4.283 in)

C Standard (New): 5.450-5.460 mm
($0.2146-0.2150 \mathrm{in}$)
C Service Limit: $\quad 5.420 \mathrm{~mm}(0.2134 \mathrm{in})$
D Standard (New): 1.05 - 1.35 mm
(0.041-0.053 in)

D Service Limit: $\quad 0.95 \mathrm{~mm}(0.037 \mathrm{in})$

Valve Seats

Reconditioning

1. Renew the valve seats in the cylinder head using a valve seat cutter.

NOTE: If guides are worn (page 6-42), replace them (page 6-43) before cutting the valve seats.

2. Carefully cut a 45° seat, removing only enough material to ensure a smooth and concentric seat.
3. Bevel the upper edge of the seat with the 30° cutter and the lower edge of the seat with the 60° cutter. Check width of seat and adjust accordingly.
4. Make one more very light pass with the 45° cutter to remove any possible burrs caused by the other cutter.

Valve Seat Width:
Standard (New): 1.25 - 1.55 mm
(0.049-0.061 in)

Service Limit: $\quad 2.00 \mathrm{~mm}(0.079 \mathrm{in})$
5. After resurfacing the seat, inspect for even valve seating: Apply Prussian Blue compound to the valve face, and insert valve in original location in the head, then lift it and snap it closed against the seat several times.

6. The actual valve seating surface, as shown by the blue compound, should be centered on the seat.

- If it is too high (closer to the valve stem), you must make a second cut with the 60° cutter to move it down, then one more cut with the 45° cutter to restore seat width.
- If it is too low (closer to the valve edge), you must make a second cut with the 30° cutter to move it up, then one more cut with the 45° cutter to restore seat width.

NOTE: The final cut should always be made with the 45° cutter.
7. Insert intake and exhaust valves in the head and measure valve stem installed height.

Except F22B1 engine:
Intake Valve Stem Installed Height:
Standard (New): 48.08-48.88 mm
(1.893-1.924 in)

Service Limit:
49.13 mm (1.934 in)

Exhaust Valve Stem Installed Height:
Standard (New): 50.15-50.95 mm
(1.974-2.006 in)

Service Limit: $\quad \mathbf{5 1 . 2 0} \mathbf{~ m m}(2.016 \mathrm{in})$
F22B1 engine:
Intake Valve Stem Installed Height:
Standard (New): 46.75-47.55 mm
(1.841-1.872 in)

Service Limit: $\quad 47.80 \mathrm{~mm}$ (1.882 in)
Exhaust Valve Stem Installed Height:
Standard (New): 46.68-47.48 mm
(1.838-1.869 in)

Service Limit
47.73 mm (1.879 in)

8. If valve stem installed height is over the service limit, replace the valve and recheck. If still over the service limit, replace the cylinder head; the valve seat in the head is too deep.

Cylinder Head

Warpage

NOTE: If camshaft-to-holder oil clearance (page 6-37) is not within specification, the cylinder head cannot be resurfaced.

If camshaft-to-holder oil clearances are within specifications, check the cylinder head for warpage.

- If warpage is less than $0.05 \mathrm{~mm}(0.002 \mathrm{in})$ cylinder head resurfacing is not required.
- If warpage is between $0.05 \mathrm{~mm}(0.002 \mathrm{in})$ and 0.2 mm (0.008 in), resurface cylinder head.
- Maximum resurface limit is $0.2 \mathrm{~mm}(0.008 \mathrm{in})$ based on a height of 100 mm (3.94 in).

Measure along edges, and three ways across center.

Cylinder Head Height:

Standard (New): 99.95-100.05 mm

$$
(3.935-3.939 \mathrm{in})
$$

Valve Guides

Valve Movement

Measure the guide-to-stem clearance with a dial indicator while rocking the stem in the direction of normal thrust (wobble method).

Intake Valve Stem-to-Guide Clearance:
Standard (New): 0.04-0.09 mm (0.002-0.004 in)

Service Limit: $\quad 0.16 \mathrm{~mm}(0.006 \mathrm{in})$
Exhaust Valve Stem-to-Guide Clearance:
Standard (New): 0.11-0.16 mm

$$
(0.004-0.006 \mathrm{in})
$$

Service Limit: $\quad 0.24 \mathbf{~ m m}(0.009 \mathbf{i n})$

- If measurement exceeds the service limit, recheck using a new valve.
- If measurement is now within service limit, reassemble using a new valve.
- If measurement still exceeds limit, recheck using alternate method below, then replace valve and guide, if necessary.

NOTE: An alternate method of checking guide to stem clearance is to subtract the O.D. of the valve stem, measured with a micrometer, from the I.D. of the valve guide, measured with an inside micrometer or ball gauge.
Take the measurements in three places along the valve stem and three places inside the valve guide.
The difference between the largest guide measurement and the smallest stem measurement should not exceed the service limit.

Intake Valve Stem-to-Guide Clearance:
Standard (New): 0.020-0.045 mm (0.0008-0.0018 in)

Service Limit: $\quad 0.08 \mathrm{~mm}(0.003 \mathrm{in})$

Exhaust Valve Stem-to-Guide Clearance:
Standard (New): $0.055-0.080 \mathrm{~mm}$
(0.0022-0.0031 in)

Service Limit: $\quad 0.12 \mathbf{~ m m}(0.005 \mathrm{in})$

Replacement

NOTE:

- For best results, heat cylinder head to $150^{\circ} \mathrm{C}\left(300^{\circ} \mathrm{F}\right)$ before removing or installint guides.
- It may be necessary to use an air hammer to remove some valve guides.

CAUTION: To avoid burns, use heavy gloves when handling heated cylinder head.

1. Drive the valve guide out from the bottom of the cylinder head.

VALVE GUIDE DRIVER,

2. Drive in a new valve guide to the specified depth.

Valve Guide Installed Height:
Except F22B1 engine:
Intake: 23.50-24.50 mm (0.925-0.965 in)
Exhaust: $14.80-15.80 \mathrm{~mm}$ (0.583 - 0.622 in)
F22B1 engine:
Intake: $21.20-22.20 \mathrm{~mm}$ ($0.835-0.874 \mathrm{in}$)
Exhaust: 20.63-21.63 mm (0.812-0.852 in)

VALVE GUIDE

Reaming

NOTE: For new valve guides only.

1. Coat both reamer and valve guide with cutting oil.
2. Rotate the reamer clockwise the full length of the valve guide bore.
3. Continue to rotate the reamer clockwise while removing it from the bore.
4. Thoroughly wash the guide in detergent and water to remove any cutting residue.
5. Check clearance with a valve (see page 6-13).

- Verify that the valve slides in the intake and exhaust valve guides without exerting pressure.

Valves, Valve Springs and Valve Seals

Installation Sequence

NOTE: Exhaust and intake valve seals are NOT interchangeable.

NOTE: Place the end of valve
 spring with closely wound coils toward the cylinder head.
intake valve seal. (WHITE SPRING) Replace.
exhaust valve seal (BLACK SPRING) Replace.

Camshaft/Rocker Arms and Camshaft Seal/Pulley

Installation

CAUTION:

- Make sure that all rockers are in alignment with valves when torquing rocker assembly bolts.
- Valve locknuts should be loosened and adjusting screws backed off before installation.
- To prevent rocker arm assembly from coming apart, leave camshaft holder bolts in the holes.

1. After wiping down the camshaft, camshaft seal and journals in the cylinder head, lubricate both surfaces and install the camshaft.
2. Clean and install the oil control orifice with a new O-ring (F22B1 engine only).

3. Turn the camshaft until its keyway is facing up. (No. 1 piston TDC).
4. Apply liquid gasket to the head mating surfaces of the No. 1 and No. 5 or No. 6 camshaft holders.

- Apply liquid gasket to the shaded areas.

Except F22B1 engine:

No. 5

F22B1 engine:

5. Set the rocker arm assembly in place and loosely install the bolts.

- Make sure that the rocker arms are properly positioned on the valve stems.

Camshaft/Rocker Arms and Camshaft Seals/Pulley

Installation (cont'd)

6. Tighten each bolt two turns at a time in the sequence shown below to ensure that the rockers do not bind on the valves.

Specified torque:

8 mm bolts: $22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{t})$
6 mm bolts: $12 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{1 . 2} \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{t})$
Except F22B1 engine:
6 mm bolts; (3), (6), (9), (12), (17), (18)

F22B1 engine:

6 mm bolts: (11), (12), (13), (14)

7. Install the back cover
8. Install the key and the camshaft pulley onto the camshaft, then tighten the retaining bolt to the torque shown.

Cylinder Head

Installation

Install the cylinder head in the reverse order of removal:
NOTE:

- Always use a new head gasket.
- Cylinder head and cylinder block surface must be clean.
- "UP" mark on camshaft pulley should be at the top.
- Turn the crankshaft so the No. 1 piston is at TDC (see page 6-22).
- Clean the oil control orifice before installing.
- Do not use the upper cover and lower cover for storing items disassembled.
- Clean the upper cover and lower cover before installation.

1. Cylinder head dowel pins must be aligned.
2. Install the oil control orifice (Except F22B1 engine).

3. Position the camshaft correctly (see page 6-22).
4. Tighten the cylinder head bolts sequentially in three steps.

1st step torque: $39 \mathrm{~N} \cdot \mathrm{~m}(4.0 \mathrm{kgf} \cdot \mathrm{m}, 29 \mathrm{lbf} \cdot \mathrm{ft})$
2nd step torque: $69 \mathrm{~N} \cdot \mathrm{~m}(7.0 \mathrm{kgf} \cdot \mathrm{m}, 51 \mathrm{lbf} \cdot \mathrm{ft})$ 3rd step torque: $98.1 \mathbf{N} \cdot \mathrm{~m}(10.0 \mathrm{kgf} \cdot \mathrm{m}, 72.3 \mathrm{lbf} \cdot \mathrm{ft})$

NOTE:

- We recommend using a beam-type torque wrench. When using a preset-type torque wrench, be sure to tighten slowly and not to overtighten.
- If a bolt makes any noise while you are torquing it, loosen the bolt, and retighten it from the 1st step.

CYLINDER HEAD BOLTS TORQUE SEQUENCE

Cylinder Head

Installation (cont'd)

5. Install the intake manifold and tighten the nuts in a crisscross pattern in 2 or 3 steps, beginning with the inner nuts.

- Always use a new intake manifold gasket.

6. Install the exhaust manifold and tighten the nuts in a crisscross pattern in 2 or 3 steps, beginning with the inner nut.

- Always use a new exhaust manifold gasket.

7. Install the exhaust manifold bracket, then install the exhaust pipe A and the bracket, and then install the cover.

8. Install the timing belt (see page 6-21)
9. Adjust the valve clearance (see page 6-13).
10. Install the head cover gasket in the groove of the cylinder head cover. Seat the recesses for the camshaft first, then work it into the groove around the outside edges.

NOTE:

- Before installing the head cover gasket, thoroughly clean the seal and the groove.
- When installing, make sure the head cover gasket is seated securely in the corners of the recesses with no gap.

11. Apply liquid gasket to the head cover gasket at the four corners of the recesses.

NOTE:

- Use liquid gasket, Part No. OY740-99986.
- Check that the mating surfaces are clean and dry before applying liquid gasket.
- Do not install the parts if 5 minutes or more have elapsed since applying liquid gasket. Instead, reapply liquid gasket after removing old residue.
- After assembly, wait at least 20 minutes before filling the engine with oil.

Apply liquid gasket to the shaded areas.

Cylinder Head

Installation (cont'd)

12. When installing the cylinder head cover, hold the head cover gasket in the groove by placing your fingers on the camshaft contacting surfaces (top of the semicircles).
Set the spark plug seal on the spark plug pipe (F22B1 engine only).
Once the cylinder head cover is on the cylinder head, slide the cover slightly back and forth to seat the head cover gasket.

NOTE:

- Before installing the cylinder head cover, clean the cylinder head contacting surfaces with a shop towel.
- Do not touch the parts where liquid gasket was applied.
- Take care not to damage the spark plug seal when installing the cylinder head cover (F22B1 engine only).
- Visually check the spark plug seal for damage (F22B1 engine only)
- Replace the washer when damaged or deteriorated.

13. Tighten the nuts in 2 or 3 steps. In the final step, tighten all nuts, in sequence, to $9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}$, 7.2 lbffft).

NOTE: After assembly, wait at least 20 minutes before filling the engine with oil.

Except F22B1 engine:

F22B1 engine:

14. After installation, check that all tubes, hoses and connectors are installed correctly.

Engine Block

Special Tools 7-2
Illustrated Index 7-3
Flywheel and Drive Plate Replacement 7-7
Connecting Rod and Crankshaft
End Play 7-7
Main Bearings
Clearance 7-8
Selection 7-9
Connecting Rod Bearings
Clearance 7-10
Selection 7-11
Crankshaft, Balancer Shafts and Pistons
Removal 7-12
Crankshaft
Inspection 7-15
Pistons
Inspection 7-16
Installation 7-24
Cylinder Block
Inspection 7-17
Bore Honing 7-18
Piston Pins
Removal 7-18
Installation 7-19
Inspection 7-20
Connecting Rods
Selection 7-19
Piston Rings
End Gap 7-21
Replacement 7-22
Ring-to-Groove Clearance 7-22
Alignment 7-23
Crankshaft Oil Seal
Installation 7-24
Crankshaft and Balancer Shafts Installation 7-25
Balancer Shafts Inspection 7-29
Balancer Shaft Bearings
Replacement 7-32

Special Tools

Ref. No. Tool Number	Description		Oty	Page Reference
(1) 07LAB - PV00100 (2) 07LAF - PT20100 (3) 07LAG-PT20100 (4) $07 P A F-0010000$ (4)-1 $07 P A F-0010680$ (5 $07749-0010000$ (6) $07948-$ SB00101	Ring Gear Holder Bearing Replacement Tool Set Balancer shaft Lock Pin Piston Pin Assembly Tool Set Pilot Collar, O.D. 22 mm Handle Driver Driver Attachment, 96 mm		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7-7 \\ & 7-32 \\ & 7-12,27 \\ & 7-18,19 \\ & 7-18,19 \\ & 7-24 \\ & 7-24 \\ & \hline \end{aligned}$
(1) (3) (5)	 (4) (6)	(2)		

Told Lubricate all internal parts with engine oil during reassembly.
NOTE:

- Clean the oil pan gasket mating surfaces before installing it.
- Apply liquid gasket to the recesses of oil pan gasket (see page 7-28).

(cont'd)

Illustrated Index

(cont'd)

Lubricate all internal parts with engine oil during reassembly.
NOTE:

- Apply liquid gasket to the mating surfaces of the right side cover and oil pump case before installing them.

CRANKSHAFT

End play, page 7-7
Runout, Taper and
Out-of-Round, page 7-15

- Use liquid gasket, part No. 0Y740-99986.

MAIN BEARINGS
Oil clearance, page 7
Selection, page 7-9 NOTE: New main bearings must be selected by matching crank and block identification markings.

Installation, page 7-25

CRANKSHAFT OIL SEAL
Installation, page 7-24

Grooved sides face outward.
NOTE: Thrust washer thickness is fixed and must not be changed by grinding or shimming.
 $12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}$, $\mathbf{8 . 7} \mathbf{~ l b f} \cdot \mathbf{f t})$
Apply liquid gasket to the bolt threads.

(cont'd)

7-5

Illustrated Index

(cont'd)

Lubricate all internal parts with engine oil during reassembly.
NOTE: New rod bearings must be selected by matching connecting rod and crankshaft identification markings (see pages 7-10, 11).

PISTON INSTALLATION DIRECTION

EXHAUST

INTAKE
EXHAUST

PISTON

Removal, page 7-12
Measurement, page 7-16
NOTE: To maintain proper clearance,
match the letter on the piston top with
the letter for each cylinder stamped on the block.
On the piston top On the block

CYLINDER BLOCK
Cylinder bore inspection, page 7-17
Warpage inspection, page 7-17
Cylinder bore honing, page 7-18
Inspect top of each cylinder bore for carbon build-up or ridge before removing piston.
Remove ridge if necessary, page 7-14

CONNECTING ROD BEARINGS
Clearance, page 7-10 Selection, page 7-11

CONNECTING ROD BEARING CAP
Installation, page 7-25
NOTE: Install cap so the bearing recess is the same side as the recess in the rod.

CONNECTING ROD NUT F20B3 engine:

$8 \times 0.75 \mathrm{~mm}$
$32 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{3 . 3} \mathbf{~ k g f} \cdot \mathrm{m}, 24 \mathrm{lbf} \cdot \mathrm{ft}$) Except F20B3 engine:
$9 \times 0.75 \mathrm{~mm}$
$46 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{4 . 7} \mathbf{~ k g f} \cdot \mathrm{~m}, 34 \mathrm{lbf} \cdot \mathrm{ft})$
After torquing each bearing cap, rotate crankshaft to check for binding.

No. 4

CYLINDER BORE SIZES
(A or I, B or Il)
NOTE: To maintain proper piston clearance, match these letters with the letters on the pistons. The letters on the block read from left to right, No. 1 through No. 4 cylinders. On the block On the piston top A or $I \longrightarrow B$
B or $\mathrm{I} \longrightarrow$

Flywheel and Drive Plate

Replacement

Manual Transmission:

Remove the eight flywheel bolts, then separate the flywheel from the crankshaft flange. After installation, tighten the bolts in the sequence shown.

Automatic Transmission:

Remove the eight drive plate bolts, then separate the drive plate from the crankshaft flange. After installation, tighten the bolts in the sequence shown.

Connecting Rod and Crankshaft

End Play

Connecting Rod End Play:
Standard (New): 0.15-0.30 mm
(0.006-0.012 in)

Service Limit:
0.40 mm (0.016 in)

- If out-of-tolerance, install a new connecting rod.
- If still out-of-tolerance, replace the crankshaft (see pages 7-12 and 7-25).

Push the crankshaft firmly away from the dial indicator, and zero the dial against the end of the crankshaft. Then pull the crankshaft firmly back toward the indicator; dial reading should not exceed service limit.

Crankshaft End Play:

Standard (New): $0.10-0.35 \mathrm{~mm}$ (0.004-0.014 in)

Service Limit: $\quad 0.45 \mathrm{~mm}(0.018 \mathrm{in})$

- If end play is excessive inspect the thrust washers and thrust surface on the crankshaft. Replace parts as necessary.

NOTE: Thrust washer thickness is fixed and must not be changed either by grinding or shimming.
Thrust washers are installed with grooved sides facing outward.

Main Bearings

Clearance

1. To check main bearing-to-journal oil clearance, remove the main caps and bearing halves.
2. Clean each main journal and bearing half with a clean shop towel.
3. Place one strip of plastigage across each main journal.

NOTE: If the engine is still in the car when you bolt the main cap down to check clearance, the weight of the crankshaft and flywheel will flatten the plastigage further than just the torque on the cap bolt and give you an incorrect reading. For an accurate reading, support the crank with a jack under the counterweights, and check only one bearing at a time.
4. Reinstall the bearings and caps, then torque the bolts.
$74 \mathrm{~N} \cdot \mathrm{~m}$ (7.5 kgfom, $54 \mathrm{lbf} \cdot f t)$
NOTE: Do not rotate the crankshaft during inspection.
5. Remove the cap and bearings again, and measure the widest part of the plastigage.

Main Bearing-to-Journal Oil Clearance: Standard (New):

No. $2 \quad 0.021-0.045 \mathrm{~mm}$ ($0.0008-0.0018 \mathrm{in}$)
Service Limit: $0.050 \mathrm{~mm}(0.0020 \mathrm{in})$
No. 3
$0.025-0.049 \mathrm{~mm}$
($0.0010-0.0019 \mathrm{in}$)
Service Limit: $0.055 \mathrm{~mm}(0.0022 \mathrm{in})$
No. 1 and $4 \quad 0.013-0.037 \mathrm{~mm}$ (0.0005-0.0015 in)

Service Limit: $0.050 \mathrm{~mm}(0.0020 \mathrm{in})$
No. $5 \quad 0.009-0.033 \mathrm{~mm}$ ($0.0004-0.0013 \mathrm{in}$)
Service Limit: 0.040 mm (0.0016 in)

6. If the plastigage measures too wide or too narrow, (remove the engine if it's still in the car), remove the crankshaft, and remove the upper half of the bearing. Install a new, complete bearing with the same color code (select the color as shown on the next page), and recheck the clearance.

CAUTION: Do not file, shim, or scrape the bearings or the caps to adjust clearance.
7. If the plastigage shows the clearance is still incorrect, try the next larger or smaller bearing (the color listed above or below that one), and check again.

NOTE: If the proper clearance cannot be obtained by using the appropriate larger or smaller bearings, replace the crankshaft and start over.

Selection

CAUTION: If the codes are indecipherable because of an accumulation of dirt and dust, do not scrub them with a wire brush or scraper. Clean them only with solvent or detergent.

Crankshaft Bore Code Location

(Numbers, Letters or Bars)
Numbers or Letters or Bars have been stamped on the end of the block as a code for the size of each of the 5 main journal bores.
Use them, and the numbers stamped on the crankshaft (codes for main journal size), to choose the correct bearings.

No. 1 JOURNAL
(PULLEY END)

No. 5 JOURNAL (FLYWHEEL END)

$\begin{array}{ll}\text { Smaller } & \begin{array}{l}\text { Smaller } \\ \text { main } \\ \text { journal }\end{array} \\ \text { (Thicker) }\end{array}$

NOTE: When using bearing halves of different colors, it does not matter which color is used in the top or bottom.

Main Journal Code Locations
 (Numbers or Bars)

F20B3 engine:

Main Journal Code Locations (Numbers or Bars)

Except F20B3 engine:

The Main Journal Codes are stamped in one of the following locations.

Main Journal Code Locations (Numbers or Bars)

Main Journal Code Locations (Numbers or Bars)

No. 1 CRANK WEB

Connecting Rod Bearings

Clearance

1. Remove the connecting rod cap and bearing half.
2. Clean the crankshaft rod journal and bearing half with a clean shop towel.
3. Place plastigage across the rod journal.
4. Reinstall the bearing half and cap, and torque the nuts to:

F20B3 engine:
$32 \mathrm{~N} \cdot \mathrm{~m}$ ($3.3 \mathrm{kgf} \cdot \mathrm{m}, 24 \mathrm{lbf} \cdot \mathrm{ft}$)
Except F20B3 engine:
$46 \mathrm{~N} \cdot \mathrm{~m}(4.7 \mathrm{kgf} \cdot \mathrm{m}, 34 \mathrm{lbf} \cdot \mathrm{ft})$
NOTE: Do not rotate the crankshaft during inspection.
5. Remove the rod cap and bearing half and measure the widest part of the plastigage.

Connecting Rod Bearing-to-Journal Oil Clearance: F20B3 engine:
Standard (New): 0.015 - 0.043 mm
(0.0006-0.0017 in)

Service Limit: $\quad 0.050 \mathrm{~mm}$ (0.0020 in)
Except F20B3 engine:
Standard (New): 0.021-0.049 mm
($0.0008-0.0019 \mathrm{in}$)
Service Limit: $\quad \mathbf{0 . 0 6} \mathbf{~ m m}(\mathbf{0 . 0 0 2} \mathbf{~ i n})$

6. If the plastigage measures too wide or too narrow, remove the upper half of the bearing, install a new, complete bearing with the same color code (select the color as shown on the next page), and recheck the clearance.

CAUTION: Do not file, shim, or scrape the bearings or the caps to adjust clearance.
7. If the plastigage shows the clearance is still incorrect, try the next larger or smaller bearing (the color listed above or below that one), and check clearance again.

NOTE: If the proper clearance cannot be obtained by using the appropriate larger or smaller bearings, replace the crankshaft and start over.

Selection

CAUTION: If the codes are indecipherable because of an accumulation of dirt and dust, do not scrub them with a wire brush or scraper. Clean them only with solvent or detergent.

Connecting Rod Journal Code Locations

(Numbers or Bars)

Numbers or Bars have been stamped on the side of each connecting rod as a code for the size of the big end. Use it, and the letters or bars stamped on the crank (codes for rod journal size), to choose the correct bearings.

Bearing Design

Bearing Identification Color code is on the edge of the bearing.

1 or I	2 or Il	3 or 111	4 or 111
Smaller bearing (Thicker)			
Red	Pink	Yellow	Green
Pink	Yellow	Green	Brown
Yellow	Green	Brown	Black
Green	Brown	Black	Blue

Connecting Rod Journal Code Locations (Letters or Bars)

F20B3 engine:

Connecting Rod Journal Code Locations (Letters or Bars)

Except F20B3 engine:

The Connecting Rod Journal Codes are stamped in one of the following locations.

Connecting Rod Journal Code Locations (Letters or Bars)

Connecting Rod Journal Code Locations (Letters or Bars)

No. 1 CRANK WEB

Crankshaft, Balancer Shafts and Pistons

Removal

1. Remove the right side cover.

2. Remove the balancer gear case.

3. Remove the front balancer driven pulley as shown.

4. Align the bolt hole and the balancer shaft hole, then insert a special tool to hold the rear balancer shaft.
5. Remove the bolt and the balancer driven gear.

6. Remove the oil screen and the oil pump.
7. Remove the baffle plate (F22B1 engine only).

8. Remove the bolts and the bearing cap bridge, then remove the bearing caps.

CAUTION: To prevent warpage, unscrew the bolts in sequence $1 / 3$ turn at a time; repeat the sequence until all bolts are loosened.

MAIN BEARING CAP BOLTS LOOSENING SEQUENCE

Crankshaft, Balancer Shafts and Pistons

Removal (cont'd)

9. Turn the crankshaft so No. 2 and 3 crankpins are at the top.
10. Remove the rod caps/bearings and main caps/bearings. Keep all caps/bearings in order.
11. Lift the crankshaft out of the engine, being careful not to damage journals.

12. Remove the bolts and the retainer, then remove the front balancer shaft and the rear balancer shaft.

13. Remove the upper bearing halves from the connecting rods and set them aside with their respective caps.
14. Reinstall the main caps and bearings on the engine in proper order.
15. If you can feel a ridge of metal or hard carbon around the top of each cylinder, remove it with a ridge reamer. Follow the reamer manufacturer's instructions.

CAUTION: If the ridge is not removed, it may damage the pistons as they are pushed out.

16. Use the wooden handle of a hammer to drive the pistons out.

17. Reinstall the connecting rod bearings and caps after removing each piston/connecting rod assembly.
18. Mark each piston/connecting rod assembly with its cylinder number to avoid mixup on reassembly.

NOTE: The existing number on the connecting rod does not indicate its position in the engine, it indicates the rod bore size.

Inspection

- Clean the crankshaft oil passages with pipe cleaners or a suitable brush.
- Check the keyway and threads.

Alignment

- Measure runout on all main journals to make sure the crank is not bent.
- The difference between measurements on each journal must not be more than the service limit.

Crankshaft Total Indicated Runout: Standard (New): 0.03 mm (0.001 in) max.
Service Limit: $\quad 0.04 \mathbf{~ m m}(0.002 \mathrm{in})$

DIAL INDICATOR

Rotate crankshaft two

Support with lathe-
type tool or V-blocks.

Out-of-Round and Taper

- Measure out-of-round at the middie of each rod and main journal in two places.
- The difference between measurements on each journal must not be more than the service limit.

Journal Out-of-Round:

Standard (New): 0.005 mm (0.0002 in) max.
Service Limit: $\quad 0.006 \mathrm{~mm}(0.0002 \mathrm{in})$

- Measure taper at the edge of each rod and main journal.
- The difference between measurements on each journal must not be more than the service limit.

Journal Taper:

Standard (New): 0.005 mm (0.0002 in) max.
Service Limit: $\quad 0.006 \mathrm{~mm}(0.0002 \mathrm{in})$

Pistons

Inspection

1. Check the piston for distortion or cracks.

NOTE: If the cylinder is bored, an oversized piston must be used.
2. Measure the piston diameter at a point $\mathbf{2 1} \mathrm{mm}$ from the bottom of the skirt.

NOTE: There are two standard-size pistons (No Letter (A) or B). The letter is stamped on the top of the piston. Letters are also stamped on the block as cylinder bore sizes.

Piston Diameter:
Standard (New):
No Letter (A): 84.980-84.990 mm
(3.3457-3.3461 in)

B:
$84.970-84.980 \mathrm{~mm}$
(3.3453-3.3457 in)

Service Limit:

No Letter (A): 84.970 mm (3.3453 in)
B:
84.960 mm ($\mathbf{3 . 3 4 4 9 ~ i n) ~}$

Inspection

1. Measure wear and taper in direction X and Y at three levels in each cylinder as shown.

CYLINDER BORE SIZES
(A or I, B or il)
Read the letters from left-to-right for No. 1 through No. 4 cylinders.
CYLINDER BORE GAUGE

Cylinder Bore Size:
Standard (New):
A or I: $85.010-85.020 \mathrm{~mm}$ (3.3468 - 3.3472 in)
B or II: $85.000-85.010 \mathrm{~mm}$ ($3.3465-3.3468 \mathrm{in}$)
Service Limit: 85.070 mm ($\mathbf{3 . 3 4 9 2} \mathrm{in}$)

Oversize:

0.25: 85.250-85.260 mm (3.3563-3.3567 in)
0.50 : 85.500-85.510 mm (3.3661-3.3665 in)

Bore Taper:

Limit: (Difference between first and third measurement) 0.05 mm (0.002 in)

- If measurements in any cylinder are beyond Oversize Bore Service Limit, replace the block.
- If the block is to be rebored, refer to Piston Clearance Inspection (see page 7-16) after reboring.

NOTE: Scored or scratched cylinder bores must be honed.

Reboring Limit: $0.50 \mathrm{~mm}(0.020 \mathrm{in})$ max
2. Check the top of the block for warpage.

Measure along the edges and across the center as shown.

SURFACES TO BE MEASURED

Engine Block Warpage:
Standard (New): below 0.07 mm (0.003 in) max.
Service Limit: $\quad 0.10 \mathrm{~mm}(0.004 \mathrm{in})$

Cylinder Block

Bore Honing

1. Measure cylinder bores as shown on page 7-16. If the block is to be reused, hone the cylinders and remeasure the bores.
2. Hone cylinder bores with honing oil and a fine (400 grit) stone in a 60 degree cross-hatch pattern.

NOTE:

- Use only a rigid hone with 400 grit or finer stone such as Sunnen, Ammco, or equivalent.
- Do not use stones that are worn or broken.

3. When honing is complete, thoroughly clean the engine block of all metal particles. Wash the cylinder bores with hot soapy water, then dry and oil immediately to prevent rusting.

NOTE: Never use solvent, it will only redistribute the grit on the cylinder walls.
4. If scoring or scratches are still present in cylinder bores after honing to the service limit, rebore the cylinder block.

NOTE: Some light vertical scoring and scratching is acceptable if it is not deep enough to catch your fingernail and does not run the full length of the bore.

- After honing, clean the cylinder thoroughly with soapy water.
- Only a scored or scratched cylinder bore must be honed.

Piston Pins

Removal

NOTE:

- Use the piston pin assembly tool set (No. 07PAF 0010000) for removal of piston pins.
- Be sure to use the pilot collar of correct No. as designated.

1. Set the special tools as shown.

2. Place the piston on the special tools and press the pin out using a hydraulic press.

NOTE: Use a hydraulic press. When pressing pin in or out, make sure that the recessed portion of the piston aligns with the lips on the collar.

Connecting Rods

Selection

Each rod falls into one of four tolerance ranges (from 0 to $0.024 \mathrm{~mm}(0.0009 \mathrm{in})$, in $0.006 \mathrm{~mm}(0.0002 \mathrm{in}$) increments) depending on the size of its big end bore. It's then stamped with a number or bar (1, 2, 3, or $4 / \mathrm{I}$, II, III, or IIII) indicating the range.
You may find any combination of 1, 2, 3, or 4/l, il, ill, or IIII in any engine.

Normal Bore Size:
 F20B3 engine:
 48.0 (1.89 in)
 Except F20B3 engine: 51.0 (2.01 in)

NOTE:

- Reference numbers or bars are for big end bore size and do not indicate the position of the rod in the engine.
- Inspect connecting rod for cracks and heat damage.

Installation

NOTE:

- Use the piston pin assembly tool set (No. 07PAF 0010000) with a hydraulic press.
- Be sure to use the pilot coller of correct No. as designated.

The arrow must face the timing belt side of the engine.

1. Install the piston pin as shown.

NOTE: Install the assembled piston and rod with the oil hole facing the intake manifold.

Piston Pins

Inspection

1. Measure the diameter of the piston pin.

Piston Pin Diameter:
Standard (New): 21.994-22.000 mm

$$
(0.8659-0.8661 \mathrm{in})
$$

Oversize:

$$
21.997-22.003 \mathrm{~mm}
$$

$$
(0.8660-0.8663 \mathrm{in})
$$

NOTE: All replacement piston pins are oversize.

2. Zero the dial indicator to the piston pin diameter.

3. Measure the piston pin-to-piston clearance.

NOTE: Check the piston for distortion or cracks.
If the piston pin clearance is greater than 0.024 mm (0.0009 in), remeasure using an oversized piston pin.

Piston Pin-to-Piston Clearance:
Standard (New): 0.010-0.022 (0.0004-0.0009 in)

4. Check the difference between piston pin diameter and connecting rod small end diameter.

Piston pin-to Connecting Rod Interference:
Standard (New): 0.013-0.032 mm (0.0005-0.0013 in)

End Gap

1. Using a piston, push a new ring into the cylinder bore $15-20 \mathrm{~mm}(0.6-0.8 \mathrm{in})$ from the bottom.
2. Measure the piston ring end-gap with a feeler gauge:

- If the gap is too small, check to see if you have the proper rings for your engine.
- If the gap is too large, recheck the cylinder bore diameter against the wear limits on page 7-17. If the bore is over the service limit, the cylinder block must be rebored.

Piston Ring End-Gap:

Top Ring
Standard (New): $0.20-0.35 \mathrm{~mm}$

$$
(0.008-0.014 \mathrm{in})
$$

Service Limit: $\quad 0.60 \mathrm{~mm}(\mathbf{0 . 0 2 4} \mathbf{~ i n})$

Second Ring

Standard (New): 0.40 - 0.55 mm

$$
(0.016-0.022 \mathrm{in})
$$

Service Limit: $\quad 0.70 \mathrm{~mm}(0.028 \mathrm{in})$

Oil Ring

Standard (New): 0.20-0.70 mm
(0.008-0.028 in)

Service Limit: $\quad 0.80 \mathrm{~mm}(\mathbf{0 . 0 3 1} \mathbf{~ i n})$

Piston Rings

Replacement

1. Using a ring expander, remove the old piston rings.
2. Clean all ring grooves throughly.

NOTE:

- Use a squared-off broken ring or ring groove cleaner with blade to fit piston grooves.
- Top and $2 n d$ ring grooves are 1.2 mm (0.05 in) wide, and the oil ring groove are 2.8 mm (0.11 in) wide.
- File down blade if necessary.

CAUTION: Do not use a wire brush to clean the ring grooves, or cut ring grooves deeper with cleaning tools.
NOTE: If the piston is to be separated from the connecting rod, do not install new rings yet.
3. Install new rings in the proper sequence and position (see page 7-23).

NOTE: Do not use old piston rings.

Ring-to-Groove Clearance

After installing a new set of rings, measure the ring-togroove clearances:

Top Ring Clearance

Standard (New): $0.035 \mathbf{- 0 . 0 6 0 ~ m m}$

$$
(0.0014-0.0024 i n)
$$

Service Limit: $\quad 0.13 \mathrm{~mm}(\mathbf{0 . 0 0 5} \mathbf{~ i n})$

Second Ring Clearance

Standard (New): 0.030-0.055 mm

$$
(0.0012-0.0022 \mathrm{in})
$$

Service Limit: $\quad 0.13 \mathbf{m m}(0.005 \mathrm{in})$

Alignment

1. Install the rings as shown.

Identify top and second rings by the chamfer on the edge. Make sure they are in their proper grooves on the piston.

NOTE: The manufacturing marks must be facing upward.

2. Rotate the rings in their grooves to make sure they do not bind.

3. Position the ring end gaps as shown:

Crankshaft Oil Seal

Installation

The seal surface on the block should be dry. Apply a light coat of oil to the crankshaft and to the lip of the seal.

1. Drive in crankshaft oil seal against right side cover.

NOTE: Drive the crankshaft oil seal in squarely.

2. Confirm that the clearance is equal all the way around with a feeler gauge.

Clearance: $0.5-0.8 \mathrm{~mm}(0.02-0.03 \mathrm{in})$

NOTE: Refer to page 8-11 for installation of the oil pump side crankshaft oil seal.

Pistons

Installation

Before installing the piston, apply a coat of engine oil to the ring grooves and cylinder bores.

1. If the crankshaft is already installed:

- Set the crankshaft to BDC for each cylinder.
- Remove the connecting rod caps, and slip short sections of rubber hose over the threaded ends of the connecting rod bolts.
- Install the ring compressor, check that the bearing is securely in place, then position the piston in the cylinder, and tap it in using the wooden handle of a hammer.
- Stop after the ring compressor pops free, and check the connecting rod-to-crank journal alignment before pushing piston into place.
- Install the rod caps with bearings, and torque the nuts to:
F20B3 engine:
$32 \mathrm{~N} \cdot \mathrm{~m}$ ($3.3 \mathrm{kgf} \cdot \mathrm{m}, 24 \mathrm{lbf} \cdot \mathrm{ft}$)
Except F20B3 engine:
$46 \mathrm{~N} \cdot \mathrm{~m}$ ($4.7 \mathrm{~kg} \cdot \mathrm{~m}, 34 \mathrm{lbf} \cdot \mathrm{ft})$

2. If the crankshaft is not installed:

- Remove the rod caps and bearings, install the ring compressor, then position the piston in the cylinder, and tap it in using the wooden handle of a hammer.
- Position all pistons at top dead center.

NOTE: Maintain downward force on the ring compressor to prevent rings from expanding before entering the cylinder bore.

Crankshaft and Balancer Shafts

Installation

Before installing the crankshaft, apply a coat of engine oil to the main bearings, rod bearings and balancer shaft bearings.

1. Install the thrust washers in the No. 4 journal of the cylinder block.

THRUST WASHERS
Grooved side facing outward.
2. Insert bearing halves in the cylinder block and connecting rods.
3. Hold the crankshaft so rod journals for cylinders No. 2 and No. 3 are straight up.
4. Lower the crankshaft into the block, seating the rod journals into connecting rods No. 1 and No. 4. Install the rod caps and nuts finger tight.

5. Rotate the crankshaft clockwise, seat journals into connecting rods No. 2 and No. 3, and install the rod caps and nuts finger tight.

NOTE: Install caps so the bearing recess is on the same side as the recess in the rod.
6. Check rod bearing clearance with plastigage (see page 7-10), then torque the capnuts.
F20B3 engine:
$32 \mathrm{~N} \cdot \mathrm{~m}$ ($3.3 \mathrm{kgf} \cdot \mathrm{m}, 24 \mathrm{lbf} \cdot \mathrm{ft}$)
Except F20B3 engine:
$46 \mathrm{~N} \cdot \mathrm{~m}$ ($4.7 \mathrm{kgf} \cdot \mathrm{m}, 34 \mathrm{lbf} \cdot \mathrm{ft})$
NOTE: Reference numbers on connecting rod are for big-end bore tolerance and do not indicate the position of piston in the engine.
7. Install the main bearing caps and bearing cap bridge.
8. Check clearance with plastigage (see page 7-8), then tighten the bearing cap bolts in 2 steps.
In the first step tighten, all bolts in sequence, to about $29 \mathrm{~N} \cdot \mathrm{~m}$ ($3.0 \mathrm{kgf} \cdot \mathrm{m}, 22 \mathrm{lbf} \cdot \mathrm{ft}$); in the final step, tighten in same sequence, to $74 \mathrm{~N} \cdot \mathrm{~m}(7.5 \mathrm{kgf} \cdot \mathrm{m}, 54$ lbffft).

NOTE: Coat the boit threads with engine oil.

CAUTION: Whenever any crankshaft bearing or connecting rod bearing is replaced, it is necessary after reassembly to run the engine at idling speed until it reaches normal operating temperature, then continue to run it for approximately $\mathbf{1 5}$ minutes.

Crankshaft and Balancer Shafts

Installation (cont'd)

NOTE:

- Use liquid gasket, part No. 0Y740-99986.
- Check that the mating surfaces are clean and dry before applying liquid gasket.
- Apply liquid gasket evenly, being careful to cover all the mating surface.
- To prevent leakage of oil, apply liquid gasket to the inner threads of the bolt holes.
- Do not install the parts if 5 minutes or more have elapsed since applying the liquid gasket. Instead reapply liquid gasket after removing the old residue.
- After assembly, wait at least 20 minutes before filling the engine with oil.

9. Apply liquid gasket to the block mating surface of the right side cover, then install it on the cylinder block.

RIGHT SIDE COVER:

Apply liquid gasket along the broken line.
 to the bolt threads.
10. Insert the balancer shafts into the block, then install the retainer to the front balancer shaft and block.

11. Apply liquid gasket to the oil pump mating surface of the block, then install the oil pump on the cylinder block.

- Apply grease to the lips of the oil seals.

Then, install the oil pump while aligning the inner rotor with the crankshaft. When the pump is in place, clean any excess grease off the crankshaft and the balancer shaft, then check that the oil seal lips are not distorted.

OIL PUMP:

$6 \times 1.0 \mathrm{~mm}$
$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

12. Install the baffle plate, then install the oil screen.
13. Hold the front balancer shaft with a screwdriver, then install the timing balancer belt driven pulley.

FRONT BALANCER SHAFT:

14. Before installing the balancer driven gear and the balancer gear case, apply molybdenum disulfide to the thrust surfaces of the balancer gears as shown.

15. Hold the rear balancer shaft with the special tool, then install the balancer driven gear.

REAR BALANCER SHAFT:

Crankshaft and Balancer Shafts

Installation (cont'd)

16. Install the balancer gear case to the oil pump.

NOTE: Align the groove on the pulley edge to the pointer on the gear case while holding the rear balancer with the special tool, then install the gear case.

17. Check alignment of pointers after installing the gear case.

18. Install the oil pan.

NOTE: Clean the oil pan gasket mating surface.

19. Tighten the bolts and nuts as shown below.

Torque: $14 \mathrm{~N} \cdot \mathrm{~m}(1.4 \mathrm{kgf} \cdot \mathrm{m}, 10 \mathrm{lbf} \cdot \mathrm{ft})$

NOTE: Tighten the bolts and nuts in three steps and torque them in a criss-cross pattern.

Balancer Shafts

Inspection

NOTE: Inspect the balancer shaft before removing the right side cover and the balancer gear case (see page 712).

1. Push the balancer shaft firmly away from the dial indicator, and zero the dial against the front end of the balancer shaft, then pull the balancer shaft firmly back toward the indicator.

Front Balancer Shaft End Play
Standard (New): 0.10-0.40 mm (0.004-0.016 in)

- If end play is excessive, inspect the retainer and thrust surfaces on the balancer shaft.

Rear Balancer Shaft End Play
Standard (New): 0.04-0.15 mm

$$
(0.002-0.006 \mathrm{in})
$$

- If end play is excessive, inspect the thrust washer and thrust surfaces on the driven gear and oil pump body.

NOTE: The thickness of the retainer (front) and thrust washer (rear) are fixed and must not be changed either by grinding or shimming.
2. Remove the balancer shafts (see page 7-12).

NOTE: Clean the balancer shafts.
3. Inspect the surface of the balancer shaft journal and balancer bearing.
4. Replace the bearing or balancer shaft if there is wear, damage or discoloration on the surface of the bearing or the balancer shaft journal. When replacing the rear No. 1 bearing be sure to replace the oil pump housing with a new one.

NOTE: A mirror-like surface is normal.
5. Measure taper at the edges of each journal.

- The difference between measurements on each journal must not exceed the standard.

Journal Taper
Standard (New): 0.005 mm (0.0002 in)

(cont'd)

Balancer Shafts

Inspection (cont'd)

6. Measure runout on the No. 2 journal of each balancer shaft to make sure the balancer shafts are not bent.

Balancer Shaft Total Indicated Runout Standard (New): $0.02 \mathrm{~mm}(0.001 \mathrm{in})$ Service Limit: $\quad 0.03 \mathrm{~mm}(0.001 \mathrm{in})$

7. Measure the diameters of the balancer shaft journals.

MEASURING POINTS

SHAFT

Journal Diameter

Standard (New):

No. 1 journal:

Front:	$42.722-42.734 \mathrm{~mm}$
	$(1.6820-1.6824 \mathrm{in})$
Rear:	$20.938-20.950 \mathrm{~mm}$
	$(0.8243-0.8248 \mathrm{in})$

No. 2 journals front and rear:

$$
38.712-38.724 \mathrm{~mm}
$$

$$
(1.5241-1.5246 \mathrm{in})
$$

No. 3 journals front and rear:

$$
\begin{aligned}
& 34.722-34.734 \mathrm{~mm} \\
& (1.3670-1.3675 \mathrm{in})
\end{aligned}
$$

Service Limit:

No. 1 journal:
Front: $\quad 42.71 \mathrm{~mm}$ ($\mathbf{1 . 6 8 1} \mathrm{in}$)
Rear: $\quad 20.92 \mathrm{~mm}$ (0.824 in)
No. 2 journals front and rear:
38.70 mm (1.524 in)

No. 3 journals front and rear:
34.71 mm (1.367 in)
8. Remove the crankshaft, the pistons and the other parts from the block, then clean the balancer shaft journal bearings in the block and the oil pump housing with a clean shop towel.
9. Check the surface of the bearings; if there is wear, damage or discoloration, replace the bearings or the oil pump housing.
10. Measure the inner diameters of the balancer shaft journal bearings.

MEASURE POINTS

No. 2 BEARING (BLOCK)

DIAL GAUGE

No. 1 REAR BEARING (OIL PUMP HOUSING)

Bearing Inner Diameter

Standard (New):

No. 1 journals:

Front:	$42.800-42.820 \mathrm{~mm}$
	$(1.6850-1.6858 \mathrm{in})$
Rear:	$21.000-21.013 \mathrm{~mm}$
	$(0.8268-0.8273 \mathrm{in})$

No. 2 journals front and rear: 38.800-38.820 mm (1.5276-1.5283 in)

No. 3 journals front and rear:
34.800-34.820 mm
(1.3701-1.3709 in)

Service Limit:

No. 1 journals:
Front: $\quad 42.83 \mathrm{~mm}$ (1.686 in)
Rear: $\quad 21.02 \mathrm{~mm}$ (0.828 in)
No. 2 journals front and rear:
38.83 mm (1.529 in)

No. 3 journals front and rear:
34.83 mm (1.371 in)
11. Calculate the shaft-to-bearings oil clearances.

BEARING I.D. - JOURNAL O.D. = OIL CLEARANCE

Bearing-to-shaft Oil Clearance

Standard (New):
No. 1 front journal, No. 3 front and rear journals: $0.066-0.098 \mathrm{~mm}$ (0.0026-0.0039 in)
No. 2 front and rear journals:
$0.076-0.108 \mathrm{~mm}$ ($0.0030-0.0043 \mathrm{in}$)
No. 1 rear journal:
$0.050-0.075 \mathrm{~mm}(0.0020-0.0030 \mathrm{in})$

Service Limit:

No. 1 front journal, No. 3 front and rear journals:
0.12 mm (0.005 in)

No. 2 front and rear journals: 0.13 mm (0.005 in)
No. 1 rear journal: $0.09 \mathrm{~mm}(0.004 \mathrm{in})$

Balancer Shaft Bearings

Replacement

The procedure shown below is used when using the bearing replacement tool set (07LAF - PT20100).

CAUTION:

- Remove all attachment parts from the cylinder block and lay it with its oil pan side up.
- Remove or reinstall bearings one at a time.
- Remove bearings from the transmission side to the timing belt side and reinstall them in reverse sequence.

Removal:

NOTE:

- By changing the size and attachment point of the attachment, all balancer bearings can be removed from the cylinder block in the same procedure.
- The illustration shows the attachment points of each special tool.
- When removing bearings successively, put the corersponding attachment through the shaft without fixing them in advance.

SPECIAL TOOL SET LOCATION

- Position of attachment fixing holes and guide marks on the shaft.

1. Put the attachment with the side having larger diameter facing the bearing. Align the stopper pin holes of the attachment and the shaft.
Insert the stopper pin to fix the attachment.

FRONT No. 1 BEARING: ATTACHMENT A
No. 2 BEARINGS: ATTACHMENT B No. 3 BEARINGS: ATTACHMENT C

STOPPER PIN

Align with the guide mark.
2. Hold the shaft end with a wrench and turn the nut clockwise until the bearing comes off.

- Do not rotate the shaft.

3. When removing bearings in succession, loosen the nut, remove the stopper pin from the pin hole you have finished and repeat above step 1 and 2 on the next bearing.

Installation:

Front No. 1 bearing
NOTE: Always use new bearings.

1. Set the resess of the bearing to the detent of the attachment.

Attachment

Front No. 1 bearing: Attachment A

- The illustration shows the attachment points of the special tools.

THRUST beARINg
2. Install the shaft positioning pin.

3. Set the shaft so that the attachment pin is aligned with the positioning hole in the end disc.

(cont'd)

Balancer Shaft Bearings

Replacement (cont'd)

4. Set the deten of the bearing to the groove of the cylinder block.

5. Hold the end of the shaft with wrench and install the bearing by turning the nut clockwise.

- Do not rotate the shaft.

Installation:

No. 2 and No. 3 Bearings

1. Set the resess of the bearing to the detent of the attachment.

No. 2 BEARINGS: ATTACHMENT B No. 3 BEARINGS: ATTACHMENT C

- The illustration shows attachment points of each special tool.
- When installing bearings successively, set the bearings to the attachment and put them through the shaft without fixing them in advance.

2. Install the shaft positioning pin.

3. Align the attachment with the guide mark. Applicable bearing No. is indicated at the guide mark. Align the pin holes of the attachment and the shaft. Insert the stopper pin to fix the attachment (for No. 2, and No. 3 bearings).

4. Set the detent of the bearing to the groove of the cylinder block.

5. Hold the end of the shaft with wrench and install the bearing by turning the nut clockwise.

- Do not rotate the shaft.

Engine Lubrication
Special Tools 8-2
Illustrated Index 8-3
Engine Oil
Inspection 8-4
Replacement 8-4
Oil Filter
Replacement 8-5
Oil Pressure
Testing 8-7
Oil Pump
Overhaul 8-8
Removal/Inspection/Installation 8-9

Special Tools

Ref. No.	Tool Number	Description	Oty	Page Reference
(1)	07LAG - PT20100	Balancer Shaft Lock Pin	1	8-11
(2)	07406-0030000	Oil Pressure Gauge Attachment	1	8-7
(3)	07506-3000000	Oil Pressure Gauge	1	8-7
(4)	07746-0010300	Driver Attachment, $42 \times 47 \mathrm{~mm}$	1	8-10
(5)	07746-0010400	Driver Attachment, $52 \times 55 \mathrm{~mm}$	1	8-10
(6)	07749-0010000	Handle Driver	1	8-10
(7)	07912-6110001	Oil Filter Wrench	1	8-6

(1)

(2)

(3)

(6)

(7)

NOTE:

- Use new O-rings when reassembling.
- Apply oil to O-rings before installation.
- Use liquid gasket, Part No. OY740-99986.
- Clean the oil control orifice before installing.
- Clean the oil pan gasket mating surfaces before installing.
- Apply liquid gasket to the recesses of the oil pan gasket (see page 8-12).

CAUTION: Do not overtighten the drain bolt.

Engine Oil

Inspection

1. Check engine oil with the engine off and the car parked on level ground.
2. Make certain that the oil level indicated on the dipstick is between the upper and lower marks.
3. If the level has dropped close to the lower mark, add oil until it reaches the upper mark.

CAUTION: Insert the dipstick carefully to avoid bending it.

Replacement

CAUTION: Remove the drain bolt carefully while the engine is hot; the hot oil may cause scalding.

1. Warm up the engine.
2. Drain the engine oil.

3. Reinstall the drain bolt with a new washer, and refill with the recommended oil.

CAUTION: Do not overtighten the drain bolt.

Requirement	Always use a fuel-efficient oil is that says "API Service SG or SH". SAE Viscosity: See chart next page.
Capacity	Except F22B1 engine: 3.5ℓ (3.7 US qt, $3.1 \mathrm{lmp} q \mathrm{t}$) at oil change. 3.8ℓ (4.0 US qt, 3.3 lmpqq t) at oil change including filter. 4.9ℓ (5.2 US qt, $4.3 \mathrm{lmp} q \mathrm{t}$) after engine overhaul. F22B1 engine: 4.0 P (4.2 US qt, 3.5 Impq qt) at oil change. 4.3ℓ (4.5 US qt, 3.8 lmpq qt) at oil change including filter. 5.6ℓ (5.9 US qt, $4.9 \mathrm{Imp} q \mathrm{t}$) after engine overhaul.
Change interval	Every $10,000 \mathrm{~km}\left(6,000\right.$ miles) or $6\left(12^{* 3}\right)$ months

*3: European models

Replacement

Select the oil for the car according to this cart:

Ambient Temperature
4. Fill the engine with oil up to the specified level, run the engine for more than 3 minutes, then check for oil leakage.

A Warning

- After the engine has been run, the exhaust pipe will be hot; be careful when working around the exhaust pipe.
- Be careful when loosening the drain bolt while the engine is hot. Burns can result because the oil temperature is very high.

1. Remove the oil filter with the special oil filter wrench.
2. Inspect the threads and rubber seal on the new filter. Wipe off the seat on engine block, then apply a light coat of oil to the filter rubber seal.

NOTE: Use only filters with a built-in bypass system.

FRANCE-MADE oil filter:

Oil Filter

Replacement (cont'd)

3. Install the oil filter by hand.
4. After the rubber seal seats, tighten the oil filter clockwise with the special tool.

Tighten: 7/8 turn clockwise.
Tightening torque: $\mathbf{2 2} \mathbf{N} \cdot \mathrm{m}(\mathbf{2} .2 \mathrm{~kg} \cdot \mathrm{~m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$

FRANCE-MADE oil filter:

Tighten: three quarter turn clockwise.
Tightening torque: $\mathbf{2 2} \mathbf{N} \cdot \mathrm{m}$ ($\mathbf{2 . 2} \mathbf{~ k g f} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft}$)
CAUTION: Installation using other than the above procedure could result in serious engine damage due to oil leakage.

FRANCE-MADE oil filter:

Eight numbers (1 to 8) are printed on the surface of the filter.

France-made oil filter:
Four numbers (1 to 4) are printed on the surface of the filter.

The following explains the procedure for tightening filters using these numbers.

1) Make a mark on the cylinder block under the number that shows at the bottom of the filter when the rubber seal is seated.
2) Tighten the filter by turning it clockwise seven numbers from the marked point. For example, if a mark is made under the number 2 when the rubber seal is seated, the filter should be tightened until the number 1 comes up to the marked point.

France-made oil filter:
Tighten the filter by turning it clockwise three numbers from the marked point. For example, if a mark is made under the number 2 when the rubber seal is seated, the filter should be tightened until the number 1 comes up to the marked point.

Number when rubber seat is seated.

Number when rubber seal is seated	1	2	3	4	5	6	7	8
Number after tightening	8	1	2	3	4	5	6	7

FRANCE-MADE oil filter:

Number when rubber seal is seated	1	2	3	4
Number after tightening	4	1	2	3

5. After installation, fill the engine with oil up to the specified level, run the engine for more than 3 minutes, then check for oil leakage.

Testing

If the oil pressure warning light stays on with the engine running, check the engine oil level. If the oil level is correct:

1. Connect a tachometer.
2. Remove the engine oil pressure switch and install an oil pressure gauge.
3. Start the engine. Shut it off immediately if the gauge registers no oil pressure. Repair the problem before continuing.
4. Allow the engine to reach operating temperature (fan comes on at least twice). The pressure should be:

Engine Oil Temperature: $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ Engine Oil Pressure:
At Idle:
$69 \mathrm{kPa}\left(0.7 \mathrm{kgf} / \mathrm{cm}^{2}, 10 \mathrm{psi}\right)$ minimum
At $\mathbf{3 , 0 0 0} \mathbf{~ r p m ~ (m i n}{ }^{-1}$): $340 \mathrm{kPa}\left(\mathbf{3 . 5} \mathbf{~ k g f / c m}{ }^{2}, 50 \mathrm{psi}\right)$ minimum

- If oil pressure is within specifications, replace the oil pressure switch and recheck.
- If oil pressure is NOT within specifications, inspect the oil pump (page 8-10).

Oil Pump

Overhaul

NOTE:

- Use new O-rings when reassembling.
- Apply oil to O-rings before installation.
- Use liquid gasket, Part No. 0Y740-99986.
- The rotors must be installed to the same direction in order.
- After reassembly, check that the rotors move without binding.
$6 \times 1.0 \mathrm{~mm}$
$12 \mathrm{~N} \cdot \mathrm{~m}$ (1.2 kgf•m, $8.7 \mathrm{lbf} \cdot \mathrm{ft}$)
Apply liquid gasket to the bolt threads.

PUMP HOUSING

Inspection, page 8-9 Apply liquid gasket to mating surface of the cylinder block when installing.
$6 \times 1.0 \mathrm{~mm}$
$7 \mathrm{~N} \cdot \mathrm{~m}(0.7 \mathrm{kgf} \cdot \mathrm{m}, 5.1 \mathrm{lbf} \cdot \mathrm{ft})$

OUTER ROTOR
Inspection, page 8-9

Removal/Inspection/Installation

1. Drain the engine oil.
2. Turn the crankshaft so that the No. 1 piston is at top dead center (see page 6-22).
3. Remove the timing belt and the timing balancer belt (see page 6-19).
4. Remove the timing belt tensioner and the timing balancer belt tensioner.
5. Remove the timing belt drive pulley and the timing balancer belt driven pulley (see page 6-16).
6. Remove the balancer gear case and the balancer driven gear (see page 7-12).
7. Remove the oil pan and the oil screen.
8. Remove the mounting bolts and the oil pump assembly.

9. Remove the screws from the pump housing, then separate the housing and cover.
10. Check the inner-to-outer rotor radial clearance on the pump rotor.

Inner Rotor-to-Outer Rotor Radial Clearance Standard (New): 0.02 - 0.16 mm (0.001 - 0.006 in) Service Limit: $\quad 0.20 \mathrm{~mm}(0.008 \mathrm{in})$

- If the inner-to-outer rotor clearance exceeds the service limit, replace the inner and outer rotors.

11. Check the housing-to-rotor axial clearance on the pump rotor.

Housing-to-Rotor Axial Clearance
Standard (New): $0.02-0.07 \mathrm{~mm}$ (0.001 - 0.003 in)
Service Limit: $\quad 0.12 \mathrm{~mm}(0.005 \mathrm{in})$

- If the housing-to-rotor axial clearance exceeds the service limit, replace the set of inner and outer rotors and/or the pump housing.
(cont'd)

Oil Pump

Removal/Inspection/Installation (cont'd)

12. Check the housing-to-outer rotor radial clearance.

Housing-to-Outer Rotor Radial Clearance
Standard (New): $0.10-0.19 \mathrm{~mm}(0.004-0.007 \mathrm{in})$
Service Limit: $\quad 0.21 \mathrm{~mm}(0.008 \mathrm{in})$

- If the housing-to-outer rotor radial clearance exceeds the service limit, replace the set of inner and outer rotors and/or the pump housing.

13. Inspect both rotors and the pump housing for scoring or other damage. Replace parts if necessary.
14. Remove the old oil seals from the oil pump.
15. Gently tap in the new oil seals until the special tool bottoms on the pump.

NOTE: The oil seals alone can be replaced without removing the oil pump by using the special tool.

16. Reassemble the oil pump, applying liquid thread lock to the pump housing screws.
17. Check that the oil pump turns freely.
18. Install a dowel pin and the new O-ring on the pump.

NOTE:

- Use liquid gasket, Part No. 0Y740-99986.
- Check that the mating surfaces are clean and dry before applying liquid gasket.
- Apply liquid gasket evenly, in a narrow bead centered on the mating surface.
- To prevent leakage of oil, apply liquid gasket to the inner threads of the bolt holes.
- Do not install the parts if 5 minutes or more have elapsed since applying liquid gasket.
Instead reapply liquid gasket after removing the old residue.
- After assembly, wait at least 20 minutes before filling the engine with oil.

19. Apply liquid gasket to the oil pump and install it.

- Apply grease to the lips of the crankshaft oil seal and the balancer shaft seal. Then, install the oil pump inner rotor onto the crankshaft. When the pump is in place, clean any excess grease off the crankshaft and the balancer shaft, then check that the oil seal lips are not distorted.

$\begin{array}{ll}\text { Apply grease } & 6 \times \mathbf{1 . 0} \mathrm{mm} \\ \text { to the seal lips. } & \mathbf{1 2 ~ N} \cdot \mathrm{m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, \mathbf{8 . 7} \mathrm{lbf} \cdot \mathrm{ft})\end{array}$

20. Install the baffle plate (F22B1 engine only).
21. Install the oil screen.
22. Hold the front balancer shaft with a screwdriver, then install the timing balancer belt driven pulley.

FRONT BALANCER:

TIMING BALANCER BELT

23. Before installing the balancer driven gear and the balancer gear case, apply molybdenum disulfide to the thrust surfaces of the balancer gears, as shown.

24. Hold the rear balancer shaft with the special tool, then install the balancer driven gear.

REAR BALANCER:

Oil Pump

- Removal/Inspection/Installation (cont'd)

25. Install the balancer gear case on the oil pump.

NOTE: Align the groove on the pulley edge to the pointer on the gear case while holding the rear balancer with the special tool, then install the gear case.

POINTER

Align the groove to pointer.

26. Check alignment of pointers after installing the gear case.

27. Install the oil pan.

NOTE: Clean the oil pan gasket mating surface before installing.

DRAIN BOLT
$44 \mathrm{~N} \cdot \mathrm{~m}(4.5 \mathrm{kgf} \cdot \mathrm{m}, 33 \mathrm{lbf} \cdot \mathrm{ft})$ Do not overtighten.
28. Tighten the bolts and nuts as shown below.

Torque: $\mathbf{1 4} \mathbf{N} \cdot \mathrm{m}(\mathbf{1 . 4} \mathbf{~ k g f} \cdot \mathrm{m}, 10 \mathrm{lbf} \cdot \mathrm{ft})$

NOTE: Tighten the bolts and nuts in three steps and torque them in a crisscross pattern.
Intake Manifold/Exhaust System
Intake Manifold
Replacement 9-2
Exhaust Manifold Replacement 9-3
Exhaust Pipe and Muffler
Replacement 9-5

Intake Manifold

Replacement

NOTE: Use new O-rings and gaskets when reassembling.
CAUTION:

- Check for folds or scratches on the surface of the gasket.
- Replace with a new gasket if damaged.

Exhaust Manifold

Replacement

NOTE: Use new gaskets and self-locking nuts when reassembling.

CAUTION:

- Check for folds or scratches on the surface of the gasket.
- Replace with a new gasket if damaged.

F22B2 engine:

(cont'd)

Exhaust Manifold

Replacement (cont'd)

NOTE: Use new gaskets and self-locking nuts when reassembling.

CAUTION:

- Check for folds or scratches on the surface of the gasket.
- Replace with a new gasket if damaged.

Except F22B2 engine:

Exhaust Pipe and Muffler

Replacement

NOTE: Use new gaskets and self-locking nuts when reassembling.
F22B2 engine:

Exhaust Pipe and Muffler

Replacement (cont'd)

NOTE: Use new gaskets and self-locking nuts when reassembling.
F20B3, F22B5 engines:

F22B1 engine:

Cooling

Radiator
Illustrated Index 10-2
Replacement 10-4
Engine Coolant Refilling and Bleeding 10-5
Cap Testing 10-6
Testing 10-6
Thermostat
Replacement 10-7
Testing 10-7
Water Pump
Illustrated Index 10-8
Inspection 10-9
Replacement 10-9

Radiator

Illustrated Index

A warning System is under high pressure when engine is hot. To avoid danger of releasing scalding coolant, remove cap only when engine is cool.

Total Cooling System Capacity (Including heater and reservoir)

M/T: 6.9ℓ (7.4 US qt, 6.1 Impq qt)
A/T: 6.8ℓ (7.3 US qt, $6.0 \mathrm{lmp} q t$)
Reservoir capacity: 0.6 f (0.6 US qt, 0.5 Impq q)

CAUTION: When pouring engine coolant, be sure to shut the relay box lid and not to spill coolant on the electrical parts or the painted portion. If any coolant spills, rinse it off immediately.

NOTE:

- Check all cooling system hoses for damage, leaks or deterioration and replace if necessary.
- Check all hose clamps and retighten if necessary.
- Use new O-rings when reassembling.

RADIATOR
Engine coolant Refilling and bleeding, page 10-5
Leak test, page 10-6
Inspect soldered joints and seams for leaks.
Blow out dirt from between core fins with compressed air. If insects, etc., are clogging radiator, wash them off with low pressure water.

A: TOYO RADIATOR manufactured radiator.
B: NIPPONDENSO manufactured radiator.

Engine Hose Connections:

Radiator

Replacement

1. Drain engine coolant.
2. Remove the upper and lower radiator hoses, and ATF cooler hoses.
3. Disconnect the fan motor connectors.
4. Remove the radiator upper brackets, then pull up the radiator.
5. Remove the fan shroud assemblies and other parts from radiator.

Install the radiator in the reverse order of removal:

NOTE:

- Set the upper and lower cushions securely.
- Fill the radiator with engine coolant and bleed the air.

Engine Coolant Refilling and Bleeding

CAUTION: When pouring engine coolant, be sure to shut the relay box lid and not to let coolant spill on the electrical parts or the paint. If any coolant spills, rinse it off immediately.

1. Set the heater temperature lever or control dial to maximum heat.
2. When the radiator is cool, remove the radiator cap. Loosen the drain plug, and drain the coolant.
3. Remove the drain bolt from the rear side of the cylinder block to drain the block.
4. Apply liquid gasket to the drain bolt threads, then reinstall the bolt with a new washer and tighten it securely.
5. Tighten the radiator drain plug securely.
6. Remove, drain and reinstall the reservoir. Fill the tank halfway to the MAX mark with water, then up to the MAX mark with antifreeze.
7. Mix the recommended antifreeze with an equal amount of water in a clean container.

NOTE:

- Use only genuine Honda antifreeze/coolant.
- For best corrosion protection, the coolant concentration must be maintained year-round at 50% minimum. Coolant concentrations less than 50% may not provide sufficient protection against corrosion or freezing.
- Coolant concentrations greater than 60 \% will impair cooling efficiency and are not recommended.

CAUTION:

- Do not mix different brands of antifreeze/ coolants.
- Do not use additional rust inhibitors or anti-rust products; they may not be compatible with the genuine coolant.

Engine Coolant Refill Capacity: including reservoir (0.6 \& (0.6 US qt, $0.5 \mathrm{Imp} q \mathrm{t})$).

M/T: 5.4 \& (5.7 US qt, 4.8 Imp qt)
A/T: 5.3ℓ (5.6 US qt, 4.7 $\mathrm{Imp} q \mathrm{t}$)
8. Loosen the air bleed bolt in the thermostat housing, then fill the radiator to the bottom of the filler neck with the coolant mixture. Tighten the bleed bolt as soon as coolant starts to run out in a steady stream without bubbles.

BLEED BOLT

$9.8 \mathrm{~N} \cdot \mathrm{~m}$ (1.0 kgf.m, $7 \mathrm{lbf} \cdot \mathrm{ft}$)

Replace
DRAIN BOLT
$83 \mathrm{~N} \cdot \mathrm{~m}$ ($8.5 \mathrm{kgf} \cdot \mathrm{m}, 61 \mathrm{lbf} \cdot \mathrm{ft}$)
Apply liquid gasket to the bolt threads when installing.
9. With the radiator cap off, start the engine and let it run until warmed up (radiator fan comes on at least twice). Then, if necessary, add more coolant mix to bring the level back up to the bottom of the filler neck.
10. Put the radiator cap on tightly, then run the engine again and check for leaks.

Radiator

Cap Testing

1. Remove the radiator cap, wet its seal with engine coolant, then install it on the pressure tester.
2. Apply a pressure of $93-123 \mathrm{kPa}(0.95-1.25 \mathrm{kgf} /$ $\mathrm{cm}^{2}, 14-18 \mathrm{psi}$).
3. Check for a drop in pressure.
4. If the pressure drops, replace the cap.

*1: TOYO RADIATOR manufactured radiator. *2: NIPPONDENSO manufactured radiator.

Testing

1. Wait until the engine is cool, then carefully remove the radiator cap and fill the radiator with engine coolant to the top of the filler neck.
2. Attach the pressure tester to the radiator and apply a pressure of $93-123 \mathrm{kPa}\left(0.95-1.25 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 14 $18 \mathrm{psi})$.
3. Inspect for engine coolant leaks and a drop in pressure.
4. Remove the teater and reinstall the radiator cap.

NOTE: Check for engine oil in the coolant and/or coolant in engine oil.

*1: TOYO RADIATOR manufactured radiator. *2: NIPPONDENSO manufactured radiator.

Replacement

NOTE: Use new O-rings when reassembling.

Testing

Replace the thermostat if it is open at room temperature.

To test a closed thermostat:

1. Suspend the thermostat in a container of water as shown.
2. Heat the water and check the temperature with a thermometer. Check the temperature at which the thermostat first opens, and at which it is fully open.

CAUTION: Do not let the thermometer touch the bottom of hot container.
3. Measure lift height of the thermostat when fully open.

STANDARD THERMOSTAT
Lift height: above 8.0 mm (0.31 in .)

Starts opening: 76-80 ${ }^{\circ}$ ($\left.169-176^{\circ} \mathrm{F}\right)$
Fully open: $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$

Water Pump

Illustrated Index

NOTE: Use new O-rings when reassembling.

Inspection

1. Remove the timing belt (see page 6-19).
2. Check that the water pump pulley turns counterclockwise.
3. Check for signs of seal leakage.

NOTE: A small amount of "weeping" from the bleed hole is normal.

Replacement

1. Remove the timing belt (see page 6-19).
2. Remove the camshaft pulley and the back cover (see page 6-31).
3. Remove the water pump by removing five bolts.

NOTE: Inspect, repair and clean the O-ring groove and mating surface with the cylinder block.

4. Install the water pump in the reverse order of removal.

NOTE:

- Keep the O-ring in position when installing.
- Clean the spilled engine coolant.

Fuel and Emissions

Special Tools 11-2
Component Location Index 11-3
System Description
Vacuum Connections 11-8
Electrical Connections 11-14
Troubleshooting
Troubleshooting Guide 11-16
Self-diagnostic Procedures 11-18
How to Read Flowcharts 11-23
PGM-FI System
System Description 11-24
Troubleshooting Flowcharts Engine Control Module 11-26
Heated Oxygen Sensor 11-30
Heated Oxygen Sensor Heater 11-34
Fuel Supply System 11-37
Manifold Absolute Pressure
Sensor 11-39
Top Dead Center/Crankshaft Position/ Cylinder Position Sensor 11-42
Engine Coolant Temperature Sensor 11-44
Throttle Position Sensor 11-46
Intake Air Temperature Sensor 11-48
Ignition Output Signal 11-50
Vehicle Speed Sensor 11-52
Electrical Load Detector 11-54
Barometric Pressure Sensor 11-56
A/T FI Signal A/B 11-57
Idle Control System
System Troubleshooting Guide 11-58
System Description 11-59
Troubleshooting Flowcharts
Idle Air Control Valve 11-61
Starter Switch Signal 11-63
Air Conditioning Signal 11-64
Alternator FR Signal 11-66
Automatic Transaxle (A/T) Gear Position Signal 11-68
Brake Switch Signal 11-70
Power Steering Pressure Switch Signal 11-71
Fast Idle Thermo Valve 11-72
Idle Speed Setting 11-73
Fuel Supply System
System Troubleshooting Guide 11-75
Fuel Lines 11-76
System Description 11-78
Fuel Pressure 11-78
Fuel Injectors 11-80
Fuel Injection Air Control System 11-86
Injector Resistor 11-89
Fuel Pressure Regulator 11-90
Fuel Filter 11-92
Fuel Pump 11-93
PGM-FI Main Relay 11-95
Fuel Tank 11-98
Intake Air System
System Troubleshooting Guide 11-99
System Description 11-100
Air Cleaner 11-101
Throttle Cable 11-102
Throttle Body 11-103
Intake Air Resonator Control System 11-106
Intake Manifold 11-110
Emission Control System
System Troubleshooting Guide 11-111
System Description 11-112
Tailpipe Emission 11-112
Three Way Catalytic Converter 11-113
Exhaust Gas Recirculation System 11-114
Positive Crankcase Ventilation System 11-120
Evaporative Emission Controls 11-121

Special Tools

(3)

(4) -1
(4) -2

F22B1 engine:

-

EXHAUST GAS RECIRCULATION (EGR) VALVE and LIFT SENSOR
Troubleshooting, page 11-114

Component Locations

Index

F22B2, F22B5 engine:

MANIFOLD ABSOLUTE PRESSURE

(MAP) SENSOR
Troubleshooting, page 11-39
 PURGE CONTROL SOLENOID VALVE [F22B2 engine]
Troubleshooting, page 11-123
ELECTRICAL LOAD DETECTOR (ELD)
[F22B2 engine]
Troubleshooting, page 11-54

THROTTLE POSITION (TB) SENSOR

Troubleshooting, page

INTAKE AIR RESONATOR (IER) CONTROL SOLENOID VALVE [F22B5 engine]
Troubleshooting, page 11-107

TOP DEAD CENTER/CRANKSHAFT

 POSITION/CYLINDER POSITION (TDC/CKP/CYP) SENSORTroubleshooting, page 11-42

INTAKE AIR TEMPERATURE
Troubleshooting, page 11-48
INJECTOR RESISTOR
Troubleshooting, page 11-89

EXHAUST GAS RECIRCULATION (GR) VACUUM CONTROL VALVE Troubleshooting, page 11-114

IGNITION CONTROL MODULE (ISM) Troubleshooting, page 11-50
engine coolant temperature (ACT) SENSOR Troubleshooting, page 11-44

EXHAUST GAS RECIRCULATION (AGR) CONTROL SOLENOID VALVE Troubleshooting, page 11-114

HEATED OXYGEN SENSOR (HOLS)
[F22B2 engine]
Troubleshooting, page 11-30

F20B3 engine:

THROTTLE POSITION (TP) SENSOR Troubleshooting, page 11-46

MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR Troubleshooting, page 11-39

Component Locations

Index

LHD:

SERVICE CHECK CONNECTOR (2P)

Self-diagnostic Procedures, page 11-18

ENGINE CONTROL MODULE (ECM)
Self-diagnostic Procedures, page 11-18 Troubleshooting, page 11-26

RHD:
SERVICE CHECK CONNECTOR (2P)

ENGINE CONTROL MODULE (ECM)
Self-diagnostic Procedures, page 11-18
Troubleshooting, page 11-26

FUEL GAUGE SENDING UNIT Testing, section 23
FUEL VAPOR PIPE

EVAPORATIVE EMISSION (EVAP) CONTROL CANISTER Troubleshooting, pages 11-123, 125

PRESSURE REGULATOR
Testing, page 11-90 Replacement, page 11-91

FUEL TANK EVAPORATIVE EMISSION (EVAP) VALVE

FUEL INJECTORS
Troubleshooting, page 11-80
Testing, page 11-83
Replacement, page 11-84

THROTTLE CABLE
inspection/Adjustment, page 11-102 Installation, page 11-102

AIR CLEANER (ACL)
Replacement, page 11-101
THROTTLE BODY (TB)
Inspection, page 11-103
FUEL TANK
Replacement,
page 11-98
FUEL FEED PIPE
FUEL RAIL
FUEL FILTER
Replacement, page 11-92

Replacement, page 11-101

System Description

Vacuum Connections

F22B1 engine:

(1) HEATED OXYGEN SENSOR (HO2S)
(2) MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR
(3) ENGINE COOLANT TEMPERATURE (ECT) SENSOR
(4) INTAKE AIR TEMPERATURE (IAT) SENSOR
(5) IDLE AIR CONTROL (IAC) VALVE
(6) FAST IDLE THERMO VALVE
(7) FUEL INJECTOR
(8) FUEL FILTER
(9) FUEL PRESSURE REGULATOR
(10) FUEL PUMP (FP)
(11) FUEL TANK
(12) FUEL TANK EVAPORATIVE EMISSION (EVAP) VALVE
(13) FUEL INJECTION AIR (FIA) CONTROL SOLENOID VALVE

AIR CLEANER
5) RESONATOR
(16) INTAKE AIR RESONATOR (IAR) CONTROL CHECK VALVE
(17) INTAKE AIR RESONATOR (IAR) CONTROL VACUUM TANK
(18) INTAKE AIR RESONATOR (IAR) CONTROL SOLENOID VALVE
(19) INTAKE AIR RESONATOR (IAR) CONTROL DIAPHRAGM VALVE
(20) THREE WAY CATALYTIC CONVERTER (TWC)
(21) EXHAUST GAS RECIRCULATION (EGR) VALVE
(22) EXHAUST GAS RECIRCULATION (EGR) VALVE LIFT SENSOR
(23) EXHAUST GAS RECIRCULATION (EGR) VACUUM CONTROL VALVE
(24) EXHAUST GAS RECIRCULATION (EGR) CONTROL SOLENOID VALVE
POSITIVE CRANKCASE VENTILATION (PCV) VALVE
(26) EVAPORATIVE EMISSION (EVAP) CONTROL CANISTER
(27) EVAPORATIVE EMISSION (EVAP) PURGE CONTROL SOLENOID VALVE
(28) EVAPORATIVE EMISSION (EVAP) TWO WAY VALVE
(29) ENGINE MOUNT CONTROL SOLENOID VALVE

System Description

Vacuum Connections (cont'd)

F22B2, F22B5 engine:

(1) HEATED OXYGEN SENSOR (HO2S)
(2) MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR
(3) ENGINE COOLANT TEMPERATURE (ECT) SENSOR
(4) INTAKE AIR TEMPERATURE (IAT) SENSOR
(5) IDLE AIR CONTROL (IAC) VALVE
(6) FAST IDLE THERMO VALVE
(7) FUEL INJECTOR
(8) FUEL FILTER
(9) FUEL PRESSURE REGULATOR
(10) FUEL PUMP (FP)
(11) FUEL TANK
(12) FUEL TANK EVAPORATIVE EMISSION (EVAP) VALVE (13) AIR CLEANER
(14) RESONATOR
(15) INTAKE AIR RESONATOR (IAR) CONTROL CHECK VALVE
(16) INTAKE AIR RESONATOR (IAR) CONTROL VACUUM TANK
(17) INTAKE AIR RESONATOR (IAR) CONTROL SOLENOID VALVE
(18) INTAKE AIR RESONATOR (IAR) CONTROL DIAPHRAGM VALVE
(9) THREE WAY CATALYTIC CONVERTER (TWC)
(20) EXHAUST GAS RECIRCULATION (EGR) VALVE
(21) EXHAUST GAS RECIRCULATION (EGR) VALVE LIFT SENSOR
(22) EXHAUST GAS RECIRCULATION (EGR) VACUUM CONTROL VALVE
EXHAUST GAS RECIRCULATION (EGR) CONTROL SOLENOID VALVE
4) POSITIVE CRANKCASE VENTILATION (PCV) VALVE EVAPORATIVE EMISSION (EVAP) CONTROL CANISTER EVAPORATIVE EMISSION (EVAP) PURGE CONTROL DIAPHRAGM VALVE
(27) EVAPORATIVE EMISSION (EVAP) PURGE CONTROL SOLENOID VALVE
EVAPORATIVE EMISSION (EVAP) TWO WAY VALVE (9) ENGINE MOUNT CONTROL SOLENOID VALVE

System Description

Vacuum Connections (cont'd)

F20B3 engine:

(1) HEATED OXYGEN SENSOR (HO2S)
(2) MANIFOLD ABSOLUTE PRESSURE (MAP) SENSOR
(3) ENGINE COOLANT TEMPERATURE (ECT) SENSOR
(4) INTAKE AIR TEMPERATURE (IAT) SENSOR
(5) IDLE AIR CONTROL (IAC) VALVE
(6) FAST IDLE THERMO VALVE
(7) FUEL INJECTOR
(8) FUEL FILTER
(9) FUEL PRESSURE REGULATOR
(10) FUEL PUMP (FP)
(11) FUEL TANK
(12) FUEL TANK EVAPORATIVE EMISSION (EVAP) VALVE
(13) AIR CLEANER
(14) RESONATOR
(15) THREE WAY CATALYTIC CONVERTER (TWC)
(16) EXHAUST GAS RECIRCULATION (EGR) VALVE
(17) EXHAUST GAS RECIRCULATION (EGR) VALVE LIFT SENSOR
(18) EXHAUST GAS RECIRCULATION (EGR) VACUUM CONTROL VALVE
(19) EXHAUST GAS RECIRCULATION (EGR) CONTROL SOLENOID VALVE
POSITIVE CRANKCASE VENTILATION (PCV) VALVE
(21) EVAPORATIVE EMISSION (EVAP) CONTROL CANISTER
(22) EVAPORATIVE EMISSION (EVAP) PURGE CONTROL DIAPHRAGM VALVE
(23) EVAPORATIVE EMISSION (EVAP) PURGE CONTROL SOLENOID VALVE
(24) EVAPORATIVE EMISSION (EVAP) TWO WAY VALVE
(25) ENGINE MOUNT CONTROL SOLENOID VALVE

System Description

Electrical Connections

B: EVAP PURGE CONTROL SOLENOID VALVE
C: IAR CONTROL SOLENOID VALVE
D: FIA CONTROL SOLENOID VALVE
E: EGR CONTROL SOLENOID VALVE
F: ENGINE MOUNT CONTROL SOLENOID VALVE

Troubleshooting

Troubleshooting Guide

NOTE: Across each row in the chart, the systems that could be sources of a symptom are ranked in the order they should be inspected starting with (1). Find the symptom in the left column, read across to the most likely source, then refer to the page listed at the top of that column. If inspection shows the system is OK, try the next most likely system (2), etc.

* If codes other than those listed above are indicated, count the number of blinks again. If the MIL is in fact blinking these codes, replace the ECM.
(BU) If the MIL is on while the engine is running, connect the SCS short connector to the service check connector. If no code is displayed (MIL stays on steady), the back-up system is in operation.
Substitute a known-good ECM and recheck. If the indication goes away, replace the original ECM.

PGM-FI						IDLE CONTROL		FUEL SUPPLY		$\underset{\text { INTAKE }}{\substack{\text { ITR }}}$	EMISSION CONTROL	
VEHICLE SPEED SENSOR	$\begin{array}{\|c\|} \hline \text { ELECTRICAL } \\ \text { LOAD } \\ \text { DETECTOR } \\ * 1 \end{array}$	$\begin{gathered} \text { VTEC } \\ \text { SOLENOID } \\ \text { VALVE** } \end{gathered}$	$\begin{gathered} \text { VTEC } \\ \text { PRESSURE } \\ \text { SWITCH* } 2 \end{gathered}$	$\begin{gathered} \text { ATT } \\ \text { FI } \\ \text { SIGNAL } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { A/T } \\ \text { FI } \\ \text { SIGNAL } \\ B \end{gathered}$	IDLE AIR CONTROL VALVE	$\begin{gathered} \text { OTHER } \\ \text { IDLE } \\ \text { CONTROLS } \end{gathered}$	$\begin{gathered} \text { FUEL } \\ \text { INJECTOR } \end{gathered}$	$\begin{aligned} & \text { OTHER } \\ & \text { FUEL } \\ & \text { SUPPLY } \end{aligned}$		EXHAUST GAS RECIRCULATION (EGR) CONTROL SYSTEM	OTHER EMISSION CONTROL SYSTEM
11-52	11-54	6-4	6-6	11-57	11-57	11-61	11-58	11-80	11-75	11-99	11-114	11.111
				\square								
$=\frac{1}{17}=$	$=\frac{1}{20}=$	$=21$	$=\frac{1}{22}$	30	$\frac{31}{1}$	$=14$		$\left\lvert\, \begin{gathered} 1 \\ -16 \\ -1 \end{gathered}\right.$			$=\frac{12}{\prime}$	
									(2)			
									(2)			
						(1)	(2)					
						(1)	(2)	(2)			(3)	
						(1)	(2)					
	(3)					(1)	(2)	(2)				
						(1)	(2)		(3)			
						(3)			(1)		(2)	
								(1)			(3)	
												(1)
		(3)	(3)					(3)	(1)	(3)		(3)

*1: F22B1, F22B2 engine
*2: F22B1 engine

Troubleshooting

Self-diagnostic Procedures

I. When the Malfunction Indicator Lamp (MIL) has been reported on, do the following:

1. Connect the SCS short connector to Service Check Connector as shown. (The $2 P$ Service Check Connector is located under the dash on the passenger side of the car). Turn the ignition switch on.

LHD:
RHD:

2. Note the Diagnostic Trouble Code (DTC): The MIL indicates a code by the length and number of blinks. The MIL can indicate multiple problems by blinking separate codes, one after another. Codes 1 through 9 are indicated by individual short blinks. Codes 10 through 43 are indicated by a series of long and short blinks. The number of long blinks equals the first digit, the number of short blinks equals the second digit. Sometimes the first blink is difficult to see; always count the blinks at least twice to verify the code.

MALFUNCTION
INDICATOR
LAMP
(MIL)

Separate Problems:
Short

Long short
Multiple Problems:

II. Engine Control Module (ECM) Reset Procedure

1. Turn the ignition switch off.
2. Remove the BACK UP (7.5 A) fuse from the under-hood fuse/relay box for 10 seconds to reset the ECM.

III. Final Procedure (this procedure must be done after any troubleshooting)
3. Remove the SCS Short Connector.

NOTE: If the SCS Short Connector is connected and there are no DTCs stored in the ECM, the MIL will stay on.
2. Do the ECM Reset Procedure.

Troubleshooting

Self-diagnostic Procedures (cont'd)

DIAGNOSTIC TROUBLE CODE (DTC)	SYSTEM INDICATED	Page
0	ENGINE CONTROL MODULE (ECM)	11-26
1	HEATED OXYGEN SENSOR (HO2S)	11-30,37*1
3	MANIFOLD ABSOLUTE PRESSURE (MAP SENSOR)	11-39
4	CRANKSHAFT POSITION (CKP SENSOR)	11-42
6	ENGINE COOLANT TEMPERATURE (ECT SENSOR)	11-44
7	THROTTLE POSITION (TP SENSOR)	11-46
8	TOP DEAD CENTER POSITION (TDC SENSOR)	11-42
9	No. 1 CYLINDER POSITION (CYP SENSOR)	11-42
10	INTAKE AIR TEMPERATURE (IAT SENSOR)	11-48
12	EXHAUST GAS RECIRCULATION (EGR VALVE LIFT SENSOR)	11-115
13	BAROMETRIC PRESSURE (BARO SENSOR)	11-56
14	IDLE AIR CONTROL (IAC VALVE)	11-61
15	IGNITION OUTPUT SIGNAL	11-50
16	FUEL INJECTOR* ${ }^{1}$	11-80
17	VEHICLE SPEED SENSOR (VSS)	11-52
20	ELECTRICAL LOAD DETECTOR (ELD)**	11-54
21	VARIABLE VALVE TIMING \& VALVE LIFT ELECTRONIC CONTROL SOLENOID VALVE (VTEC SOLENOID VALVE)*2	6-4
22	VARIABLE VALVE TIMING \& VALVE LIFT ELECTRONIC CONTROL. PRESSURE SWITCH (VTEC PRESSURE SWITCH)*2	6-6
30	A/T FI SIGNAL A	11-57
31	A/T FI SIGNAL B	11-57
41	HEATED OXYGEN SENSOR (HO2S) HEATER	11-34
43	FUEL SUPPLY SYSTEM*1	11-37

* 1: F22B1, F22B2 engine
*2: F22B1 engine
- If codes other than those listed above are indicated, verify the code. If the code indicated is not listed above, replace the ECM.
- The MIL may come on, indicating a system problem when, in fact, there is a poor or intermittent electrical connection. First, check the electrical connections, clean or repair connections if necessary.
- The MIL and D_{4} indicator light may light simultaneously when the Diagnostic Trouble Code (DTC) is 6, 7 or 17. Check the PGM-FI system according to the PGM-FI system troubleshooting, then recheck the D_{4} indicator light. If it lights, see page 14-50, 51.
- The MIL does not come on when there is a malfunction in the A/T FI signal or Electrical Load Detector (ELD) circuits. However, it will indicate the codes when the Service Check Connector is shorted.

If the inspection for a particular code requires the test harness, remove the passenger side door sill molding. Pull the carpet back to expose the ECM. Unbolt the ECM cover. Turn the ignition switch off and connect the test harness. Check the system according to the procedure described for the appropriate code(s) listed on the following pages.

LHD:

Troubleshooting

- Self-diagnostic Procedures (cont'd)

RHD:

Self-diagnostic Procedures (cont'd)

CAUTION:

- Puncturing the insulation on a wire can cause poor or intermittent electrical connections.
- For testing at connectors other than the test harness, bring the tester probe into contact with the terminal from the connector side of wire harness connectors in the engine compartment. For female connectors, just touch lightly with the tester probe and do not insert the probe.

How to Read Flowcharts

A flowchart is designed to be used from start to final repair. It's like a map showing you the shortest distance. But beware: if you go off the "map" anywhere but a "stop" symbol, you can easily get lost.

START
(bold type)
ACTION Asks you to do something; perform a test, set up a condition etc.

DECISION

STOP
(bold type)
Describes the conditions or situation to start a troubleshooting flowchart.

Asks you about the result of an action, then sends you in the appropriate troubleshooting direction.
The end of a series of actions and decisions, describes a final repair action and sometimes directs you to an earlier part of the flowchart to confirm your repair.

NOTE:

- The term "Intermittent Failure" is used in these charts. It simply means a system may have had a failure, but it checks out OK at this time. If the Malfunction Indicator Lamp (MIL) on the dash does not come on, check for poor connections or loose wires at all connectors related to the circuit that you are troubleshooting (see illustration below).
- Most of the troubleshooting flowcharts have you reset the Engine Control Module (ECM) and try to duplicate the Diagnostic Trouble Code (DTC). If the problem is intermittent and you can't duplicate the code, do not continue through the flowchart. To do so will only result in confusion and, possibly, a needlessly replaced ECM.
- "Open" and "Short" are common electrical terms. An open is a break in a wire or at a connection. A short is an accidental connection of a wire to ground or to another wire. In simple electronics, this usually means something won't work at all. In complex electronics (like ECM's), this can sometimes mean something works, but not the way it's supposed to.
- If the electrical readings are not as specified when using the test harness, check the test harness connections before proceeding.

PGM-FI System

System Description

INPUTS
TDC/CKP/CYP Sensor
MAP Sensor
ECT Sensor
IAT Sensor
TP Sensor
HO2S
VSS
BARO Sensor
ELD* 1
Starter Signal
ALT FR Signal
Air Conditioning Signal
A/T Gear Position Signal (A/T)
Battery Voltage (IGN. 1)
Brake Switch Signal* ${ }^{*}$
PSP Switch Signal
EGR Valve Lift Sensor
VTEC Pressure Switch*2

ENGINE CONTROL MODULE (ECM)

OUTPUTS

[^3]* 1: F22B1, F22B2 engine
*2: F22B1 engine
*3: F22B1, F22B5 engine

PGM-FI System

The PGM-FI system on this model is a sequential multiport fuel injection system.

Fuel Injector Timing and Duration

The ECM contains memories for the basic discharge durations at various engine speeds and manifold pressures. The basic discharge duration, after being read out from the memory, is further modified by signals sent from various sensors to obtain the final discharge duration.

Idle Air Control

Idle Air Control Valve (IAC Valve)
When the engine is cold, the A / C compressor is on, the transmission is in gear (A / T only), the brake pedal is depressed, the P / S load is high, or the alternator is charging, the ECM controls current to the IAC Valve to maintain the correct idle speed.

Ignition Timing Control

The ECM contains memories for basic ignition timing at various engine speeds and manifold pressures. Ignition timing is also adjusted for engine coolant temperature.

Other Control Functions

1. Starting Control

When the engine is started, the ECM provides a rich mixture by increasing fuel injector duration.
2. Fuel Pump Control

- When the ignition switch is initially turned on, the ECM supplies ground to the PGM-FI main relay that supplies current to the fuel pump for two seconds to pressurize the fuel system.
- When the engine is running, the ECM supplies ground to the PGM-FI main relay that supplies current to the fuel pump.
- When the engine is not running and the ignition is on, the ECM cuts ground to the PGM-FI main relay which cuts current to the fuel pump.

3. Fuel Cut-off Control

- During deceleration with the throttle valve closed, current to the fuel injectors is cut off to improve fuel economy at speeds over $1,100 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ [F22B1, F22B2 engine], $1,200 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ [F22B5, F2OB3 engine].
- Fuel cut-off action also takes place when engine speed exceeds, 6,500 rpm (min^{-1}) [F22B1 engine], 6,600 rpm (min^{-1}) [Except F22B1 engine], regardless of the position of the throttle valve, to protect the engine from overrevving.

4. A/C Compressor Clutch Relay

When the ECM receives a demand for cooling from the air conditioning system, it delays the compressor from being energized, and enriches the mixture to assure smooth transition to the A / C mode.
5. Evaporative Emission (EVAP) Purge Control Solenoid Valve When the engine coolant temperature is below $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$, the ECM supplies a ground to the EVAP purge control solenoid valve which cuts vacuum to the EVAP purge control canister.
6. Intake Air Resonator (IAR) Control Solenoid Valve*3

When the engine speed is below 2,900 rpm (min^{-1}) [F22B5 engine: 3,000 rpm (min-1)], IAR control solenoid valve is deactivated by the ECM, and intake air does not flow from the IAR. At engine speeds between 2,900 rpm (min^{-1}) and 3,700 rpm (min^{-1}) [F22B5 engine: $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and $\left.3,800 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)\right]$ (mid-range), the solenoid valve is activated by a signal from the ECM, and intake air flows from the IAR.
7. Fuel Injection Air (FIA) Control Solenoid Valve*2

When the engine speed is between $1,300 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and $4,500 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$, the ECM supplies ground to the FIA control solenoid valve, sending intake air to the fuel injectors.
8. Exhaust Gas Recirculation (EGR) Control Solenoid Valve

When the EGR is required for control of oxides of nitrogen ($N O x$) emissions, the ECM supplies ground to the EGR control solenoid valve which supplies regulated vacuum to EGR valve.
9. Alternator Control* ${ }^{*}$

The system controls the voltage generated at the alternator in accordance with the electrical load and drive mode, which reduces the engine load to improve the fuel economy.

ECM fail-safe/back-up Functions

1. Fail-safe Function

When an abnormality occurs in a signal from a sensor, the ECM ignores that signal and assumes a pre-programmed value for that sensor that allows the engine to continue to run.
2. Back-up Function

When an abnormality occurs in the ECM itself, the fuel injectors are controlled by a back-up circuit independent of the system in order to permit minimal driving.
3. Self-diagnosis Function [Malfunction Indicator Lamp (MIL)] When an abnormality occurs in a signal from a sensor, the ECM supplies ground for the MIL and stores the code in erasable memory. When the ignition is initially turned on, the ECM supplies ground for the MIL for two seconds to check the MIL bulb condition.
4. Two Trip Detection Method

To prevent false indications, the Two Trip Detection Method is used for the HO2S, fuel metering-related and EGR self-diagnostic functions. When an abnormality occurs, the ECM stores it in its memory. When the same abnormality recurs after the ignition switch is turned OFF and ON again, the ECM informs the driver by lighting the MIL. However, to ease troubleshooting, this function is cancelled when you short the service check connector. The MIL will then blink immediately when an abnormality occurs.

PGM-FI System

Engine Control Module (ECM)
The Malfunction Indicator Lamp
(MIL) never comes on (even for
two seconds) after ignition is
turned on.

NOTE: If this symptom is intermittent, check for a loose fuse No. 1 (BACK UP LIGHTS, METER LIGHTS, 10A) in the under-dash fuse/relay box, a poor connection at ECM terminal A13, or an intermittent open in the LT GRN/RED wire between the ECM (A13) and the gauge assembly.

NO

```
YES
```

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

Repair open in BLK wire(s) between ECM and G101 (located at intake manifold) that had more than 1.0 V .

The Malfunction Indicator Lamp (MIL) stays on or comes on after two seconds.

Connect the SCS short connector to the service check connector (see page 11-18)

Turn the ignition switch ON.

NO
Remove the SCS short connector from the service check connector.

NOTE:

- When there is no code stored, the MIL will stay on if the service check connector is shorted.
- If this symptom is intermittent, check for:
- A loose ECU (ECM) fuse (15 A) in the under-hood fuse/relay box
- A loose No. 2 FUEL PUMP fuse (15 A) in the under-dash fuse/relay box
- An intermittent short in the RED wire between the ECM (D4) and the service check connector
- An intermittent open in the GRN/BLU wire between the service check connector and ECM (D22)
- An intermittent short in the LT GRN/RED wire between the ECM (A13) and the gauge assembly.
- An intermittent short in the YEL/WHT wire between the ECM (D19) and the MAP sensor
- An intermittent short in the YEL/BLU wire between the ECM (D20) and the TP sensor

Go to self-diagnostic procedures
 (see page 11-16).

Measure voltage between D4 (+) terminal and D22 (-) terminal.

Repair short to body ground in RED wire between the ECM (D4) and service check connector.

- Repair open in RED wire between ECM (D4) and service connector to service check connector.

$$
{ }^{*}
$$ check connector.

Connect the SCS short

Repair open in GRN/BLU wire between ECM (D22) and service check connector.

NO
*NOTE: After repair, disconnect the SCS Short Connector, test drive the car, and recheck the MIL for a code.

- Repair short in WHT/GRN wire between ECU (ECM) (15 A) fuse and PGM-FI main relay.
- Replace ECU (ECM) (15 A) fuse.

Measure voltage between D4 (+) terminal

(To page 11-28)

PGM-FI System

Engine Control Module (ECM) (cont'd)

(To page 11-29)
(From page 11-28)

Measure voltage between body ground and the following terminals individually: A26, B2.

Is there less than 1.0 V ?
Repair open in BRN/BLK wire between ECM (A26; B2) and G101.

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

PGM-FI System

Heated Oxygen Sensor (HO2S) [F22B1, F22B2 engine]

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 1: A problem in
the Heated Oxygen Sensor (HO2S) circuit.

The Heated Oxygen Sensor (HO2S) detects the oxygen content in the exhaust gas and signals the ECM. In operation, the ECM receives the signals from the sensor and varies the duration during which fuel is injected. To stabilize the sensor's output, the sensor has an internal heater. The HO2S is installed in exhaust pipe A [F22B2 engine: exhaust manifold].

[^4]Start the engine. Hold the engine at $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ with no load (A / T in N or P position) until the radiator fan comes on, then let it idle for at least one minute before road testing.

Connect the SCS short connector to the service check connector (see page 11-18)

Road test with the automatic transmission in 2 position.
Starting at $1,600 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$, accelerate using wide open throttle for at least 5 seconds. Then decelerate for at least 5 seconds with the throttle completely closed.

Intermittent failure, system is OK at this time. Check for poor connections or loose wires between the HO2S and the ECM.

Go to page and perform test for code 43 (see page 11-37).

Heated Oxygen Sensor (HO2S) [F22B5, F20B3 engine]

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 1: A problem in the Heated Oxygen Sensor (HO2S) circuit.

The Heated Oxygen Sensor (HO2S) detects the oxygen content in the exhaust gas and signals the ECM. In operation, the ECM receives the signals from the sensor and varies the duration during which fuel is injected. To stabilize the sensor's output, the sensor has an internal heater. The HO2S is installed in exhaust pipe A.

- The MIL has been reported on.
- With the SCS short connector connected (see page 11-18), code 1 is indicated.

Do the ECM Reset Procedure (see page 11-19).

Start the engine. Hold the engine at $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ with no load (A / T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle for at least one minute before road testing.

Connect the SCS short connector to the service check connector (see page 11-18).

Road test with the automatic transmission in 2 position (M/T: 4th gear).
Starting at $1,600 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$, accelerate using wide open throtthe for at least 5 seconds. Then decelerate for at least 5 seconds with the throttle completely closed.

Intermittent failure, system is OK at this time. Check for poor connections or loose wires between the HO2S and the ECM.

PGM-FI System

Heated Oxygen Sensor (HO2S) [F22B5, F2OB3 engine] (cont'd)
engine wire harness.

DIGITAL CIRCUIT TESTER

Commercially available or 07411-0020000
Turn the ignition switch OFF.
Connect the HO2S connector to

Connect the test harness between the ECM and connector (page 11-21).
(To page 11-33)
(From page 11-32)

Restart the engine. Hold the engine at $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ with no load (A / T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.

Measure voltage between D14 $(+)$ and A26 $(-)$ terminal.

Is the voltage above 0.6 V at wide open throttle to 4,500 $\mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and 0.4 V when the throttle is quickly released from 4,500 rpm (min ${ }^{-1}$)?

YES

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

PGM-FI System

Heated Oxygen Sensor Heater

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 41: A problem in the Heated Oxygen Sensor (HO2S) Heater circuit.

Turn the ignition switch OFF.

Disconnect the 4 P connector from the HO2S. \mathbf{l}.

Measure resistance between ter-
minals 3 and 4 on the HO2S.

Intermittent failure, system is OK at this time (test drive may be necessary).
Check for poor connections or loose wires between the HO2S and the ECM.

Except F22B2 engine:

View from terminal side

PGM-FI System

Heated Oxygen Sensor Heater (cont'd)

Fuel Supply System [F22B1, F22B2 engine]

From code 1 troubleshooting (page 11-30).

Turn the ignition switch OFF.

Connect the test harness between the ECM and connectors (see page 11-21).

Turn the ignition switch ON.

NOTE:

- Use DIGITAL CIRCUIT TESTER (Commercially available or 07411-0020000). - Use 2 Volt range.

PGM-FI System

Fuel Supply System [F22B1, F22B2 engine] (cont'd)

(From page 11 -37)

Measure voltage between D14 $(+)$ terminal and A26 $(-)$ terminal as soon as the ignition switch is turned on.
 the HO2S.

Measure voltage between D14 $(+)$ terminal and A26 (-) terminal.
wire harne connector between WHT/RED $(+)$ and GRN/BLU (-).

Manifold Absolute Pressure (MAP) Sensor

The MAP sensor converts manifold absolute pressure into electrical signals and inputs the ECM.

Intermittent failure, system is OK at this time (test drive may be necessary).
Check for poor connections or loose wires between the MAP sensor and the ECM.

(To page 11-40)

PGM-FI System

Manifold Absolute Pressure (MAP) Sensor (cont'd)

Measure voltage between YEL/ WHT (+) terminal and GRN/WHT $(-)$ terminal.

Measure voltage between D19 (+) terminal and D21 (-) terminal.

Repair open in YEL/WHT wire between ECM (D19) and the MAP sensor.

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

(To page 11-41)

(To page 11-41)

PGM-FI System

TDC/CKP/CYP Sensor

-

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 8: A problem in the Top Dead Center (TDC) Sensor circuit.

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 9: A problem in the Cylinder Position (CYP) Sensor circuit.

The CKP Sensor determines timing for fuel injection and ignition of each cylinder and also detects engine speed. The TDC Sensor determines ignition timing at start-up (cranking) and when crank angle is abnormal. The CYP Sensor detects the position of No. 1 cylinder for sequential fuel injection to each cylinder.

$\frac{1}{1}-\frac{4}{1}-\frac{1}{9}-\frac{1}{9}$

F22B1 engine:

> The MIL has been reported on.
> - With the SCS short connector connected (see page 11-18), code 4, 8 and/or 9 are indicated.

(To page 11-43)
Intermittent failure, system is OK at this time (test drive may be necessary).
Check for poor connections or loose wires between the TDC/ CKP/CYP sensor and the ECM.

F22B5, F20B3 engine:

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

PGM-FI System

Engine Coolant Temperature (ECT) Sensor

- The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 6: A problem in
the Engine Coolant Temperature (ECT) Sensor circuit.

The ECT Sensor is a temperature dependant resistor (thermistor). The resistance of the thermistor decreases as the engine coolant temperature increases as shown below.

RESISTANCE

(k Ω)

(To page 11-45)

PGM-FI System

Throttle Position (TP) Sensor

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 7: A problem in the Throttle Position (TP) Sensor circuit.
The TP Sensor is a potentiometer. It is connected to the throttle valve shaft. As the throttle position changes, the throttle position sensor varies the voltage signal to the ECM.

(From page 11-46)

Repair open in GRN/ BLU wire between ECM (D22) and the TP sensor.

Repair open in YEL/BLU wire between ECM (D20) and the TP sensor.

PGM-FI System

Intake Air Temperature (IAT) Sensor

(DIL) indicates Diagnostic Trouble Code (DTC) 10: A problem in The IAT Sensor is a temperature dependant resistor (thermistor). The resistance of the thermistor decreases as the intake air temperature increases as shown below.

PGM-FI System

Ignition Output Signal

F22B5, F20B3 engine:

Intermittent failure system is OK at this time (test drive may be necessary).
Check for poor connections or loose wires between the distributor and the ECM.

NOTE: If the engine won't start, it may take 20 seconds of cranking to set the code.

PGM-FI System

Vehicle Speed Sensor (VSS)

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 17: A problem in the Vehicle Speed Sensor (VSS) circuit.
The VSS generates a pulsing signal when the front wheels turn.

Block rear wheels and set the parking brake. Jack up the front of the car and support with safety stands.

A WARNING Block

 rear wheels before jacking up front of car.

Turn the ignition switch OFF.

Connect the test harness between the ECM and connectors (see page 11-21).

slowly rotate left front wheel and measure voltage between B10 $(+)$ terminal and A26 (-) terminal.

NOTE: Transmission in N position (A/T).
 nal ECM.
(To page 11-53)
(From page 11-52)

Disconnect the " B " connector from the ECM only, not the main wire harness.

Turn the ignition switch ON.

Block the right front wheel and slowly rotate left front wheel and measure voltage between B10 $(+)$ terminal and A26 (-) terminal.

Does voltage pulse 0 V and NO approx. 5 V ?

YES
Substitute a known-good ECM and recheck. If symptom/indication goes

- Repair short in ORN wire between ECM (B10) and the VSS or cruise control unit
- Repair open in ORN wire between ECM (B10) and the VSS.
- If wire is OK, test the VSS. (see section 23) away, replace the original ECM.

PGM-FI System

Electrical Load Detector (ELD) [F22B1, F22B2 engine]

$\square=\frac{1}{1}-$
The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 20: A problem in the Electrical Load Detector (ELD) circuit.

Intermittent failure, system is OK at this time (test drive may be necessary).
Check for poor connections or loose wires at the ELD and the ECM.

PGM-FI System

Barometric Pressure (BARO) Sensor

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 13: A problem in

The BARO Sensor is built into the ECM.

- The MIL has been reported on.
- With the SCS short connector connected (see page 11-18). code 13 is indicated.

Intermittent failure, system is OK at this time (test drive may be necessary).
[F22B1, F22B2 engine (A/T)]: Check for poor connections or loose wires at the TCM and the ECM.

```
[F22B1, F22B2 engine (A/T)]
```


Disconnect the 22P connector from the Transmission Control Module (TCM).

Check for continuity between D5 terminal and body ground.

Repair short in BLU/WHT wire between ECM (D5) and the TCM.

A/T FI Signal A/B (A/T)

\square

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 30: A problem in the A/T FI Signal A circuit between Transmission Control Module (TCM) and ECM.
\square

The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 31: A problem in the A/T FI Signal B circuit between Transmission Control Module (TCM) and ECM.
\square

page 11-19).

Check for continuity between B3 and/or B4* terminal and body ground.

Intermittent failure, system is OK at this time.
Check for poor connections or loose wires at the TCM and the ECM.

NO Check for continuity on WHT/RED or GRN* wire between B3 or B4* and 22P connector of the TCM.

Repair open in WHT/ RED or GRN* wire between ECM (B3 or B4*) and the TCM.

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

Idle Control System

System Troubleshooting Guide

NOTE:

- Across each row in the chart, the sub-systems that could be sources of a symptom are ranked in the order they should be inspected, starting with (1). Find the symptom in the left column, read across to the most likely source, then refer to the page listed at the top of that column. If inspection shows the system is OK, try the next system (2), etc.
- If the idle speed is out of specification and the Malfunction Indicator Lamp (MIL) does not blink Diagnostic Trouble Code (DTC) 14, go to inspection described on page 11-60.

PAGE	SUB-SYSTEM	IDLE ADJUSTING SCREW	IDLE AIR CONTROL VALVE	STARTER SWITCH SIGNAL	AIR CONDITIONING SIGNAL	ALTERNATOR FR SIGNAL	AUTOMATIC TRANSAXLE GEAR POSITION SIGNAL	BRAKE SWITCH SIGNAL	POWER STEERING PRESSURE SWITCH SIGNAL	FAST IDLE THERMO VALVE	$\begin{aligned} & \text { HOSES } \\ & \text { AND } \\ & \text { CONNEC- } \\ & \text { TIONS } \end{aligned}$
SYMPTOM		11-73	11-61	11-63	11-64	11-66	11-68	11-70	11-71	11-72	-
DIFFICULT TO START ENGINE WHEN COLD				(2)						(1)	
WHEN COLD FAST IDLE OUT OF SPEC. (1,000-2,000 rpm $\left(\mathrm{min}^{-1}\right)$		(3)	(2)							(1)	
ROUGH IDLE			(2)								(1)
WHEN WARM ENGINE SPEED TOO HIGH		(3)	(1)						(3)	(2)	(3)
WHEN WARM ENGINE SPEED TOO LOW	Idle speed is below specified engine speed (no load)	(2)	(1)								
	Idle speed does not increase after initial start up.		(1)								
	On models with automatic transmission, the idle speed drops in gear		(2)				(1)				
	Idle speeds drops when air conditioner in ON		(2)		(1)						
	Idle speed drops when steering wheet is turning		(2)						(1)		
	Idle speed fluctuates with electrical load		(2)			(3)					(1)
FREQUENT STALLING	WHILE WARMING UP	(2)	(1)								
	AFTER WARMING UP	(1)	(2)								
FAILS EMISSION TEST											(1)

System Description

The idle speed of the engine is controlled by the Idle Air Control (IAC) Valve.
The valve changes the amount of air bypassing into the intake manifold in response to electric current controlled by the ECM. When the IAC Valve is activated, the valve opens to maintain the proper idle speed.

(cont'd)

Idle Control System

System Description (cont'd)

1. After the engine starts, the IAC valve opens for a certain time. The amount of air is increased to raise the idle speed about $150-300 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
2. When the coolant temperature is low, the IAC valve is opened to obtain the proper fast idle speed. The amount of bypassed air is thus controlled in relation to the engine coolant temperature.

IDLE SPEED rpm $\left(\mathbf{m i n}^{-1}\right)$

1. When the idle speed is out of specification and the Malfunction Indicator Lamp (MIL) does not blink Diagnostic Trouble Code (DTC) 14, check the following items:

- Adjust the idle speed (see page 11-73)
- Starter switch signal (see page 11-63)
- Air conditioning signal (see page 11-64)
- ALT FR signal (see page 11-66)
- A/T gear position signal (see page 11-68)
- Brake switch signal (see page 11-70)
- PSP switch signal (see page 11-71)
- Fast idle thermo valve (see page 11-72)
- Hoses and connections
- IAC valve and its mounting O-rings

2. If the above items are normal, substitute a known-good IAC valve and readjust the idle speed (see page 11-73).

- If the idle speed still cannot be adjusted to specification (and the MIL does not blink code 14) after IAC valve replacement, substitute a known-good ECM and recheck. If symptom goes away, replace the original ECM.

Idle Air Control (IAC) Valve

- The Malfunction Indicator Lamp (MIL) indicates Diagnostic Trouble Code (DTC) 14: A problem in

The IAC Valve changes the amount of air bypassing the throttle body in response to a current signal from the ECM in order to maintain the proper idle speed.

- The MIL has been reported on.
- With the SCS short connector
connected (see page 11-18), code 14 is indicated.

Disconnect the 2P connector from the IAC valve.
 valve and retest.

Idle Control System

Idle Air Control (IAC) Valve (cont'd)

JUMPER WIRE			
A9 1+) A23 (-)			
0000000000000	00000000	\%\%\%\%\%	00000000000
0000000000000	00000000	\%60\% 0.	00000000000

Starter Switch Signal

This signals the ECM when the engine is cranking.

Idle Control System

Air Conditioning Signal

This signals the ECM when there is a demand for cooling from the air conditioning system.

Idle Control System

Alternator (ALT) FR Signal

This signals the ECM when the Alternator (ALT) is charging.

Repair open in WHT/RED wire between ECM (D9) and alternator.

Idle Control System

Automatic Transaxle (A/T) Gear Position Signal (A/T only)

This signals the ECM when the transmission is in N or position.

Measure voltage between B7(+)
terminal and A26 (-) terminal.
Substitute a known-good ECM and recheck. If prescribed voltage is now available, replace the original ECM.

(To page 11-69)

Idle Control System

Brake Switch Signal [F22B1, F22B2 engine]

This signals the ECM when the brake pedal is depressed.

Power Steering Pressure (PSP) Switch Signal

This signals the ECM when the power steering load is high.

Idle Control System

Fast Idle Thermo Valve

Description

To prevent erratic running when the engine is warming up, it is necessary to raise the idle speed. The fast idle thermo valve is controlled by a thermowax plunger. When the engine is cold, the engine coolant surrounding the thermowax contracts the plunger, allowing additional air to be bypassed into the intake manifold so that the engine idles faster. When the engine reaches operating temperature, the valve closes, reducing the amount of air bypassing into the intake manifold.

Inspection

NOTE: The fast idle thermo valve is factory adjusted; it should not be disassembled.

1. Remove the intake air duct from the throttle body.
2. Start the engine.
3. Put your finger over the lower port in throttle body and make sure that there is air flow with the engine cold lengine coolant temperature below $86^{\circ} \mathrm{F}$, $30^{\circ} \mathrm{C}$).

- If not, replace the fast idle thermo valve and retest.

4. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
5. Check that valve is completely closed. If the valve is leaking, the idle speed will drop when you cover the lower port. Check engine coolant level and for air in the engine cooling system (see section 10). If OK, replace the fast idle thermo valve and recheck.

Inspection/Adjustment

NOTE: Before the idle speed setting, check the following items:

- The MIL has not been reported on.
- Ignition timing
- Spark plugs
- Air cleaner
- PCV system

1. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
2. Connect a tachometer.

3. Disconnect the 2 P connector from the Idle Air Control (IAC) valve.

4. Start the engine with the accelerator pedal slightly depressed. Stabilize the engine speed at 1,000 rpm, then slowly release the pedal until the engine idles.
5. Check idling in no-load conditions: headlights, blower fan, rear defogger, radiator fan, and air conditioner are not operating.

Idle speed should be:
F22B1, F22B2 engine:

M / T	$550 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$550 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
	(in N] or P] position)

F22B5, F20B3 engine:

M / T	$620 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$620 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$

Adjust the idle speed, if necessary, by turning the idle adjusting screw.

NOTE: After adjusting the idle speed in this step, check the ignition timing (see section 23).
If it is out of spec, go back to step 4.

6. Turn the ignition switch OFF.
7. Reconnect the $2 P$ connector on the IAC valve, then remove the BACK UP (7.5 A) fuse in the under-hood fuse/relay box for 10 seconds to reset the ECM.

Idle Control System

Idle Speed Setting (cont'd)

8. Restart and idle the engine with no-load conditions for one minute, then check the idle speed.

Idle speed should be;
F22B1, F22B2 engine

M / T	$700 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$700 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ (in N or P position)

F22B5, F20B3 engine

M / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ (in N or P position)

9. Idle the engine for one minute with headlights (Low) ON and check the idle speed.

Idle speed should be;

M / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ (in N or P position)

10. Turn the headlights off.

Idle the engine for one minute with heater fan switch at HI and air conditioner on, then check the idle speed.

Idle speed should be;

M / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
A / T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$
	(in N or P position)

NOTE: If the idle speed is not within specification, see System Troubleshooting Guide on page 11-58.

Fuel Supply System
System Troubleshooting Guide

NOTE: Across each row in the chart, the sub-systems that could be sources of a symptom are ranked in the order they should be inspected starting with (1). Find the symptom in the left column, read across to the most likely source, then refer to the page listed at the top of that column. If inspection shows the system is OK, try the next most likely system (2), etc.

PAGE	SUB-SYSTEM	FUEL LINES	FUEL INJECTOR	FIA CONTROL SYSTEM [F22B1 engine]	INJECTOR RESISTOR	$\begin{gathered} \text { FUEL } \\ \text { PRESSURE } \\ \text { REGULATOR } \end{gathered}$	FUEL FILTER	FUEL PUMP	PGM-FI MAIN RELAY	CONTAM- INATED FUEL
SYMPTOM		11-76	11-80, 83	11-86	11-89	11-90	11-92	11-93	11-95	-
ENGINE WON'T START					(3)		(3)	(1)	(2)	
DIFFICULT TO START ENGINE WHEN COLD OR HOT			,				(1)	(2)		
ROUGH IDLE			(1)		(2)					(3)
POOR PERFORMANCE	MISFIRE OR ROUGH RUNNING		(1)		(2)	(3)				(3)
	FAILS EMISSION TEST		(2)	(3)	(3)	(1)				
	LOSS OF POWER		(3)		(3)		(2)	(1)		
FREQUENT STALLING	WHILE WARMING UP					(1)				
	AFTER WARMING UP					(1)				

Fuel Supply System

Fuel Lines

NOTE: Check all fuel system lines and hoses for damage, leaks or deterioration, and replace if necessary.

NOTE: Check all hose clamps and retighten if necessary.

B

C

Fuel Supply System

System Description

The fuel supply system consists of a fuel tank, in-tank high presssure fuel pump, PGM-FI main relay, fuel filter, fuel pressure regulator, fuel injectors, injector resistor and Fuel Injection Air (FIA) Control System [F22B1 engine] and fuel delivery and return lines. This system delivers pressure-regulatored fuel to the fuel injectors and cuts the fuel delivery when the engine is not running.

Fuel Pressure

Relieving

Before disconnecting fuel pipes or hoses, release pressure from the system by loosening the 6 mm service bolt on top of the fuel rail.

a warning

- Do not smoke while working on the fuel system. Keep open flames or sparks away from your work area.
- Be sure to relieve fuel pressure while the ignition switch is off.

1. Disconnect the battery negative cable from the battery negative terminal.
2. Remove the fuel fill cap.
3. Use a box end wrench on the 6 mm service bolt at the fuel rail, while holding the special banjo bolt with another wrench.
4. Place a rag or shop towel over the 6 mm service bolt.
5. Slowly loosen the 6 mm service bolt one complete turn.
$12 \mathrm{~N} \cdot \mathrm{~m}$
$9 \mathrm{lbf} \cdot \mathrm{ft})$

SERVICE BOLT
$11.2 \mathrm{kgf} \cdot \mathrm{m}$,

NOTE:

- A fuel pressure gauge can be attached at the 6 mm service bolt hole.
- Always replace the washer between the service bolt and the special banjo bolt whenever the service bolt is loosened.
- Replace all washers whenever the bolts are removed.

Inspection

1. Relieve fuel pressure (see page 11-78).
2. Remove the service bolt on the fuel rail while holding the banjo bolt with another wrench. Attach the special tool.
3. Start the engine. * Measure the fuel pressure with the engine idling and the vacuum hose of the fuel pressure regulator disconnected from the fuel pressure regulator and pinched.

Pressure should be;

$265-314 \mathrm{kPa}\left(2.7-3.2 \mathrm{kgf} / \mathrm{cm}^{2}, 38-46 \mathrm{psi}\right)$
4. Reconnect vacuum hose to the fuel pressure regulator.

Pressure should be;

206-255 kPa (2.1-2.6 kgf/cm ${ }^{2}$, 30-37 psi)

*: If the engine will not start, turn the ignition switch on, wait for two seconds, turn it off, then back on again and read the fuel pressure.

- If the fuel pressure is not as specified, first check the fuel pump (see page 11-94). If the fuel pump is OK, check the following:
- If the fuel pressure is higher than specified, inspect for:
- Pinched or clogged fuel return hose or line.
- Faulty fuel pressure regulator (see page 11-90).
- If the fuel pressure is lower than specified, inspect for:
- Clogged fuel filter.
- Faulty fuel pressure regulator (see page 11-90).
- Leakage in the fuel line.

Fuel Supply System

Fuel Injectors

[F22B1, F22B2 engine]
Troubleshooting
(DTC) 16: A problem in

The Fuel Injectors are a solenoid-actuated constant-stroke pintle type consisting of a solenoid, plunger needle valve and housing. When current is applied to the solenoid coil, the valve lifts up and pressurized fuel is injected. Because the needle valve lift and the fuel pressure are constant, the injection quantity is determined by the length of time that the valve is open (i.e., the duration the current is supplied to the solenoid coill. The Fuel Injector is sealed by an O-ring and seal ring at the top and bottom. These seals also reduce operating noise.

To page 11-81)

Start the engine and listen at each fuel injector for a clicking sound.

Turn the ignition switch OFF.

Disconnect the 2P connector from the fuel injector that does not click.

Measure resistance between the 2 terminals of fuel injector.

Fuel Supply System

Fuel Injectors (cont'd)

[F22B5, F20B3 engine]

Testing

NOTE: Check the following items before testing: idle speed, ignition timing and idle CO\%

If the engine runs:

1. With the engine idling, disconnect each fuel injector connector individually and inspect the change in the idle speed.

- If the idle speed drop is almost the same for each cylinder, the fuel injectors are normal.
- If the idle speed or quality remains the same when you disconnect a particular fuel injector, replace the fuel injector and retest.

2. Check the clicking sound of each fuel injector by means of a stethoscope when the engine is idling.

- If any fuel injector fails to make the typical clicking sound, check the sound again after replacing the fuel injector.
- If clicking sound is still absent, check the following.
- Whether there is any short-circuiting, wire breakage or poor connection in the YEL/BLK wire between the PGM-FI main relay and the injector resistor.
- Whether the injector resistor is open or corroded (page 11-89).
- Whether there is any short-circuiting, wire breakage or poor connection in the RED/BLK wire between the injector resister and the fuel injector.
- Whether there is any short-circuiting, wire breakage or poor connection in the wire between the fuel injector and the ECM.

If all is OK, check the ECM (see page 11-26) and PGM-FI main relay (see page 11-95).

If the engine cannot be started:

1. Remove the connector of the fuel injector, and measure the resistance between the 2 terminals of the fuel injector.

Resistance should be: $1.5-2.5 \Omega$

- If the resistance is not as specified, replace the fuel injector.
- If the resistance is as specified, check the pressure (see page 11-79).
- If the fuel pressure is as specified, check the following:
- Whether there is any short-circuiting, wire breakage or poor connection in the YEL/BLK wire between the PGM-FI main relay and the injector resistor.
- Whether the injector resistor is open or corroded (page 11-89).
- Whether there is any short-circuiting, wire breakage, or poor connection in the RED/BLK wire between the injector resistor and the fuel injector.
- Whether there is any short-circuiting, wire breakage or poor connection in the wire betwen the fuel injector and the ECM.

If all is OK, check the ECM (see page 11-26).
(cont'd)

Fuel Supply System

Fuel Injectors (cont'd)

Replacement

A WARNING Do not smoke when working on the fuel system. Keep open flames away from your work area.

1. Relieve the fuel pressure (see page 11-78).
2. Disconnect the connectors from the fuel injectors and the FIA control solenoid valve [F22B1 engine].
3. Disconnect the vacuum hoses and fuel return hose from the fuel pressure regulator.

NOTE: Place a rag or shop towel over the hoses before disconnecting them.
4. Disconnect the fuel hose from the fuel rail.
5. Loosen the retainer nuts on the fuel rail and disconnect the PCV valve.
6. Disconnect the fuel rail.
7. Remove the fuel injectors from the intake manifold.

8. Slide new cushion rings onto the fuel injectors.
9. Coat new O-rings with clean engine oil, and put them on the fuel injectors.
10. Insert the fuel injectors into the fuel rail first.
11. Coat new seal rings with clean engine oil, and press them into the intake manifold.
12. Install the fuel injectors and fuel rail assembly in the intake manifold.

CAUTION: To prevent damage to the O-rings, install the fuel injectors in the fuel rail first, then install them in the intake manifold.

13. Install and tighten the retainer nuts.
14. Connect the fuel hose to the fuel rail with new washers.
15. Connect the vacuum hoses and fuel return hose to the fuel pressure regulator.
16. Install the connectors on the fuel injectors and the FIA control solenoid valve [F22B1 engine].
17. Replace the 6 mm service bolt washer and tighten the bolt.
18. Connect the PCV valve.
19. Turn the ignition switch ON, but do not operate the starter. After the fuel pump runs for approximately two seconds, the fuel pressure in the fuel line rises. Repeat this two or three times, then check whether there is any fuel leakage.

Fuel Supply System

Fuel Injection Air (FIA) Control System [F22B1 engine]

Description
When the engine speed is between $1,300 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and $4,500 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$, the ECM supplies ground to the FIA control solenoid valve sending intake air to the fuel injectors.

From FIA
CONTROL
SOLENOID VALVE

Troubleshooting

(To page 11-88)
(cont'd)

Fuel Supply System

Fuel Injection Air (FIA) Control System (cont'd)

Injector Resistor

Description

The injector resistor lowers the current supplied to the fuel injectors to prevent damage to the fuel injector coils. This allows a faster response time of the fuel injectors.

Testing

1. Disconnect the injector resistor connector.
2. Check for resistance between each of the injector resistor terminals (6,5,3 and 2) and the power terminal (1).

Resistance should be: 5-7 Ω

- Replace the injector resistor if any of the resistances are outside of the specification.

Fuel Supply System

Fuel Pressure Regulator

Description

The fuel pressure regulator maintains a constant fuel pressure to the fuel injectors. When the difference between the fuel pressure and manifold pressure exceeds $3.0 \mathrm{kgf} / \mathrm{cm}^{2}(294 \mathrm{kPa}, 43 \mathrm{psi})$, the diaphragm is pushed upward, and the excess fuel is fed back into the fuel tank through the return line.

CLOSE:

OPEN:

Testing

A WARNing Do not smoke during the test. Keep open flames away from your work area.

1. Attach a fuel pressure gauge to the service port of the fuel filter (see page 11-79).

Pressure should be;

$265-314 \mathrm{kPa}\left(2.7-3.2 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 38-46 psi) (with the fuel pressure regulator vacuum hose disconnected and pinched)

2. Reconnect the vacuum hose to the fuel pressure regulator.
3. Check that the fuel pressure rises when the vacuum hose from the fuel pressure regulator is disconnected again.

- If the fuel pressure did not rise, replace the fuel pressure regulator.

Replacement

A WARNING Do not smoke while working on fuel system. Keep open flame away from your work area.

1. Place a shop towel under the fuel pressure regulator, then relieve fuel pressure (see page 11-78).
2. Disconnect the vacuum hose and fuel return hose.
3. Remove the two 6 mm retainer bolts.

NOTE:

- Replace the O-ring.
- When assembling the fuel pressure regulator, apply clean engine oil to the O-ring and assemble it into its proper position, taking care not to damage the O-ring.

Fuel Supply System

Fuel Filter

Replacement

a WARNING

- Do not smoke while working on fuel system. Keep open flame away from your work area.
- While replacing the fuel filter, be careful to keep a safe distance between battery terminals and any tools.

The fuel filter should be replaced every 2 years or 40,000 km (24,000 miles), whichever comes first, or whenever the fuel pressure drops below the specified value [265-314 kPa, $2.7-3.2 \mathrm{kgf} / \mathrm{cm}^{2}, 38-46 \mathrm{psi}$ with the fuel pressure regulator vacuum hose disconnected and pinched] after making sure that the fuel pump and the fuel pressure regulator are OK.

1. Disconnect the battery negative cable from the battery negative terminal.
2. Place a shop towel under and around the fuel filter.
3. Relieve fuel pressure (see page 11-78).
4. Remove the banjo bolt, and the fuel feed pipe from the fuel filter, then support with the other wrench, as shown.
5. Remove the fuel filter clamp and fuel filter.
6. When assembling, use new washers, as shown.

NOTE: Clean the flared joint of high pressure hoses thoroughly before reconnecting them.

Fuel Pump

Description

Because of its compact impeller design, the fuel pump is installed inside the fuel tank, thereby saving space and simplifying the fuel line system.

FUEL PUMP CROSS SECTION (Side view)

FUEL PUMP ASSEMBLY CROSS SECTION (Top view)

The fuel pump consists of a DC motor, a circumference flow pump, a relief valve for protecting the fuel line systems, a check valve for retaining residual pressure, an inlet port, and a discharge port. The fuel pump assembly consists of the impelier (driven by the motor), the fuel pump casing (which forms the pumping chamber), and the fuel pump cover.

OPERATION

(1) When the engine is started, the PGM-FI main relay actuates the fuel pump, and the motor turns together with the impeller.
Differential pressure is generated by the numerous grooves around the impeller.
(2) Fuel entering the inlet port flows inside the motor from the pumping chamber and is forced through the discharge port via the check valve.
If fuel flow is obstructed at the discharge side of the fuel line, the relief valve will open to bypass the fuel to the inlet port and prevent excessive fuel pressure.
(3) When the engine stops, the fuel pump stops automatically. However, a check valve closes by gravity to retain the residual pressure in the line, helping the engine to restart more easily.
(cont'd)

Fuel Supply System

Fuel Pump (cont'd)

Testing

A WARNING
Do not smoke during the test. Keep open flame away from your work area.

If you suspect a problem with the fuel pump, check that the fuel pump actually runs; when it is ON, you will hear some noise if you hold your ear to the fuel fill port with the fuel fill cap removed. The fuel pump should run for two seconds, when ignition switch is first turned on. If the fuel pump does not make noise, check as follows:

1. Raise the front section of the spare tire lid.
2. Disconnect the 3 P connector.

CAUTION: Be sure to turn the ignition switch OFF before disconnecting the wires.
3. Connect the RED/WHT (5) wire and BLK/YEL (4) wire with a jumper wire at the PGM-FI main relay connector.

4. Check that battery voltage is available at the fuel pump connector when the ignition switch is turned ON (positive probe to the BLK/YEL wire, negative probe to the body ground).

- If battery voltage is available, replace the fuel pump.
- If there is no voltage, check the fuel pump ground and wire harness (see page 11-96).

Replacement

A Warning Do not smoke while working on fuel system. Keep open flames away from your work area.

1. Remove the fuel tank (see page 11-98).
2. Disconnect the $2 P$ connector from the fuel pump.
3. Remove the fuel pump mounting nuts.
4. Remove the fuel pump from the fuel tank.
5. Install a new washer on the banjo bolt, then install parts in the reverse order of removal.

PGM-FI Main Relay

Description

The PGM-FI main relay actually contains two individual relays.
This relay is located at the left side of the cowl.
One relay is energized whenever the ignition is on which supplies the battery voltage to the ECM, power to the fuel injectors, and power for the second relay.
The second relay is energized for two seconds when the ignition is switched on, and when the engine is running, to supply power to the fuel pump.

PGM-FI
MAIN RELAY

FUEL PUMP

Relay Testing

NOTE: If the car starts and continues to run, the PGMFI main relay is OK.

1. Remove the PGM-FI main relay.
2. Attach the battery positive terminal to the No. 2 terminal and the battery negative terminal to the No. 1 terminal of the PGM-FI main relay. Then check for continuity between the No. 5 terminal and No. 4 terminal of the PGM-FI main relay.

- If there is continuity, go on to step 3.
- If there is no continuity, replace the PGM-FI main relay and retest.

To IGN. 1
No. 5 No. 6

3. Attach the battery positive terminal to the No. 5 terminal and the battery negative terminal to the No. 3 terminal of the PGM-FI main relay. Then check that there is continuity between the No. 7 terminal and No. 6 terminal of the PGM-FI main relay.

- If there is continuity, go on to step 4.
- If there is no continuity, replace the PGM-FI main relay and retest.

4. Attach the battery positive terminal to the No. 6 terminal and the battery negative terminal to the No. 1 terminal of the PGM-FI main relay. Then check that there is continuity between the No. 5 terminal and No. 4 terminal of the PGM-FI main relay.

- If there is continuity, the PGM-FI main relay is OK.
- If there is no continuity, replace the PGM-FI main relay and retest.
(cont'd)

Fuel Supply System

PGM-FI Main Relay (cont'd)

Troubleshooting

NOTE:

- M/T: Clutch pedal must be depressed.
- A / T : Transmission in N or P position.
Measure the voltage between BLU/RED terminal (2) and body ground.

YES
YES

- Replace the No. 9 STARTER SIGNAL (7.5 A) fuse in the under-dash fuse/relay box.
- Repair open or short in the BLU/RED wire between the PGM-FI main relay and the No. 9 STARTER SIGNAL (7.5 A) fuse, ECM (B9).
- Replace the No. 2 FUEL PUMP (15 A) fuse in the under-dash fuse/relay box.
- Repair open or short in the RED/WHT wire between the PGM-FI main relay and the No. 2 FUEL PUMP (15 A) fuse.

[^5](From page 11-96)

Turn the ignition switch off.

Connect the test harness between the ECM and connectors.
Disconnect " A " connector from the ECM only, not the main wire harness (see page 11-21).

Check for continuity between GRN/BLK terminal (1) and A7 terminal.

- Repair open in the YEL/BLK wire (6) between the ECM (A25, B1) and PGM-FI main relay.
- Replace the PGM-FI main relay.

Turn the ignition switch OFF.

Measure the voltage between $A 7$ $(+)$ terminal and A23(-) terminal when the ignition switch is
 first turned ON for two seconds.

Substitute a known-good ECM and recheck. If pescribed voltage is now available, replace the original ECM.

Check the PGM-FI main relay (see page 11-95).

Fuel Supply System

Fuel Tank

Replacement

A WARNING Do not smoke while working on fuel system. Keep open flame away from your work area.

1. Relieve the fuel pressure (see page 11-78).
2. Jack up the car and support with jackstands.
3. Remove the drain bolt, and drain the fuel into an approved container.
4. Remove the fuel pipe cover and fuel hose protector.
5. Disconnect the hoses.

CAUTION:

- When disconnecting the hoses, slide back the clamps, then twist hoses as you pull, to avoid damaging them.
- Clean the flared joint of high pressure hoses thoroughly before reconnecting them.

6. Place a jack, or other support, under the tank.
7. Remove the strap nuts and let the straps fall free.
8. Disconnect the 2 P and 3 P connectors.
9. Remove the fuel tank.

NOTE: The tank may stick on the undercoat applied to its mount. To remove, carefully pry it off the mount.
10. Install a new washer on the drain bolt, then install parts in the reverse order of removal.

Intake Air System

System Troubleshooting Guide

NOTE: Across each row in the chart, the sub-systems that could be sources of a symtom are ranked in the order they should be inspected starting with (1). Find the symptom in the left column, read across to the most likely source, then refer to the page listed at the top of that column. If inspection shows the system is OK, try the next system (2), etc.
[F22B2, F20B3 engine]

PAGE	SUB-SYSTEM	THROTTLE CABLE	THROTTLE BODY	AIR CLEANER AND INTAKE AIR DUCT
SYMPTOM		$11-102$	$11-103$	$11-101$
WHEN COLD FAST IDLE OUT OF SPEC		(1)		
WHEN WARM IDLE SPEED TOO HIGH	(2)	(1)		
LOSS OF POWER				

[F22B1, F22B5 engine]

PAGE	SUB-SYSTEM	THROTTLE CABLE	THROTTLE BODY	INTAKE AIR RESONATOR (IAR) CONTROL	AIR CLEANER AND INTAKE AIR DUCT
SYMPTOM		$11-102$	$11-103$	$11-106$	$11-101$
WHEN COLD FAST IDLE OUT OF SPEC		(1)			
WHEN WARM IDLE SPEED TOO HIGH	(2)	(1)			
LOSS OF POWER					

Intake Air System

System Description

The system supplies air for all engine needs. It consists of the intake air pipe, Air Cleaner (ACL), intake air duct, Throttle Body (TB), Idle Air Control (IAC) Valve, fast idle thermo valve, Intake Air Resonator (IAR) Control System [F22B1, F22B5 engine] and intake manifold.
A resonator in the intake air pipe provides additional silencing as air is drawn into the system.

Air Cleaner (ACL)

ACL Element Replacement

NOTE: Loosen the battery set bolt and move the battery set plate before remove the ACL housing cover.

ACL ELEMENT
Replace the air cleaner element every $40,000 \mathrm{~km}$ (24,000 miles) or 24 months.

Intake Air System

Throttle Cable

Inspection/Adjustment

1. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
2. Check that the throttle cable operates smoothly with no binding or sticking. Repair as necessary.
3. Remove the actuator cable from the throttle linkage.
4. Check cable free play at the throttle linkage. Cable deflection should be $10-12 \mathrm{~mm}(0.39-0.47 \mathrm{in}$.)

5. If deflection is not within specs, loosen the locknut, and turn the adjusting nut until the deflection is as specifled, then retighten the locknut.
6. With the cable properly adjusted, check the throttle valve to be sure it opens fully when you push the accelerator pedal to the floor. Also check the throttle valve to be sure it returns to the idle position whenever you release the accelerator pedal.
7. Install the actuator cable to the throttle linkage.

Installation

1. Fully open the throttle valve, then install the throttle cable in the throttle linkage and install the cable housing in the cable bracket.
2. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M/T in neutral) until the radiator fan comes on, then let it idle.

3. Hold the cable sheath, removing all slack from the cable.
4. Turn the adjusting nut until it is $3 \mathrm{~mm}(0.12 \mathrm{in}$.) away from the cable bracket.
5. Tighten the locknut. The cable deflection should now be $10-12 \mathrm{~mm}(0.39-0.47 \mathrm{in}$.). If not, see Inspection/Adjustment.

Throttle Body

Description

The throttle body is of the single-barrel side-draft type. The lower portion of the throttle valve is heated by engine coolant from the cylinder head. The idle adjusting screw which increases/decreases bypass air and the Evaporative Emission (EVAP) Control Canister port are located on the top of the throttle body.

Inspection

CAUTION: Do not adjust the throttle stop screw. It is preset at the factory.

1. Start the engine. Hold the engine at 3,000 rpm (min^{-1}) with no load (A/T in N or P position, M/T in neutral) until the radiator fan comes on, then let it idle.
2. Disconnect the vacuum hose (to the EVAP control canister) from the top of the throttle body; connect a vacuum gauge to the throttle body.

3. Allow the engine to idle and check that the gauge indicates no vacuum.

- If there is vacuum, check the throttle cable (see page 11-102).

4. Check that vacuum is indicated on the gauge when the throttle is opened slightly from idle.

- If the gauge indicates no vacuum, check the throttle body port. If the throttle body port is clogged, clean it with carburetor cleaner.

5. Stop the engine, and check that the throttle cable operates smoothly without binding or sticking.

- If there are any abnormalities in the above steps, check for:
- Excessive wear or play in the throttle valve shaft.
- Sticky or binding throttle lever at full close position.
- Clearance between throttle stop screw and throttle lever at full close position.

Intake Air System

Throttle Body (cont'd)

Replace the throttle body if there is excessive play in the throttle valve shaft or if the shaft is binding or sticking.

Disassembly

CAUTION:

- The throttle stop screw is non-adjustable.
- After reassembly, adjust the throttle cable (page 11-102), and A/T throttle control cable (section 14) for cars with A/T.
- The TP sensor is not removable.

Intake Air Resonator (IAR) Control System

Intake Air Resonator (IAR) Control System [F22B1, F22B5 engine]

When the engine speed is below 2,900 rpm (min^{-1}) [F22B5 engine: $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$], IAR control solenoid valve is deactivated by the ECM, and intake air does not flow from the IAR. At engine speeds between $2,900 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and $3,700 \mathrm{rpm}\left(\mathrm{min}^{-1}\right.$) [F22B5 engine: $3,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and $3,800 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$] (mid-range), the solenoid valve is activated by a signal from the ECM, and intake air flows from the IAR.

Troubleshooting

VACUUM PUMP/
 the $I A R$ control solenoid valve.

Check for continuity to ground on ORN/GRN wire.

Substitute a known-good ECM and recheck. If symptom goes away, replace the original ECM.

Intake Air System

Intake Air Resonator (IAR) Control System (cont'd)

Intake Air System

Emission Control System

System Troubleshooting Guide

NOTE: Across each row in the chart, the sub-systems that could be sources of a symptom are raked in the order they should be inspected starting with (1). Find the symptom in the left column, read across to the most likely source, then refer to the page listed at the top of the column. If inspection shows the system is OK, try the next most likely system (2), etc.

PAGE	SUB-SYSTEM	THREE WAY CATALYTIC CONVERTER	EXHAUST GAS RECIRCULATION SYSTEM	POSITIVE CRANKCASE VENTILATION SYSTEM	EVAPORATIVE EMISSION CONTROLS
SYMPTOM		11-113	11-114	11-120	11-121
ROUGH IDLE			(1)	(2)	
FREQUENT STALLING	AFTER WARMING UP		(1)		
POOR PERFORMANCE	FAILS EMISSION TEST	(1)			(2)
	LOSS OF POWER	(1)			

Emission Control System

System Description

The emission control system includes a Three Way Catalytic Converter (TWC), Exhaust Gas Recirculation (EGR) system, Positive Crankcase Ventilation (PCV) system and Evaporative Emission (EVAP) Control system.

Tailpipe Emission

Inspection

A warning Do not smoke during this procedure. Keep any open flame away from your work area.

1. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
2. Connect a tachometer.
3. Check and adjust the idle speed, if necessary (see page 11-73).
4. Warm up and calibrate the CO meter according to the meter manufacturer's instructions.
5. Check idle CO with the headlights, heater blower, rear window defogger, cooling fan, and air conditioner off.

Specified CO\%: 0.1\% maximum

- If unable to obtain this reading:

See ECM troubleshooting guide (page 11-16).

Three Way Catalytic Converter (TWC)

Description

The Three Way Catalytic Converter (TWC) is used to convert hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) in the exhaust gas, to carbon dioxide $\left(\mathrm{CO}_{2}\right)$, dinitrogen (N_{2}) and water vapor.

Inspection

If excessive exhaust system back-pressure is suspected, remove the TWC from the car and make a visual check for plugging, melting or cracking of the catalyst. Replace the TWC if any of the visible area is damaged or plugged.

Emission Control System

Exhaust Gas Recirculation (EGR) System

Troubleshooting

(MIL) indicates Diagnostic Trouble Code (DTC) 12: A problem in The EGR system is designed to reduce oxides of nitrogen emissions (NOx) by recirculating exhaust gas through the EGR valve and the intake manifold into the combustion chambers. It is composed of the EGR valve, EGR vacuum control valve, EGR control solenoid valve, ECM and various sensors.
The ECM contains memories for ideal EGR valve lifts for varying operating conditions. The EGR valve lift sensor detects the amount of EGR valve lift and sends the information to the ECM. The ECM then compares it with the ideal EGR valve lift which is determined by signals sent from the other sensors. If there is any difference between the two, the ECM cuts current to the EGR control solenoid valve to reduce vacuum applied to the EGR valve.

Except F22B2 engine:

- The MIL has been reported on.
- With the SCS short connector connected (see page 11-18). code 12 is indicated.

Road test necessary: Start the engine. Hold the engine at 3,000 rpm (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
Drive the car on the road for approx. 10 minutes. Try to keep the engine speed in the $1,700-$ $2,500 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$

Connect the SCS short connector to the service check connector (see page 11-18).
Do the ECM Reset Procedure (see page 11-19).

Emission Control System

Exhaust Gas Recirculation (EGR) System

Emission Control System

Exhaust Gas Recirculation (EGR) System

Substitute a known-good ECM and recheck. If symptom/indication goes away, replace the original ECM.

Emission Control System

Positive Crankcase Ventilation (PCV) System

Description

The Positive Crankcase Ventilation (PCV) system is designed to prevent blow-by gas from escaping to the atmosphere. The PCV valve contains a spring-loaded plunger. When the engine starts, the plunger in the PCV valve is lifted in proportion to intake manifold vacuum and the blow-by gas is drawn directly into the intake manifold.

Inspection

1. Check the PCV hoses and connections for leaks and clogging.

2. At idle, make sure there is a clicking sound from the PCV valve when the hose between PCV valve and intake manifold in lightly pinched with your fingers or pliers.

Gently pinch here

Evaporative Emission (EVAP) Controls

Description

The evaporative emission controls are designed to minimize the amount of fuel vapor escaping to the atmosphere. The system consists of the following components:
A. Evaporative Emission (EVAP) Control Canister

An EVAP control canister is used for the temporary storage of fuel vapor until the fuel vapor can be purged from the EVAP control canister into the engine and burned.
B. Vapor Purge Control System

EVAP control canister purging is accomplished by drawing fresh air through the EVAP control canister and into a port on the throttle body. The purging vacuum is controlled by the EVAP purge control diaphragm valve [F22B5, F20B3 enginel and the EVAP purge control solenoid valve.

C. Fuel Tank Vapor Control System

When fuel vapor pressure in the fuel tank is higher than the set value of the EVAP two way valve, the valve opens and regulates the flow of fuel vapor to the EVAP control canister.

F22B1, F22B2 engine:

(cont'd)

Emission Control System

Evaporative Emission (EVAP) Controls (cont'd)

F22B5, F20B3 engine:

F22B1, F22B2 engine:

Troubleshooting

heck for vacuum at vacuum hose after starting the engine.

Inspect for a short in RED/YEL wire between ECM (A20) and the connector.
If wire is OK, substitute a knowngood ECM and recheck. If symptom goes away, replace the original ECM.

Disconnect the 2P connector from the EVAP purge control solenoid valve.

Measure voltage between YEL/
BLK $(+)$ terminal and RED $/$ YEL $(-)$ terminal.
(cont'd)
(To page 11-124)

Disconnect the 2P connector from the EVAP purge control solenoid valve.

Snap the engine to $3,000 \mathrm{rpm}$ $\left(\right.$ min $^{-1}$).

(To page 11-124)

Emission Control System

Evaporative Emission (EVAP) Controls (cont'd)

F22B5, F20B3 engine:

Troubleshooting

 YES
(To page 11-126)

(cont'd)

Emission Control System

Evaporative Emission (EVAP) Controls (cont'd)

Inspect RED wire for an open to body ground between ECM (A20) and the connector.
If wire is OK, substitute a knowngood ECM and recheck, if symptom goes away, replace the original ECM.

Disconnect the 2P connector from the EVAP purge control solenoid valve.

Inspect for a short in wire between ECM (A20) and the connector.
If wire is OK, substitute a knowngood ECM and recheck. If symptom goes away, replace the original ECM.

Evaporative Emission Two Way Valve (EVAP Two Way Valve) Testing

1. Remove the filler cap.
2. Remove vapor line from the fuel tank and connect to T-fitting from vacuum gauge and vacuum pump as shown.

3. Apply vacuum slowly and continuously while watching the gauge.

Vacuum should stabilize momentarily at 5 to 15 mmHg (0.2 to 0.6 in Hg).

- If vacuum stabilized (EVAP two way valve opens) below 5 mmHg ($0.2 \mathrm{in} . \mathrm{Hg}$) or above 15 mmHg ($0.6 \mathrm{in} . \mathrm{Hg}$), install new EVAP two way valve and retest.

4. Move vacuum pump hose from vacuum to pressure fitting, and move vacuum gauge hose from vacuum to pressure side as shown.

5. Slowly pressurize the vapor line while watching the gauge.

Pressure should stabilize at 10 to 35 mmHg (0.4 to $1.4 \mathrm{in} . \mathrm{Hg}$).

- If pressure momentarily stabilizes (EVAP two way valve opens) at 10 to 35 mmHg (0.4 to 1.4 in . Hg), the EVAP two way valve is OK.
- If pressure stabilizes below $10 \mathrm{mmHg}(0.4 \mathrm{in} . \mathrm{Hg})$ or above $35 \mathrm{mmHg}(1.4 \mathrm{in} . \mathrm{Hg}$), install a new EVAP two way valve and retest.

Transaxle

Clutch 12-1
Manual Transmission 13-1
Automatic Transmission 14-1
Differential
Manual Transmission 15-1
Automatic Transmission 15-11
Driveshafts 16-1

Clutch

Special Tools 12-2
Illustrated Index 12-3
Clutch Pedal
Adjustment 12-4
Clutch Master Cylinder
Overhaul/Inspection 12-5
Removal/Installation 12-6
Disassembly/Reassembly 12-7
Slave Cylinder
Overhaul/Inspection 12-8
Removal/Installation 12-9
Pressure Plate
Removal/Inspection 12-10
Clutch Disc
Removal/Inspection 12-11
Flywheel
Inspection/Replacement 12-12
Clutch Disc, Pressure Plate Installation 12-13
Release Bearing
Removal/Inspection 12-14
Installation 12-14

Ref. No.	Tool Number	Description	Qty	Page Reference
(1)	$07 L A B-P V 00100 ~ o r ~$ $07924-P D 20003$	Ring Gear Holder	1	$12-10,11,13$
(2)	07PAF - 0020000	Clutch Alignment Tool Set	1	$12-10,11,13$

(1)

(2)

NOTE:

- Whenever the transmission is removed, clean and grease the release bearing sliding surface.
- If the parts marked * are removed, the clutch hydraulic system must be bled (see page 12-9).
- Inspect the hoses for damage, leaks, interference, and twisting.

Clutch Pedal

Adjustment

NOTE:

- To check the clutch switch, see section 23.
- The clutch is self-adjusting to compensate for wear.

CAUTION: If there is no clearance between the master cylinder piston and push rod, the release bearing is held against the diaphragm spring, which can result in clutch slippage or other clutch problems.

1. Loosen locknut A, and back off the clutch switch (or adjusting bolt) until it no longer touches the clutch pedal.
2. Loosen locknut B, and turn the push rod in or out to get the specified stroke (A)) and height (©) at the clutch pedal.
3. Tighten locknut B.
4. Turn the clutch switch (or adjusting bolt) in until it contacts the clutch pedal.
5. Turn the clutch switch in an additional $1 / 4-1 / 2$ turn.
6. Tighten locknut A.

[^6]
Clutch Master Cylinder

Overhaul/Inspection

CAUTION

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

NOTE: LHD type is shown. RHD type is similar.
GREASEH: Brake Assembly Lube or equivalent rubber grease.

Clutch Master Cylinder

Removal/Installation

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Plug the end of the clutch pipe and reservoir hose with a shop towel to prevent brake fluid from coming out.

1. Remove the brake fluid from the clutch master cylinder reservoir with a syringe.
2. Disconnect the clutch pipe and reservoir hose from the clutch master cylinder.

3. Pry out the cotter pin, and pull the pedal pin out of the yoke. Remove the nuts.

4. Remove the clutch master cylinder.

5. Install the clutch master cylinder in the reverse order of removal.

NOTE: Bleed the clutch hydraulic system (see page 12-9).

Disassembly/Reassembly

CAUTION: Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.

1. Remove the dust seal from the clutch master cylinder.
2. Pry the circlip off the clutch master cylinder.

3. Carefully remove the piston by applying air pressure through the clutch line hole.

CAUTION:

- Hold a shop towel over the clutch master cylinder, to stop the piston in case it comes out suddenly.
- Plug the end of the clutch hose port with a shop towel to prevent fluid from coming out.
- Clean all disassembled parts in solvent and blow through all ports and passages with compressed

CAUTION:

- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure not dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

4. Assemble the piston nothing the proper direction of the parts (see page 12-5).
5. Slide the piston assembly into the clutch master cylinder.

6. Install the circlip in the groove of the clutch master cylinder.

7. Install the dust seal.

Slave Cylinder

Overhaul/Inspection

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint ; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

GREASEH: HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5 - 305).
GEEASEH: Brake Assembly Lube or equivalent rubber grease.

Urea Grease UM264
(P/N 41211 - PY5-305)

Removal/Installation

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Plug the end of the clutch pipe with a shop towel to prevent brake fluid from coming out.

GREASEH: HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).
GREASEH: Brake Assembly Lube or equivalent rubber grease.

1. Disconnect the clutch pipe from the slave cylinder.
2. Remove the slave cylinder from the clutch housing.

Remove and check for signs of leaking and deterioration.
3. Install the slave cylinder in the reverse order of removal.

NOTE: Make sure the boot is installed on the slave cylinder.

4. Bleed the clutch hydraulic system.

- Attach a hose to the bleeder screw, and suspend the hose in a container of brake fluid.
- Make sure there is an adequate supply of fluid at the clutch master cylinder, then slowly pump the clutch pedal until no more bubbles appear at the bleeder hose.
- Refill the clutch master cylinder with fluid when done.
- Use only DOT 3 or 4 brake fluid.

Pressure Plate

Removal/Inspection

1. Check the diaphragm spring fingers for height using the dial indicator.

Standard (New): 0.6 mm (0.02 in) max.
Service Limit: $\quad 0.8 \mathrm{~mm}(0.03 \mathrm{in})$

- If the height is more than the service limit, replace the pressure plate.

2. Install the special tools as shown.
3. To prevent warping, unscrew the pressure plate mounting bolts in a crisscross pattern in several steps, then remove the pressure plate.

4. Inspect the pressure plate surface for wear, cracks, and burning.
5. Inspect the fingers of the diaphragm spring for wear at the release bearing contact area.

6. Inspect for warpage using a straight edge and feeler gauge. Measure across the pressure plate.

Standard (New): 0.03 mm (0.001 in) max.
Service Limit: $0.15 \mathbf{~ m m}$ ($0.006 \mathbf{i n}$)

- If the warpage is more than the service limit, replace the pressure plate.

Removal/Inspection

1. Remove the clutch disc and special tools.
2. Inspect the lining of the clutch disc for signs of slipping or oil. If the clutch disc is burned black or oil soaked, replace it.

3. Measure the clutch disc thickness.

Standard (New): $8.4-9.0 \mathrm{~mm}$ ($0.33-0.35 \mathrm{in}$) Service Limit: $\quad 6.0 \mathrm{~mm}(0.24 \mathrm{in})$

- If the thickness is less than the service limit, replace the clutch disc.

4. Measure the rivet depth from the lining surface to the rivets, on both sides.

Standard (New): 1.3-1.9 mm (0.05-0.07 in) Service Limit: $\quad 0.2 \mathrm{~mm}$ (0.008 in)

- If the rivet depth is less than the service limit, replace the clutch disc.

Inspection/Replacement

1. Inspect the ring gear teeth for wear and damage.
2. Inspect the clutch disc mating surface on the flywheel for wear, cracks, and burning.
3. Measure the flywheel runout using a dial indicator through at least two full turns. Push against the flywheel each time you turn it to take up the crankshaft thrust washer clearance.

NOTE: The runout can be measured with the engine installed.

Standard (New): 0.05 mm (0.002 in) max. Service Limit: $\quad 0.15 \mathrm{~mm}(0.006 \mathrm{in})$

- If the runout is more than the service limit, replace the flywheel and recheck the runout.

4. Install the special tool as shown.
5. Remove the flywheel mounting bolts in a crisscross pattern in several steps as shown, then remove the flywheel.

6. Align the hole in the flywheel with the crankshaft dowel pin, and install the flywheel. Install the mounting bolts finger-tight.
7. Install the special tool, then torque the flywheel mounting bolts in a crisscross pattern in several steps.

Clutch Disc, Pressure Plate

Installation

1. Install the ring gear holder.
2. Apply grease to the splines of the clutch disc, then install the clutch disc using the special tools as shown.

NOTE: Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

3. Install the pressure plate and the mounting bolts finger-tight.

4. Torque the mounting bolts in a crisscross pattern as shown. Tighten the bolts in several steps to prevent warping the diaphragm spring.
$8 \times 1.25 \mathrm{~mm}$
$25 \mathrm{~N} \cdot \mathrm{~m}(2.6 \mathrm{kgf} \cdot \mathrm{m}, 19 \mathrm{lbf} \cdot \mathrm{ft})$

5. Remove the special tools.
6. Check the diaphragm spring fingers for height (see page 12-10).

Release Bearing

Removal/Inspection

1. Remove the release fork boot from the clutch housing.
2. Remove the release fork from the clutch housing by squeezing the release fork set spring with pliers. Remove the release bearing.

3. Check the release bearing for play by spinning it by hand.

CAUTION: The release bearing is packed with grease. Do not wash it in solvent.

- If there is excessive play, replace the release bearing with a new one.

Installation

NOTE: Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

1. Install the release fork set spring on the release fork.

2. With the release fork slid between the release bearing pawls, install the release bearing on the mainshaft while inserting the release fork through the hole in the clutch housing.
3. Align the detent of the release fork with the release fork bolt, then press the release fork over the release fork bolt squarely.

4. Install the release fork boot; make sure the boot seals around the release fork and clutch housing.
5. Move the release fork right and left to make sure that it fits properly against the release bearing, and that the release bearing slides smoothly.

Manual Transmission

Special Tools 13-2
Maintenance
Transmission Oil 13-3
Back-up Light Switch
Replacement 13-3
Transmission Assembly
Removal 13-4
Illustrated Index 13-10
Shift Arm Assembly
Index 13-12
Disassembly/Reassembly 13-13
Transmission Housing
Removal 13-15
Reverse Shift Fork
Clearance Inspection 13-16
Reverse Idler Gear
Removal 13-17
Mainshaft, Countershaft
Removal 13-17
Mainshaft Assembly Index 13-18
Clearance Inspection 13-19
Disassembly 13-20
Inspection 13-21
Reassembly 13-22
Countershaft Assembly Index 13-23
Clearance Inspection 13-24
Disassembly 13-25
Inspection 13-26
Reassembly 13-26
Shift Fork Assembly
Disassembly/Reassembly 13-28
Clearance Inspection 13-29
Synchro Sleeve, Synchro Hub Inspection 13-30
Installation 13-30
Synchro Ring, Gear Inspection 13-31
Mainshaft Bearing/Oil Seal Replacement 13-32
Countershaft Bearing Replacement 13-33
Mainshaft Thrust Clearance
Adjustment 13-34
Transmission
Reassembly 13-37
Transmission Assembly
Installation 13-40
Gearshift Mechanism
Overhaul 13-47

Special Tools

Maintenance

Back-up Light Switch

Transmission Oil

NOTE: Check the oil with engine OFF and car on level ground.

1. Remove the oil filler plug, then check the level and condition of the oil.

OIL FILLER PLUG

$44 \mathrm{~N} \cdot \mathrm{~m}$ (4.5 kgfom, $33 \mathrm{lbf} \cdot \mathrm{ft}$)

2. The oil level must be up to the filler hole. If it is below the hole, add oil until it runs out, then reinstall the oil filler plug with a new washer.
3. If the transmission oil is dirty, remove the drain plug and drain the oil.
4. Reinstall the drain plug with a new washer, and refill the transmission oil to the proper level.

NOTE: The drain plug washer should be replaced at every oil change.
5. Reinstall the oil filler plug with a new washer.

Oil Capacity

1.9 (2.0 US qt, $1.7 \mathrm{lmp} q t$) at oil change 2.0ℓ (2.1 US qt, $1.8 \mathrm{lmp} q \mathrm{t})$ at overhaul

Use only SAE $10 \mathrm{~W}-30$ or $10 \mathrm{~W}-40$, API service SF or SG grade.

Replacement

NOTE: To test the back-up light switch see section 23.

1. Disconnect the back-up light switch connectors.
2. Remove the back-up light switch.

3. Install the new washer and back-up light switch.
4. Connect the back-up light switch connectors.

Transmission Assembly

Removal

A warning

- Make sure jacks and safety stands are placed properly (see section 1).
- Apply parking brake and block rear wheels so car will not roll off stands and fall on you while working under it.

CAUTION: Use fender covers to avoid damaging painted surfaces.

1. Disconnect the negative (-) cable first, then the positive (+) cable from the battery. Remove the battery from the battery tray.
2. Drain the transmission oil (see page 13-3)
3. Remove the battery tray and tray bracket.

4. Remove the intake air duct and air cleaner housing assembly.

5. Disconnect the connector and vacuum hoses, then remove the intake air resonator (IAR)*'.
*1: F22B5 Engine only

6. Disconnect the starter motor cables, then remove the starter motor.

7. Disconnect the back-up light switch connectors.
8. Remove the transmission ground cable and starter motor cable clamp.

9. Disconnect the vehicle speed sensor (VSS) connector.

10. Shift the transmission into reverse.
11. First remove the cable bracket, then disconnect the cables from the top of the transmission housing.

NOTE: Remove both cables and the bracket together.

CAUTION: Take care not to bend the cables.

Transmission Assembly

Removal (cont'd)

12. Remove the clutch damper bracket mounting bolts, and raise the clutch damper bracket.

CAUTION: Take care not to bend the clutch pipes.

13. Remove the slave cylinder, clutch pipe, and clutch hose joint.

CAUTION:

- Do not operate the clutch pedal once the slave cylinder has been removed.
- Take care not to bend the clutch pipe.

14. Remove the two upper transmission mounting bolts.

15. Remove the engine splash shield.

16. Remove the cotter pins and loosen the castle nuts, then separate the ball joints and lower arms on both sides (see section 18).
17. Remove the right damper fork bolt.

18. Remove the right radius rod.

19. Remove the driveshafts and intermediate shaft (see section 16).

NOTE: Coat all precision finished surfaces with clean engine oil or grease. Tie plastic bags over the driveshaft ends.

SET RING

20. Swing the right driveshaft to the inner fender.

Transmission Assembly

Removal (cont'd)

21. Remove the center beam.

22. Remove the clutch cover.

23. Remove the intake manifold bracket.

24. Remove the three rear mount bracket mounting bolts.
25. Place a floor jack under the transmission, and raise the transmission just enough to take weight off of the mounts.
26. Remove the transmission mount and the transmission mount bracket.

27. Remove the three lower transmission mounting bolts.

28. Puil the transmission away from the engine until it clears the mainshaft.

CAUTION: Take care not to bend the clutch pipes.

Illustrated Index

Refer to the drawing below for the transmission disassembly/reassembly. Clean all the parts thoroughly in solvent, and dry with compressed air.

To Lubricate all the parts with oil before reassembly.
NOTE:

- This transmission uses no gaskets between the major housings; use liquid gasket ($\mathrm{P} / \mathrm{N} 0 \mathrm{Y} 740$ - 99986) (see page 13-14, 39).
- Always clean the magnet (7) whenever the transmission housing is disassembled.
- Inspect all the bearings for wear and operation.

CLUTCH HOUSING
OIL SEAL Replace.

- See section 15
$14 \times 20 \mathrm{~mm}$ DOWEL PIN
OIL GUIDE PLATE
NEEDLE BEARING
RETAINING PLATE
MAGNET

REVERSE IDLER GEAR SHAFT
REVERSE IDLER GEAR
OIL SEAL Replace.
(11) BALL BEARING
(12) SPRING WASHER

WASHER
REVERSE SHIFT FORK
(15) SHIFT FORK ASSEMBLY

- Index, page 13-28
(16) MAINSHAFT ASSEMBLY - Index, page 13-18 COUNTERSHAFT ASSEMBLY - Index, page 13-23
(18) DIFFERENTIAL ASSEMBLY
- See section 15

(33) SHIFT ARM ASSEMBLY
- Index, page 13-12
(24) OIL GUTTER PLATE
(25) 78 mm SHIM
- Selection, page 13-34
(26) OIL GUIDE PLATE
(27) WASHER Replace.
(28) BACK-UP LIGHT SWITCH

SETTING SCREW
WASHER Replace.
SPRING L. 26 mm (1.02 in)
STEEL BALL D. 5/16 in
(33) TRANSMISSION HANGER A
(34) $\mathbf{2 8} \mathbf{~ m m}$ SEALING BOLT (35) $\mathbf{3 2 \mathrm { mm } \text { SEALING BOLT }}$

WASHER Replace
REVERSE IDLER GEAR SHAFT BOLT
(38) OIL SEAL Replace.
(39) DRAIN PLUG
(40) WASHER Replace.
(41) OIL FILLER PLUG
(42) WASHER Replace.
(43) TRANSMISSION HANGER B
(44) TRANSMISSION HOUSING

Shift Arm Assembly

Index

NOTE:

- The shift arm cover can be removed and installed with the transmission in the car.
- Lubricate all moving and sliding surfaces with the specified grease.
- Turn the shift lever boot so the hole is facing down.
- Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5 - 305).

Disassembly/Reassembly

NOTE:

- During reassembly, grease all sliding parts.
- Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

1. Remove the shift arm cover assembly.
$6 \times 1.0 \mathrm{~mm}$
$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

2. Remove the spring pin, then remove the select lever, select arm and springs.
3. Remove the select return pin.

4. Remove the reverse lock cam.

5. Remove the oil seal.

(cont'd)

Shift Arm Assembly

Disassembly/Reassembly (cont'd)

6. Bend the tab of the lock washer, then remove the bolt.
7. Remove the interlock bolt.

NOTE: Apply liquid gasket (P/N 0Y740-99986) to the threads before reassembly.

8. Remove the shift lever, shift arm, and interlock.

NOTE: Turn the shift lever boot so the hole is facing down.

9. Install the shift arm assembly in the reverse order of removal.

NOTE:

- Use liquid gasket (P/N 0Y740-99986).
- Remove the dirt and oil from the sealing surface.
- Seal the entire circumference of the bolt holes to prevent oil leakage.
- If 20 minutes have passed after applying liquid gasket, reapply it and assemble the housings. Allow it to cure at least 20 minutes after assembly before filling the transmission with oil.

---: LIQUID
GASKET

Transmission Housing

Removal

NOTE:

- If the transmission housing or clutch housing are replaced, the bearing preload must be adjusted.
- Place the clutch housing on two pieces of wood thick enough to keep the mainshaft from hitting the workbench.

1. Remove the shift arm cover assembly (see page 13-13).
2. Remove the reverse idler gear shaft bolt.
3. Remove the setting screws, then remove the washers, springs, and steel balls.

4. Remove the back-up light switch.
5. Remove the 10 mm bolts and 8 mm bolts in a crisscross pattern in several steps.

6. Remove the $\mathbf{3 2} \mathrm{mm}$ sealing bolt.
7. Expand the snap ring on the countershaft ball bearing, and remove it from the groove using a pair of snap ring pliers.
8. Separate the transmission housing from the clutch housing, and wipe it clean of the sealant.

9. Remove the 28 mm sealing bolt, then remove the oil gutter plate.

NOTE: The transmission housing can be removed with the oil gutter plate in the transmission housing.

Reverse Shift Fork

Clearance Inspection

1. Measure the clearances between the reverse shift fork and 5th/reverse shift piece pin.

Standard: \quad A: $0.05-0.35 \mathrm{~mm}(0.002-0.014 \mathrm{in})$
B: $0.4-0.8 \mathrm{~mm}(0.02-0.03 \mathrm{in})$
Service Limit: A: $0.5 \mathrm{~mm}(0.02 \mathrm{in})$
B: $1.0 \mathrm{~mm}(0.04 \mathrm{in})$

2. If the clearances are more than the service limit, measure the widths of the groove in the reverse shift fork.

Standard: A: $7.05-7.25 \mathrm{~mm}(0.278-0.285 \mathrm{in})$
B: $7.4-7.7 \mathrm{~mm}(0.29-0.30 \mathrm{in})$

- If the widths of the grooves are not within the standard, replace the reverse shift fork with a new one.
- If the widths of the grooves are within the standard, replace the 5 th/reverse shift piece with a new one.

3. Measure the clearance between the reverse idler gear and reverse shift fork.

Standard: $\quad 0.5$ - 1.1 mm (0.02 - 0.04 in)
Service Limit: 1.8 mm (0.07 in)

4. If the clearance is more than the service limit, measure the width of the reverse shift fork.

Standard: 13.0-13.3 mm (0.512-0.524 in)

- If the width is not within the standard, replace the reverse shift fork with a new one.
- If the width is within the standard, replace the reverse idler gear with a new one.

Reverse Idler Gear

Removal

1. Remove the reverse shift fork.

2. Remove the reverse idler gear shaft and the reverse idler gear.

Mainshaft, Countershaft

Removal

1. Remove the mainshaft and countershaft assemblies with the shift forks from the clutch housing.

NOTE: Tape the mainshaft splines before removing the mainshaft and countershaft assemblies.

2. Remove the differential assembly.

Mainshaft Assembly

Index

NOTE: The 3rd/4th, and 5 th synchro hubs, and the ball bearing are installed with a press.
To Prior to reassembling, clean all the parts in solvent, dry them, and apply lubricant to any contact surfaces. The $3 \mathrm{rd} / 4$ th and 5 th synchro hubs, however, should be installed with a press before lubricating them.

Clearance Inspection

NOTE: If replacement is required, always replace the synchro sleeve and hub as a set.

1. Support the bearing inner race with a socket, and push down on the mainshaft.
2. Measure the clearance between 2nd and 3rd gears.

Standard: $\quad 0.06-0.21 \mathrm{~mm}$
(0.002-0.008 in)

Service Limit: $0.3 \mathbf{~ m m}(0.01 \mathbf{i n})$

3. If the clearance is more than the service limit, measure the thickness of 3rd gear.

Standard: \quad 32.42-32.47 mm

$$
(1.276-1.278 \text { in) }
$$

Service Limit: 32.3 mm (1.27 in)

- If the thickness of 3rd gear is less than the service limit, replace 3 rd gear with a new one.
- If the thickness of 3rd gear is within the service limit, replace the 3rd/4th synchro hub with a new one.

4. Measure the clearance between 4th gear and the spacer collar.

Standard: $\quad 0.06-0.21 \mathrm{~mm}(0.002-0.008 \mathrm{in})$ Service Limit: 0.3 mm (0.01 in)

5. If the clearance is more than the service limit, measure distance (A) on the spacer collar.

Standard: \quad 26.03-26.08 mm

$$
(1.025-1.027 \mathrm{in})
$$

Service Limit: $\mathbf{2 6 . 0 1 ~ m m ~ (1 . 0 2 4 ~ i n) ~}$

6. If distance (A) is less than the service limit, replace the spacer collar with a new one.
If distance (A) is within the service limit, measure the thickness of 4th gear.

Standard: \quad 30.92-30.97 mm

$$
(1.217-1.219 \text { in) }
$$

Service Limit: $\mathbf{3 0 . 8} \mathbf{~ m m}$ (1.21 in)
4TH GEAR

- If the thickness of 4th gear is less than the service limit, replace 4th gear with a new one.
- If the thickness of 4 th gear is within the service limit, replace the $3 \mathrm{rd} / 4$ th synchro hub with a new one.
(cont'd)

Mainshaft Assembly

Clearance Inspection (cont'd)

7. Measure the clearance between the spacer collar and 5th gear.

Standard: $\quad 0.06$ - 0.21 mm ($0.002-0.008 \mathrm{in}$)
Service Limit: $0.3 \mathbf{m m}(0.01 \mathbf{i n})$

8. If the clearance is more than the service limit, measure distance (B) on the spacer collar.

Standard: \quad 26.03-26.08 mm
($1.025-1.027 \mathrm{in}$)
Service Limit: $\mathbf{2 6 . 0 1 \mathrm { mm } (1 . 0 2 4 \mathrm { in })}$

9. If distance (B) is less than the service limit, replace the spacer collar with a new one.
If distance (B) is within the service limit, measure the thickness of 5 th gear.

Standard: $\quad 30.92$ - $30.97 \mathrm{~mm}(1.217-1.219 \mathrm{in})$ Service Limit: $\mathbf{3 0 . 8} \mathbf{~ m m}$ (1.21 in)

- If the thickness of 5th gear is less than the service limit, replace 5th gear with a new one.
- If the thickness of 5 th gear is within the service limit, replace the 5 th synchro hub with a new one.

Disassembly

1. Remove the ball bearing using a bearing puller as shown.

Inspection

CAUTION: Remove the synchro hubs using a press and steel blocks as shown. Use of a jaw-type puller can cause damage to the gear teeth.
2. Support 5th gear on steel blocks, and press the mainshaft out of the 5 th synchro hub, as shown.

3. In the same manner as above, support the 3rd gear on steel blocks, and press the mainshaft out of the 3rd/4th synchro hub, as shown.

1. Inspect the gear surface and bearing surface for wear and damage, then measure the mainshaft at points A, B, and C.

Standard:
A (Ball bearing surface): $\quad 27.987-28.000 \mathrm{~mm}$

$$
(1.1018-1.1024 \text { in) }
$$

B (Needle bearing surface): $37.984 \mathbf{- 3 8 . 0 0 0} \mathbf{~ m m}$ (1.4954-1.4961 in)

C (Ball bearing surface):

$$
27.977-27.990 \mathrm{~mm}
$$

$$
(1.1015-1.1020 \mathrm{in})
$$

Service Limit: A: 27.940 mm (1.1000 in)
B: 37.930 mm (1.4933 in)
C: $27.940 \mathrm{~mm}(1.1000 \mathrm{in})$

- If any part of the mainshaft is less than the service limit, replace it with a new one.

2. Inspect for runout.

Standard: $\quad 0.02 \mathrm{~mm}(0.0008 \mathrm{in})$ max.
Service Limit: $0.05 \mathrm{~mm}(0.002 \mathrm{in})$
NOTE: Support the mainshaft at both ends as shown.

- If the runout is more than the service limit, replace the mainshaft with a new one.

Mainshaft Assembly

Reassembly

NOTE: Refer to page 13-18 for reassembly sequence.

1. Support 2 nd gear on steel blocks, then install the 3rd/4th synchro hub using the special tools and a press, as shown.

NOTE: After installing, check the operation of the 3rd/4th synchro hub set.

2. Install the 5th synchro hub using the special tools and a press as shown.

Index

7. Prior to reassembling, clean all the parts in solvent, dry them, and apply lubricant to any contact surfaces.

Countershaft Assembly

Clearance Inspection

1. Measure the clearance between the 1st gear and thrust washer.

Standard: $\quad 0.04-0.10 \mathrm{~mm}$ (0.002-0.004 in)

Service Limit: $\mathbf{0 . 1 8 ~ m m ~ (0 . 0 0 7 ~ i n) ~}$

2. If the clearance is more than the service limit, select the appropriate thrust washer for the correct clearance from the chart below, and install it.

THRUST WASHER

	Part Number	Thickness
A	$23921-$ PG $1-000$	$1.96 \mathrm{~mm}(0.0771 \mathrm{in})$
B	$23922-$ PG1 -000	$1.99 \mathrm{~mm}(0.0783 \mathrm{in})$
C	$23923-$ PG1 -000	$2.02 \mathrm{~mm}(0.0795 \mathrm{in})$
D	$23924-$ PG1 -000	$2.05 \mathrm{~mm}(0.0807 \mathrm{in})$
E	$23925-$ PG1 - 000	$2.08 \mathrm{~mm}(0.0819 \mathrm{in})$

3. Measure the clearance between the 2nd gear and 3rd gear.

Standard: $\quad 0.04-0.10 \mathrm{~mm}$ (0.002-0.004 in)

Service Limit: $0.18 \mathrm{~mm}(0.007 \mathrm{in})$

4. If the clearance is more than the service limit, select the appropriate spacer for the correct clearance from the chart below, and install it.

SPACER

	Part Number	Thickness
A	$23917-$ P21-010	$29.02-29.04 \mathrm{~mm}$ $(1.1425-1.1433 \mathrm{in})$
B	$23918-$ P21-010	$29.07-29.09 \mathrm{~mm}$ $(1.1445-1.1453 \mathrm{in})$

Disassembly

1. Securely clamp the countershaft assembly in a bench vise with wood blocks.
2. Raise the locknut tab from the groove in the countershaft, then remove the locknut and the spring washer.

3. Remove the ball bearing using a press as shown.

4. Remove the friction damper from the spacer using a press and a socket as shown.

Countershaft Assembly

Inspection

1. Inspect the gear surface and bearing surface for wear and damage, then measure the countershaft at points A, B, and C.

Standard: \quad A: 38.000-38.015 mm (1.4961-1.4967 in)

B: $\mathbf{3 9 . 9 8 4 - 4 0 . 0 0 0 ~ m m}$
(1.5742-1.5748 in)

C: $24.987 \mathbf{- 2 5 . 0 0 0 ~ m m}$ ($0.9837-0.9843 \mathrm{in}$)
Service Limit: A: $\mathbf{3 7 . 9 5 0 ~ m m ~ (1 . 4 9 4 1 ~ i n) ~}$
B: $39.930 \mathrm{~mm}(1.5720 \mathrm{in})$
C: $\mathbf{2 4 . 9 4 0 \mathrm { mm }}$ (0.9819 in)

- If any part of the countershaft is less than the service limit, replace it with a new one.

2. Inspect for runout.

Standard: $\quad 0.02 \mathrm{~mm}$ (0.0008 in) max.
Service Limit: 0.05 mm (0.002 in)
NOTE: Support the countershaft at both ends as shown.

Rotate two complete revolutions.

- If the runout exceeds the service limit, replace the countershaft with a new one.

Reassembly

NOTE: Refer to page 13-23 for reassembly sequence.

1. Install the thrust shim, needle bearing, 1st gear, friction damper, synchro ring, and synchro spring.

NOTE: Reassemble the 1st gear and friction damper before installation.

2. Install the 1 st/2nd synchro hub by aligning the friction damper fingers with $1 \mathrm{st} / 2$ nd synchro hub grooves.

3. Install the friction damper on the spacer using the special tools and a press as shown.

4. Install the $2 n d$ gear by aligning the synchro cone fingers with 2 nd gear grooves.

5. Install the needle bearing and the ball bearing using a special tool and a press as shown.

6. Securely clamp the countershaft assembly in a bench vise with wood blocks.
7. Install the spring washer.
8. Tighten the new locknut to the correct torque, then stake the locknut tab into the groove.

Torque: $127 \rightarrow 0 \rightarrow 127 \mathrm{~N} \cdot \mathrm{~m}(13 \rightarrow 0 \rightarrow 13 \mathrm{kgf} \cdot \mathrm{m}$, $94 \rightarrow 0 \rightarrow 94$ lbfft)

Shift Fork Assembly

Disassembly/Reassembly

Prior to reassembling, clean all the parts in solvent, dry them, and apply lubricant to any contact parts.

Clearance Inspection

NOTE: The synchro sleeve and synchro hub should be replaced as a set.

1. Measure the clearance between each shift fork and its matching synchro sleeve.

Standard: $\quad 0.35-0.65 \mathrm{~mm}$ (0.014 - 0.026 in$)$ Service Limit: $\mathbf{1 . 0 0 ~ m m ~ (0 . 0 3 9 ~ i n) ~}$

2. If the clearance is more than the service limit, measure the thickness of the shift fork fingers.

Standard: 6.2-6.4 mm (0.24-0.25 in)

- If the thickness of the shift fork finger is not within the standard, replace the shift fork with a new one.
- If the thickness of the shift fork finger is within the standard, replace the synchro sleeve with a new one.

3. Measure the clearance between the shift fork and the shift arm.

Standard: $\quad 0.2-0.5 \mathrm{~mm}(0.008-0.019 \mathrm{in})$ Service Limit: 0.6 mm (0.02 in)

4. If the clearance is more than the service limit, measure the width of the shift arm.

Standard: 12.9-13.0 mm (0.508-0.512 in)

- If the width of the shift arm is not within the standard, replace the shift arm with a new one.
- If the width of the shift arm is within the standard, replace the shift fork or shift piece with a new one.

Synchro Sleeve, Synchro Hub

Inspection

1. Inspect gear teeth on all synchro hubs and synchro sleeves for rounded off corners, which indicate wear.
2. Install each synchro hub in its mating synchro sleeve, and check for freedom of movement.

NOTE: If replacement is required, always replace the synchro sleeve and synchro hub as a set.

Installation

When assembling the synchro sleeve and synchro hub, be sure to match the three sets of longer teeth (120 degrees apart) on the synchro sleeve with the three sets of deeper grooves in the synchro hub.

CAUTION: Do not install the synchro sleeve with its longer teeth in the 1st/2nd synchro hub slots because it will damage the spring ring.

Inspection

1. Inspect the synchro ring and gear.

A: Inspect the inside of the synchro ring for wear.
B: Inspect the synchro sleeve teeth and matching teeth on the synchro ring for wear (rounded off).

C: Inspect the synchro sleeve teeth and matching teeth on the gear for wear (rounded off).

GOOD WORN
D: Inspect the gear hub thrust surface for wear.
E: Inspect the cone surface for wear and roughness.
F: Inspect the teeth on all gears for uneven wear, scoring, galling, and cracks.
2. Coat the cone surface of the gear with oil, and place the synchro ring on the matching gear. Rotate the synchro ring, making sure that it does not slip.

Measure the clearance between the synchro ring and gear all the way around.

NOTE: Hold the synchro ring against the gear evenly while measuring the clearance.

Synchro Ring-to-Gear Clearance
Standard: $0.85-1.10 \mathrm{~mm}$ ($0.033-0.043 \mathrm{in}$)
Service Limit: $0.4 \mathrm{~mm}(0.02 \mathrm{in})$

Double Cone Synchro-to-Gear Clearance

Standard:

(A): (Outer Synchro Ring to Synchro Cone) 0.5 mm (0.02 in) min.
(B): (Synchro Cone to Gear) $0.5 \mathrm{~mm}(0.02 \mathrm{in}) \mathrm{min}$.
(C): (Outer Synchro Ring to Gear) 0.95 - 1.68 mm (0.037 - 0.066 in)

Service Limit:

(A): $0.3 \mathrm{~mm}(0.01 \mathrm{in})$
(B): $0.3 \mathrm{~mm}(0.01 \mathrm{in})$
(C): $0.6 \mathrm{~mm}(0.02 \mathrm{in})$

If the clearance is less than the service limit, replace the synchro ring and synchro cone.

Mainshaft Bearing/Oil Seal

Replacement

1. Remove the differential assembly.
2. Remove the ball bearing using the special tool as shown.
3. Remove the oil seal from the clutch side.

4. Drive the new oil seal in from the transmission side using the special tools as shown.

5. Drive the new ball bearing in from the transmission side using the special tools as shown.

Countershaft Bearing

Replacement

1. Remove the retaining plate from the clutch housing.

2. Remove the needle bearing using the special tool, then remove the oil guide plate.

3. Position the oil guide plate and new needle bearing in the bore of the clutch housing.

NOTE: Position the needle bearing with the oil hole facing up.

4. Drive the needle bearing using the special tools as shown.

Countershaft Bearing

Replacement (cont'd)

5. Install the retaining plate, and stake the bolt heads into the groove in the retaining plate.

Mainshaft Thrust Clearance

Adjustment

1. Remove the 78 mm shim and oil guide plate from the transmission housing.

2. Install the 3rd/4th synchro hub, spacer collar, 5th synchro hub, spacer, and ball bearing on the mainshaft, then install the above assembly in the transmission housing.
3. Install the washer on the mainshaft.
4. Measure distance (B) between the end of the transmission housing and washer.

NOTE:

- Use a straight edge and vernier caliper.
- Measure at three locations and average the reading.

5. Measure distance (C) between the end of the clutch housing and bearing inner race.

NOTE:

- Use a straight edge and depth gauge.
- Measure at three locations and average the readings.

6. Select the proper 78 mm shim from the chart by using the formula below.

Shim Selection Formula:
From the measurements you made in steps 4 and 5:
-1 . Add distance (C) (step 5) to distance (B) (step 4).
-2. From this number, subtract 0.93 (which is the midpoint of the flex range of the clutch housing bearing spring washer).
-3. Take this number and compare it to the available shim sizes in the chart.
(For example)

B: 2.39				
+ C: 0.22		2.61 $=$$\quad 2.61$	\quad	-0.93
:---				

- Try the $1.68 \mathrm{~mm}(0.0661 \mathrm{in})$ shim.

78 mm SHIM

	Part Number	Thickness
A	23941 - PK5 - 000	1.20 mm (0.0472 in)
B	23942 - PK5 - 000	1.23 mm (0.0484 in)
C	23943 - PK5-000	1.26 mm (0.0496 in)
D	23944 - PK5 - 000	1.29 mm (0.0508 in)
E	23945-PK5-000	1.32 mm (0.0520 in)
F	23946-PK5-000	1.35 mm (0.0531 in)
G	23947 - PK5 - 000	1.38 mm (0.0543 in)
H	23948-PK5-000	1.41 mm (0.0555 in)
1	23949 - PK5-000	1.44 mm (0.0567 in)
J	23950 - PK5 - 000	1.47 mm (0.0579 in)
K	23951 - PK5 - 000	1.50 mm (0.0591 in)
L	23952 - PK5-000	1.53 mm (0.0602 in)
M	23953 - PK5 - 000	1.56 mm (0.0614 in)
N	23954 - PK5 - 000	1.59 mm (0.0626 in)
0	23955-PK5-000	1.62 mm (0.0638 in)
P	23956 - PK5 - 000	1.65 mm (0.0650 in)
Q	23957 - PK5 - 000	1.68 mm (0.0661 in)
R	23958-PK5-000	1.71 mm (0.0673 in)
S	23959 - PK5 - 000	1.74 mm (0.0685 in)
T	23960-PK5-000	1.77 mm (0.0697 in)
U	23961 - PK5-000	1.80 mm (0.0709 in)
V	23962 - PK5-000	1.83 mm (0.0720 in)
W	23963 - PK5-000	1.86 mm (0.0732 in)
X	23964 - PK5-000	1.89 mm (0.0744 in)
Y	23965 - PK5 - 000	1.92 mm (0.0756 in)
Z	23966 - PK5 - 000	$1.95 \cdot \mathrm{~mm}$ (0.0768 in)
AA	23967 - PK5-000	1.98 mm (0.0780 in)
$A B$	23968 - PK5 - 000	$2.01 \mathrm{~mm}(0.0791 \mathrm{in})$
$A C$	23969-PK5-000	2.04 mm (0.0803 in)
$A D$	23970-PK5 - 000	2.07 mm (0.0815 in)
$A E$	23971-PK5-000	2.10 mm (0.0827 in)
AF	23972-PK5-000	2.13 mm (0.0839 in)
AG	23973-PK5-000	$2.16 \mathrm{~mm}(0.0850 \mathrm{in})$
AH	23974-PK5-000	2.19 mm (0.0862 in)
Al	23975-PK5-000	2.22 mm (0.0874 in)
AJ	23976 - PK5 - 000	$2.25 \mathrm{~mm}(0.0886 \mathrm{in})$
AK	23977-PK5-000	2.28 mm (0.0898 in)
AL	23978-PK5-000	2.31 mm (0.0909 in)
AM	23979-PK5-000	$2.34 \mathrm{~mm}(0.0921 \mathrm{in})$
AN	23980 - PK5 - 000	2.37 mm (0.0933 in)

(cont'd)

Mainshaft Thrust Clearance

Adjustment (cont'd)

7. Check the thrust clearance in the manner described below.

NOTE: Measurement should be made at normal room temperature.
-1. Install the 78 mm shim selected and oil guide plate in the transmission housing.

-2. Install the spring washer and washer on the ball bearing.

NOTE:

- Clean the spring washer, washer and thrust shim throughly before installation.
- Install the spring washer, washer and thrust shim properly.

-3. Install the mainshaft in the clutch housing.
-4. Place the transmission housing over the mainshaft and onto the clutch housing.
-5. Tighten the clutch and transmission housings with several 8 mm and 10 mm bolts.

NOTE: It is not necessary to use sealing agent between the housings.
-6. Tap the mainshaft with a plastic hammer.
-7. Slide the mainshaft base over the mainshaft.

-8. Attach the mainshaft holder to the mainshaft as follows:

NOTE:

- Back-out the mainshaft holder bolt and loosen the two hex bolts.
- Fit the holder over the mainshaft so its lip is towards the transmission.
- Align the mainshaft holder's lip around the groove at the inside of the mainshaft splines, then tighten the hex bolts.
MAINSHAFT HOLDER

-9. Seat the mainshaft fully by tapping its end with a plastic hammer.
-10. Thread the mainshaft holder bolt in until it just contacts the wide surface of the mainshaft base.
-11. Zero a dial gauge on the end of the mainshaft.

Transmission

Reassembly

-12. Turn the mainshaft holder bolt clockwise; stop turning when the dial gauge has reached its maximum movement. The reading on the dial gauge is the amount of mainshaft end play.

CAUTION: Turning the mainshaft holder bolt more than 60 degrees after the needle of the dial gauge stops moving may damage the transmission.

-13. If the reading is within the standard, the clearance is correct.
If the reading is not within the standard, recheck the shim thickness.

Standard: $0.10-0.16 \mathrm{~mm}(0.004-0.006 \mathrm{in})$

1. Install the differential assembly in the clutch housing.

CLUTCH HOUSING
2. Install the spring washer and washer with the angle against the clutch housing as shown.
3. Insert the mainshaft and countershaft into the shift forks, and install them as an assembly.

NOTE: Before installing the mainshaft and countershaft assemblies, tape the mainshaft splines to pro-

Transmission

Reassembly (cont'd)

4. Install the reverse idler gear and reverse idler gear shaft in the clutch housing

5. Install the reverse shift fork in the clutch housing with the 5 th/reverse shift piece pin positioned in the slot of the reverse shift fork.

NOTE: Check that the steel ball is in the proper position.

NOTE: Select the 78 mm shim according to the measurements made on page 13-34.
6. Install the oil guide plate and 78 mm shim into the transmission housing.

7. Install the oil gutter plate in the transmission housing.

NOTE: Bend the hook of the oil gutter plate into the hole on the transmission housing.
8. Install the 28 mm sealing bolt.

NOTE: Apply liquid gasket (P/N OY740-99986) to the threads.

9. Apply liquid gasket to the surface of the transmission housing as shown.

NOTE:

- Use liquid gasket (P/N 0Y740-99986).
- Remove the dirty oil from the sealing surface.
- Seal the entire circumference of the bolt holes to prevent oil leakage.
- If 20 minutes have passed after applying liquid gasket, reapply it and assemble the housings. Allow it to cure at least 20 minutes after assembly before filling the transmission with oil.

10. Install the $14 \times 20 \mathrm{~mm}$ dowel pins.
11. Set the stopper ring as shown. Place the transmission housing over the clutch housing, being careful to line up the shafts.

NOTE: Align the long arm of 5th shift fork with the hook on the stopper ring.

12. Lower the transmission housing with the snap ring pliers, and set the snap ring into the groove of the countershaft bearing.

13. Check that the snap ring is securely seated in the groove of the countershaft bearing.

Dimension A as installed: $\mathbf{3 . 6 0 - 6 . 3 2 ~ m m}$

$$
(0.142-0.249 i n)
$$

14. Install the 32 mm sealing bolt.

NOTE: Apply liquid gasket (P/N OY740-99986) to the threads.

(cont'd)

Transmission

Reassembly (cont'd)

15. Install transmission hangers A and B, then tighten the bolts in a crisscross pattern in several steps as shown.
$8 \times 1.25 \mathrm{~mm}$ bolts: $27 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{2 . 8} \mathrm{kgf} \cdot \mathrm{m}, 20 \mathrm{lbf} \cdot \mathrm{ft})$
$10 \times 1.25 \mathrm{~mm}$ bolts: $\mathbf{4 4} \mathrm{N} \cdot \mathrm{m}$ ($\mathbf{4 . 5} \mathbf{~ k g f} \cdot \mathrm{m}, 33 \mathrm{lbf} \cdot \mathrm{ft}$)

16. Install the reverse idler gear shaft bolt.
17. Install the steel balls, springs, washers and setting screws.
STEEL BALL D. 5/16 in

REVERSE IDLER GEAR SHAFT BOLT $54 \mathrm{~N} \cdot \mathrm{~m}$ ($5.5 \mathrm{~kg} \cdot \mathrm{~m}, 40 \mathrm{lbf} \cdot \mathrm{ft}$)
18. Install the shift arm cover assembly (see page 13-13).
19. Shift the transmission through all the gears before installing it.

Transmission Assembly

Installation

1. Install the dowel pins.

2. Apply grease to the parts as shown, then install the release bearing and release fork (see section 12).

NOTE: Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

3. Install the release fork boot.
4. Place the transmission on the transmission jack, and raise it to the engine level.
5. Install the three lower transmission mounting bolts.

6. Raise the transmission, then install the transmission mount bracket and the transmission mount.

NOTE:

- Torque mounting bolts and nuts in the sequence shown.
- Make sure the bushings are not twisted or offset.
(1). (3): $10 \times 1.25 \mathrm{~mm}$ $38 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{3 . 9} \mathbf{~ k g f} \cdot \mathrm{m}, 28 \mathrm{lbf} \cdot \mathrm{ft})$
(4): $\quad 12 \times 1.25 \mathrm{~mm}$ $64 \mathrm{~N} \cdot \mathrm{~m}$ ($6.5 \mathrm{kgf} \cdot \mathrm{m}, 47 \mathrm{lbf} \cdot \mathrm{ft}$)
(2): Temporary tightening

7. Install the three rear mount bracket mounting bolts.

8. Install the intake manifold bracket.

(cont'd)

Transmission Assembly

Installation (cont'd)

9. Install the clutch cover.

10. Install the center beam.

11. Install the intermediate shaft and driveshafts (see section 16).

12. Install the right radius rod.

NOTE: Check for deterioration or damage of the radius rod rubber bushings.

13. Install the ball joints onto the lower arms (see section 18).
14. Install the right damper fork bolt (see section 18).

15. Install the engine splash shield.

16. Install the two upper transmission mounting bolts.

17. Install the slave cylinder, clutch pipe, and clutch hose joint.

CAUTION: Take care not to bend the clutch pipe.
NOTE: Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

(cont'd)

Transmission Assembly

- Installation (cont'd)

18. Install the clutch damper bracket.

19. Install the shift cable and select cable to the shift lever and to the select lever respectively.

NOTE:

- Check that the new cotter pin is seated firmly.
- Turn the boot of the shift lever so the hole is facing down.
- Inspect the plastic washer for wear and damage.
- Use only HONDA Genuine Urea Grease UM264 (P/N 41211 - PY5-305).

20. Connect the vehicle speed sensor (VSS) connector.

21. Connect the transmission ground cable and starter motor cable clamp.
22. Connect the back-up light switch connectors.

BACK-UP LIGHT SWITCH CONNECTORS

23. Install the starter motor, then connect the starter motor cables.

NOTE: When installing the starter motor cable, make sure that the crimped side of the ring terminal is facing out (see section 23).

24. Install the intake air resonator (IAR)*1, then connect the connector and vacuum hoses.
*1: F22B5 Engine only

25. Install the air cleaner housing assembly and intake air duct.

26. Install the tray bracket and the battery tray.

(cont'd)

Transmission Assembly

Installation (cont'd)

27. Install the battery, then connect the positive (+) cable first, then negative (-) cable to the battery.
28. Refill the transmission with oil (see page 13-3).
29. Check the clutch operation.
30. Shift the transmission, and check for smooth operation.
31. Check the front wheel alignment (see section 18).
32. Loosen the three mounting bolts of the front engine mount/bracket, then torque the three mount bolts.

NOTE:

- Make sure the motor mount bushing is not twisted or offset.
- If the motor mount bushing is twisted or offset, loosen all mounts and retorque. Refer to section 5 for engine mount torque sequence.
$10 \times 1.25 \mathrm{~mm}$ $38 \mathrm{~N} \cdot \mathrm{~m}(3.9 \mathrm{kgf} \cdot \mathrm{m}$, 28 lbf.ft)

Overhaul

NOTE:

- Inspect rubber parts for wear and damage when disassembling; replace any worn or damaged parts.
- Check that the new cotter pin is seated firmly.

(1) SHIFT WIRE
(2) SHIFT WIRE WASHER
(3) SHIFT LEVER KNOB $8 \mathrm{~N} \cdot \mathrm{~m}(0.8 \mathrm{kgf} \cdot \mathrm{m}, 6 \mathrm{lbf} \cdot \mathrm{ft})$
(4) SHIFT LEVER
(5) SHIFT BALL HOLDER
(6) SHIFT LEVER PIVOT GUIDE
(7) SHIFT PIVOT BUSHING
(8) O-RINGS Replace.
(9) SHIFT LEVER BALL SEAT
(10) SHIFT LEVER PIVOT
(11) CUSHION BALL
(12) SHIFT LEVER BUSHING C
(13) SELECT LINK COLLAR
(14) SHIFT LEVER BUSHING B

SHIFT LEVER LINKAGE
(16) WAVE WASHER

SELECT WIRE WASHER ASST.
COTTER PIN Replace.
SELECT WIRE
FLOATING RUBBER A
FLOOR TUNNEL STIFFENER LID
2) FLOATING COLLAR

FLOATING RUBBER B
24) SHIFT LEVER BRACKET

SHIFT WIRE PLATE Replace.
COTTER PIN Replace.
(27) SHIFT WIRE WASHER A
(28) SHIFT WIRE WASHER B
(29) SELECT WIRE WASHER A
(30) SELECT WIRE WASHER B
(31) WIRE HOLDER

A: SELF-LOCKING NUT Replace. $6 \times 1.0 \mathrm{~mm}$
$9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
B: $8 \times 1.25 \mathrm{~mm}$
$22 \mathbf{N} \cdot \mathrm{~m}$ ($\mathbf{2 . 2} \mathbf{~ k g f} \cdot \mathrm{m}, 16 \mathbf{l b f} \cdot \mathrm{ft})$
C: $6 \times 1.0 \mathrm{~mm}$
$9.8 \mathrm{~N} \cdot \mathrm{~m}$ (1.0 kgf.m, $7.2 \mathrm{lbf} \cdot \mathrm{ft})$

SUPPLEMENTAL RESTRAINT SYSTEM (SRS)

(If automatic transmission maintenance is required)

Some model versions of the Accord Coupe include a driver's airbag, located in the steering wheel hub, and a front passenger's airbag, located in the dashboard above the glove box. Information necessary to safely service the SRS is included in this Shop Manual. Items marked with an asterisk (*) on the contents page include, or are located near, SRS components. Servicing, disassembling or replacing these items will require special precautions and tools, and should therefore be done by an authorized Honda dealer.

A warning

- To avoid rendering the SRS inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all SRS service work must be performed by an authorized Honda dealer.
- Improper service procedures, including incorrect removal and installation of the SRS, could lead to personal injury caused by unintentional activation of the airbags.
- All SRS electrical wiring harnesses are covered with yellow insulation. Related components are located in the steering column, front console, dashboard, dashboard lower panel, and in the dashboard above the glove box. Do not use electrical test equipment on these circuits.

Automatic Transmission

Special Tools 14-2
Description 14-3
Clutches 14-6
Power Flow 14-8
Electronic Control System 14-18
Hydraulic Control 14-23
Hydraulic Flow 14-28
Lock-up System 14-38
Electrical System
Component Locations 14-45
Circuit Diagram 14-46

* Troubleshooting Procedures 14-48
Symptom-to-Component Chart Electrical System $14-50$
Electrical Troubleshooting Troubleshooting Flowchart 14-52
Lock-up Control Solenoid Valve A/B Test 14-82
Replacement 14-82
Shift Control Solenoid Valve A/B Test 14-83
Replacement 14-83
Mainshaft/Countershaft Speed Sensors Replacement 14-84
Transmission Control Module (TCM) *Replacement 14-85
Hydraulic System
Symptom-to-Component Chart Hydraulic System 14-86
*Road Test 14-90
Stall Speed Test 14-94
Fluid Level Checking/Changing 14-95
Pressure Testing 14-96
Transmission
Transmission
Removal 14-99
Illustrated Index Right Side Cover 14-104
Transmission Housing 14-106
Torque Converter Housing 14-108
Right Side Cover Removal 14-110
Transmission Housing Removal 14-112
Torque Converter Housing/Valve Body Removal 14-114
Valve Body Repair 14-116
Valve Assembly 14-117
Valve Caps Description 14-118
Oil Pump
Inspection 14-119
Main Valve Body Disassembly/Inspection/Reassembly 14-120
Secondary Valve Body
Disassembly/Inspection/Reasemelby 14-122
Regulator Valve Body
Disassembly/Inspection/Reassembly 14-124
Throttle Valve Body Disassembly/Inspection/Reassembly 14-125
Servo Body
Disassembly/Inspection/Reassembly 14-126
1st/2nd Accumulator Body Disassembly/Inspection/Reassembly 14-127
Mainshaft
Disassembly/Inspection/Reassembly 14-128
Countershaft
Disassembly/Inspection/Reassembly 14-129
Removal 14-130
Installation 14-131
One-way Clutch Disassembly/Inspection/Reassembly 14-132
Secondary Shaft
Disassembly/Inspection/Reassembly 14-133
Inspection 14-134
Clutch
Illustrated Index 14-135
Disassembly 14-138
Reassembly 14-140
Torque Converter Housing Bearings Mainshaft Bearing/Oil Seal Replacement 14-144
Countershaft Bearing Replacement 14-145
Secondary Shaft Bearing Replacement 14-145
Transmission Housing Bearings Removal/Installation 14-146
Right Side Cover
Feed Pipe Installation 14-147
Parking Brake Stopper Inspection/Adjustment 14-147
Transmission
Reassembly 14-148
Torque Converter Disassembly 14-156
Transmission Installation 14-157
Shift Cable *Removal/Installation 14-162
* Adjustment 14-164
ATF Cooler Hoses
Connection 14-165
*Gearshift Selector 14-166
A/T Gear Position Indicator Panel * Adjustment 14-169
Throttle Control Cable
Inspection 14-169
Adjustment 14-171

The Automatic Transmission is a combination of a 3-element torque converter and triple-shaft electronically controlled automatic transmission which provides 4 speeds forward and 1 speed reverse. The entire unit is positioned in line with the engine.

Torque Converter, Gears and Clutches

The torque converter consists of a pump, turbine and stator assembled in a single unit.
They are connected to the engine crankshaft so they turn together as a unit as the engine turns. Around the outside of the torque converter is a ring gear which meshes with the starter pinion when the engine is being started. The entire torque converter assembly serves as a flywheel while transmitting power to the transmission mainshaft.
The transmission has three parallel shafts: the mainshaft, the countershaft, and the secondary shaft. The mainshaft is in line with the engine crankshaft.
The mainshaft includes the clutches for 3rd, and 4th, and gears for 3rd, 4th, Reverse and Idier (Reverse gear is integral with 4th gear).
The countershaft includes the 1 st-hold clutch and gears for 2 nd , 3 rd , 4th, Reverse, 1 st and Idler.
The secondary shaft includes the 1 st and 2 nd clutches, and gears for 2 nd , 1 st and idler.
The 4th and reverse gears can be locked to the countershaft at its center, providing 4th gear or Reverse, depending on which way the selector is moved.
The gears on the mainshaft are in constant mesh with those on the countershaft and the secondary shaft. When certain combinations of gears in the transmission are engaged by the clutches, power is transmitted from the mainshaft to the countershaft to provide $\mathrm{D}_{4}, \mathrm{D}_{3}, 2,2,1$ and R positions.

Electronic Control

The electronic control system consists of the Transmission Control Module (TCM), sensors, and four solenoid valves. Shifting and lock-up are electronically controlled for comfortable driving under all conditions.
The TCM is located below the dashboard, under the front lower panel on the passenger's side.

Hydraulic Control

The valve bodies include the main valve body, secondary valve body, servo body, regulator valve body, throttle valve body and $1 \mathrm{st} / 2 \mathrm{nd}$ accumulator body. They are bolted to the torque converter housing as an assembly.
The main valve body contains the manual valve, 1-2 shift valve, $2-3$ shift valve, cooler relief valve, lock-up shift valve, lockup control valve, main orifice control valve, modulator valve, CPC valve and oil pump gears.

The secondary valve body includes the 4th exhaust valve, 3 rd kick-down valve, $3-4$ shift valve, servo control valve, orifice control valve and the 2 nd orifice control valve.

The servo body contains the accumulator pistons and servo valve. The regulator valve body contains the regulator valve, torque converter check valve, and lock-up timing valve. The throttle valve body contains the throttle valve B and relief valve. Fluid from the regulator passes through the manual valve to the various control valves.

The clutches receive oil from their respective feed pipes or internal hydraulic circuit.

Shift Control Mechanism

Input from various sensors located throughout the car determines which shift control solenoid valve the TCM will activate. Activating a shift control solenoid valve changes modulator pressure, causing a shift valve to move. This pressurizes a line to one of the clutches, engaging that clutch and its corresponding gear.

Lock-up Mechanism

In D_{4} position, in 2nd, 3rd and 4th, and D_{3} position in 3rd, pressurized fluid is drained from the back of the torque converter through an oil passage, causing the lock-up piston to be held against the torque converter cover. As this takes place, the mainshaft rotates at the same speed as the engine crankshaft. Together with hydraulic control, the TCM optimizes the timing of the lock-up mechanism.
The lock-up valves control the range of lock-up according to lock-up control solenoid valves A and B, and throttle valve B. When lock-up control solenoid valves A and B activate, modulator pressure changes. Lock-up control solenoid valves A and B are mounted on the torque converter housing, and are controlled by the TCM.

Description

(cont'd)

Gear Selection

The selector lever has seven positions: P PARK, R REVERSE, N NEUTRAL, D_{4} 1st through 4th gear ranges, D_{3} 1st through 3rd gear ranges, 2 2nd gear and 1 1st gear.

Position	Description
P PARK	Front wheels locked; parking pawl engaged with parking gear on countershaft. All clutches released.
A REVERSE	Reverse; reverse selector engaged with countershaft reverse gear and 4th gear clutch locked.
N NEUTRAL	All clutches released.
D4 DRIVE (1st through 4th)	General driving; starts off in 1st, shifts automatically to 2nd, 3rd, then 4th, depending on vehicle speed and throttle position. Downshift through 3rd, 2nd and 1st on deceleration to stop. The lock-up mechanism comes into operation in D_{4} position in 2nd, 3rd and 4th speed.
D3 DRIVE	For rapid acceleration at highway speeds and general driving; up-hill and down-hill driving; starts off in
(1st through 3rd)	1st, shifts automatically to 2 nd , then 3 rd , depending on vehicle speed and throttle position. Downshifts through 2nd to 1st on deceleration to stop. The lock-up mechanism comes into operation in 3rd speed.
2 SECOND	For engine braking or better traction starting off on loose or slippery surfaces; stays in 2 nd gear, does not shift up or down.
1 FIRST	For engine braking; stays in 1st gear, does not shift up.

Starting is possible only in P and N positions through the use of a slide-type, neutral-safety switch.

Automatic Transaxle (A/T) Gear Position Indicator

The A/T gear position indicator in the instrument panel shows which gear has been selected without having to look down at the console.

Description

Clutches

The four-speed automatic transmission uses hydraulically actuated clutches to engage or disengage the transmission gears. When clutch pressure is introduced into the clutch drum, the clutch piston is applied. This presses the friction discs and steel plates together, locking them so they don't slip. Power is then transmitted through the engaged clutch pack to its hub-mounted gear.
Likewise, when clutch pressure is bled from the clutch pack, the piston releases the friction discs and steel plates, and they are free to slide past each other while disengaged. This allows the gear to spin independently on its shaft, transmitting no power.
1 st Clutch
The 1 st clutch engages/disengages 1 st gear, and is located at the center of the secondary shaft.
The 1st clutch is joined back-to-back to the 2nd clutch.
The 1 st clutch is supplied clutch pressure by its oil feed pipe within the secondary shaft.
1st-hold Clutch
The 1 st-hold clutch engages/disengages 1 st-hold or 1 position, and is located at the end of the countershaft, just behind the torque converter housing. The 1 st-hold clutch is supplied clutch pressure by its oil feed pipe within the countershaft.

2nd Clutch

The 2nd clutch engages/disengages 2nd gear, and is located at the center of the secondary shaft. The 2nd clutch is joined back-to-back to the 1 st slutch. The 2 nd clutch is supplied clutch pressure through the secondary shaft by a circuit connected to the internal hydraulic circuit.

3rd Clutch

The 3rd clutch engages/disengages 3rd gear, and is located at the center of the mainshaft.
The 3rd clutch is joined back-to-back to the 4th clutch.
The 3rd clutch is supplied clutch pressure through the mainshaft by a circuit connected to the regulator valve body.

4th Clutch

The 4th clutch engages/disengages 4th gear, as well as reverse gear, and is located at the center of the mainshaft. The 4th clutch is joined back-to-back to the 3rd clutch. The 4 th clutch is supplied clutch pressure by its oil feed pipe within the mainshaft.

One-way Clutch

The one-way clutch is positioned between the countershaft 1 st gear and 3rd gear, with the 3rd gear splined to the countershaft. The 1st gear provides the outer race surface, and the 3rd gear provides the inner race surface. The one-way clutch locks up when power is transmitted from the mainshaft 1st gear to the countershaft 1 st gear. The 1st clutch and gears remain engaged in the 1st, 2nd, 3rd, and 4th gear ranges in the $\mathrm{D}_{4}, \mathrm{D}_{3}$ or 2 position.

However, the one-way clutch disengages when the 2 nd, 3rd, or 4 th clutches/gears are applied in the D_{4}, D_{3} or 2 position.
This is because the increased rotational speed of the gears on the countershaft overrides the locking "speed range" of the one-way clutch. Thereafter, the one-way clutch free-wheels with the 1 st clutch still engaged.

COUNTERSHAFT 1ST GEAR

View from right side cover side.

Description

Power Flow

		toraue CONVERTER	1ST GEAR 1ST-HOLD CLUTCH	$\begin{array}{\|c\|} \hline \text { 1ST GEAR } \\ \text { 1ST } \\ \text { CLUTCH } \end{array}$	1ST GEAR ONE-WAY CLUTCH	$\begin{gathered} 2 N D \text { GEAR } \\ 2 N D \\ \text { CLUTCH } \end{gathered}$	$\begin{gathered} \text { 3RD GEAR } \\ \text { 3RD } \\ \text { CLUTCH } \end{gathered}$	4TH		REVERSEGEAR	PARKING GEAR
		GEAR						ClUTCH			
	P		\bigcirc	\times	\bigcirc						
	R	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\times
	N	\bigcirc	\times								
D_{4}	1ST	\bigcirc	\times	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\times
	2ND	\bigcirc	\times	*	\times	\bigcirc	\times	\times	\times	\times	\times
	3RD	\bigcirc	\times	* \bigcirc	\times	\times	\bigcirc	\times	\times	\times	\times
	4TH	\bigcirc	\times	*	\times	\times	\times	\bigcirc	\bigcirc	\times	\times
D_{3}	1ST	\bigcirc	\times	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\times
	2ND	\bigcirc	\times	*	\times	\bigcirc	\times	\times	\times	\times	\times
	3RD	\bigcirc	\times	* \bigcirc	\times	\times	\bigcirc	\times	\times	\times	\times
	2	\bigcirc	\times	*	\times	\bigcirc	\times	\times	\times	\times	\times
1		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\times

\bigcirc : Operates, \times : Doesn't operate, *: Although the 1st clutch engages, driving power in not transmitted as the one-way clutch slips.

N Position
Hydraulic pressure is not applied to the clutches. Power is not transmitted to the countershaft.

P Position

Hydraulic pressure is not applied to the clutches. Power is not transmitted to the countershaft. The countershaft is locked by the parking brake pawl interlocking the parking gear.

(cont'd)

Description

Power Flow (cont'd)

[1 Position
In 1 position, hydraulic pressure is applied to the 1 st clutch and 1 st-hold clutch.
The power flow when accelerating is as follows;

1. Engine power transmitted from the torque converter drives the mainshaft idler gear, countershaft idler gear and secondary shaft idler gear.
2. Hydraulic pressure is applied to the 1 st clutch on the secondary shaft, and power is transmitted via the 1 st clutch to the countershaft 1st gear.
3. Hydraulic pressure is also applied to the 1 st-hold clutch on the countershaft. Power transmitted from the secondary shaft 1 st gear is conveyed to the one-way clutch and the 1 st-hold clutch. The one-way clutch is used to drive the countershaft via the countershaft 3 rd gear, and the 1 st-hold clutch drives the countershaft.
4. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

1
 Position

The power flow when decelerating as follows;

1. Hydraulic pressure is applied to the 1 st clutch and 1 st-hold clutch, and rolling resistance from the road surface goes through the front wheels to the final drive gear, then to the secondary shaft idler gear.
2. The one-way clutch disengages at this time because the application of torque is reverse.
3. The counterforce conveyed to the secondary shaft idler gear turns the mainshaft idler gear via the countershaft idler gear. As a result, engine braking can be obtained with 1st gear.

(cont'd)

Description

Power Flow (cont'd)

PositionPosition is provided to drive 2nd speed only1. Hydraulic pressure is applied to the 2 nd clutch on the secondary shaft, and power is transmitted via the $2 n d$ clutch to the secondary shaft 2nd gear.
2. Power transmitted from the secondary shaft $2 n d$ gear is conveyed to the countershaft 2 nd gear, and drives the countershaft.
3. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

NOTE: Hydraulic pressure is also applied to the 1st clutch, but since the rotation speed of the 2nd gear exceeds that of the 1 st gear, power from 1st gear is cut off at the one-way clutch.

In D_{4} or D_{3} position, the optimum gear is automatically selected from 1st, 2nd, 3rd, and 4th speeds, according to conditions such as the balance between throttle opening (engine load) and vehicle speed.
D_{4} or D_{3} Position, 1st speed

1. Hydraulic pressure is applied to the 1 st clutch, and power is transmitted via the 1 st clutch to the secondary shaft 1 st gear.
2. Power transmitted to the secondary shaft 1 st gear is conveyed via the countershaft 1 st gear to the one-way clutch. The one-way clutch is used to drive the countershaft.
3. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

NOTE: In D_{4} or D_{3} position, hydraulic pressure is not applied to the 1 st-hold clutch.

(cont'd)

Description

Power Flow (cont'd)

D_{4} or D_{3} Position, 2nd speed

1. Hydraulic pressure is applied to the 2 nd clutch, and power is transmitted via the 2 nd clutch to the secondary shaft 2nd gear.
2. Power transmitted to the secondary shaft 2 nd gear is conveyed to the countershaft 2 nd gear, and drives the countershaft.
3. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

NOTE: $\ln \mathrm{D}_{4}$ or D_{3} position, 2 nd speed, hydraulic pressure is also applied to the 1 st clutch, but since the rotation speed of 2 nd gear exceeds that of 1 st gear, power from 1 st gear is cut off at the one-way clutch.

D_{4} or D_{3} Position, 3rd speed

1. Hydraulic pressure is applied to the 3rd clutch, and power is transmitted via the 3rd clutch to the mainshaft 3rd gear.
2. Power transmitted to the mainshaft 3 rd gear is conveyed to the countershaft 3 rd gear, and drives the countershaft.
3. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

NOTE: $\operatorname{In} \mathrm{D}_{4}$ or D_{3} position, 3rd speed, hydraulic pressure is also applied to the 1 st clutch, but since the rotation speed of 3rd gear exceeds that of 1st gear, power from 1st gear is cut off at the one-way clutch.

(cont'd)

Description

Power Flow (cont'd)

D4 Position, 4th speed

1. Hydraulic pressure is applied to the 4th clutch, and power is transmitted via the 4th clutch to the mainshaft 4th gear.
2. Power transmitted to the mainshaft 4th gear is conveyed to the countershaft 4 th gear, and drives the countershaft via the reverse selector hub.
3. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

NOTE: In D_{4} position, 4th speed, hydraulic pressure is also applied to the 1 st clutch, but since the rotation speed of 4th gear exceeds that of 1 st gear, power from 1 st gear is cut off at the one-way clutch.

R Position

1. Hydraulic pressure is switched by the manual valve to the servo valve, which moves the reverse shift fork to the reverse position. The reverse shift fork engages with the reverse selector, reverse selector hub and the countershaft reverse gear.
2. Hydraulic pressure is also applied to the 4th clutch. Power is transmitted from the mainshaft reverse gear via the reverse idler gear to the countershaft reverse gear.
3. The rotation direction of the countershaft reverse gear is changed via the reverse idler gear.
4. Power is transmitted to the final drive gear, which in turn drives the final driven gear.

Description

Electronic Control System

Electronic Control System

The electronic control system consists of the Transmission Control Module (TCM), sensors, and four solenoid valves. Shifting and lock-up are electronically controlled for comfortable driving under all conditions.
The TCM is located below the dashboard, under the front lower panel on the passenger's side.

Lock-up Control
From sensor input signals, the TCM determines whether to turn the lock-up ON or OFF and activates lock-up control solenoid valve A and/or B accordingly.
The combination of driving signals to lock-up control solenoid valves A and B is shown in the table below.

Lock-up control Solenoid valve	A	B
Lock-up condition	OFF	OFF
Lock-up OFF	ON	OFF
Lock-up, slight	ON	ON
Lock-up, half	ON	ON
Lock-up, full	ON	Duty operation OFF \leftrightarrow ON
Lock-up during deceleration		

Shift Control

The TCM instantaneously determines which gear should be selected by various signals sent from sensors, and actuates the shift control solenoid valves A and B control shifting. Also, a Grade Logic Control System (KH model) has been adopted to control shifting in D_{4} position while the vehicle is ascending or descending a slope, or reducing speed.

Shift control solenoid valve Position (gear)		A	B
$\mathrm{D}_{3}, \mathrm{D}_{4}$	(1st)	OFF	ON
	(2nd)	ON	ON
	(3rd)	ON	OFF
D_{4}	(4th)	OFF	OFF
2	(2nd)	ON	ON
1	(1st)	ON	OFF
R	(Reverse)	ON	OFF

Description

Electronic Control System (cont'd)

- GRADE LOGIC CONTROL SYSTEM (KH model)

How it works:
The TCM compares actual driving conditions with driving conditions memorized in the TCM, based on the input from the vehicle speed sensor, throttle position sensor, engine coolant temperature sensor, barometric pressure sensor, brake switch signal and select lever position signal, to control shifting while a vehicle is ascending or descending a slope, or reducing speed.

SENSORS SIGNALS DETECTED TCM

- Ascending Control

When the TCM determines that the vehicle is climbing a hill in D_{4} position, the system extends the engagement area of 3rd gear to prevent the transmission from frequently shifting between 3rd and 4th gears, so the vehicle can run smooth and have more power when needed.

NOTE: Shift schedules between 3rd and 4th gear are stored in the TCM to enable the transmission to automatically select the most suitable gear according to the magnitude of a gradient by Fuzzy Logic.

- Descending Control

When the TCM determines that the vehicle is going down a hill in D_{4} position, the shift-up speed from 3rd to 4 th gear when the throttle is closed becomes faster than the set speed for flat road driving to widen the 3rd gear driving area. This, in combination with engine braking from the deceleration lock-up, achieves smooth driving when the vehicle is descending.

There are two ascending modes with different 3rd gear driving areas according to the magnitude of a gradient stored in the TCM.

When the vehicle is in 4th gear, and you are decelerating on a gradual hill, or when you are applying the brakes on a steep hill, the transmission will downshift to 3rd gear. When you accelerate, the transmission will then return to 4 th gear.

- Deceleration Control

When the vehicle goes around a corner, and needs to decelerate first and then accelerate, the TCM sets the data for deceleration control to reduce the number of times the transmission shifts. When the vehicle is decelerating from speeds above $27 \mathrm{mph}(43 \mathrm{~km} / \mathrm{h})$, the TCM shifts the transmission from 4 th to 2 nd earlier than normal to cope with upcoming acceleration.

NOTE:

Fuzzy Logic: Fuzzy logic is a form of artificial intelligence that lets computers respond to changing conditions much like a human mind would.

Description

Electronic Control System (cont'd)

Circuit Diagram and Terminal Locations

Hydraulic Control

The valve body includes the main valve body, the regulator valve body, the throttle valve body, the secondary valve body, the servo body and $1 \mathrm{st} / 2$ nd accumulator body.
The oil pump is driven by splines on the right end of the torque converter which is attached to the engine. Oil flows through the regulator valve to maintain specified pressure through the main valve body to the manual valve and the servo body, directing pressure to each of the clutches.
The shift control solenoid valves A / B and the lock-up control solenoid valves A / B are bolted on the outside of the torque converter housing.

(cont'd)

Description

Hydraulic Control (cont'd)

Main Valve Body

The manual valve, 1-2 shift valve, 2-3 shift valve, lock-up control valve, lock-up shift valve, cooler relief valve, modulator valve, clutch pressure control (CPC) valve and main orifice control valve are all assembled in the main valve body. The primary function of this valve body is switching oil pressure on and off and controlling the hydraulic pressure going to the hydraulic control system.

Regulator Valve Body

The regulator valve body is located on the main valve body. The regulator valve body consists of the regulator valve, torque converter check valve and lock-up timing valve.

Regulator Valve

The regulator valve maintains a constant hydraulic pressure sent from the oil pump to the hydraulic control system, while also furnishing oil to the lubricating system and torque converter.
Oil flows through B and B^{\prime}. The oil which enters through B flows through the valve orifice to A, pushing the regulator valve to the right. According to the level of hydraulic pressure through B, the position of the valve changes, and the amount of the oil through B^{\prime} from D also changes. This operation is continued, maintaining line pressure.
(ENGINE NOT RUNNING)
(ENGINE RUNNING)

To TORQUE CONVERTER

To RELIEF VALVE

Stator Reaction Hydraulic Pressure Control

Hydraulic pressure increase according to torque is performed by the regulator valve using stator torque reaction. The stator shaft is splined in the stator, and its arm end contacts the regulator spring cap. When the car is accelerating or climbing (Torque Converter Range), stator torque reaction acts on the stator shaft, and the stator arm pushes the regulator spring cap in the \rightarrow direction in proportion to the reaction. The stator reaction spring compresses, and the regulator valve moves to increase the regulated control pressure or line pressure. Line pressure is maximum when the stator reaction is maximum.

(cont'd)

Description

Hydraulic Control (cont'd)

Secondary Valve Body

The secondary valve body is located on the main valve body. The servo control valve, orifice control valve, 2 nd orifice control valve, 4 th exhaust valve, $3-4$ shift valve and 3rd kick-down valve are assembled in the secondary valve body.

Throttle Valve Body

The throttle valve body is located on the regulator valve body. The throttle valve body contains the throttle valve B, throttle long valve and relief valve.

Servo Body

The servo body is located on the secondary valve body. The servo valve is integrated with the shift fork shaft, 3rd accumulator piston, 4th accumulator piston and 1 st-hold accumulator piston, which are assembled in the servo body.

1st/2nd Accumulator Body

The $1 \mathrm{st} / 2 \mathrm{nd}$ accumulator body is located on the torque converter housing beside the main valve body. This body contains the 1st and 2nd accumulator pistons.

Description

Hydraulic Flow

General Chart of Hydraulic Pressure

Distribution of Hydraulic Pressure

- Manual Valve ___ To select Line Pressure
- Modulator Valve _ Modulator Pressure
- 1-2 Shift Valve
- 2-3 Shift Valve

Clutch Pressure

- 3-4 Shift Valve
- Throttle Valve B \qquad Throttle B Pressure

NO.	DESCRIPTION OF PRESSURE	NO.	DESCRIPTION OF PRESSURE	NO.	DESCRIPTION OF PRESSURE
1	LINE	15	1ST-HOLD CLUTCH	58	THROTTLE B
2	LINE	16	1ST-HOLD CLUTCH	90	TORQUE CONVERTER
3	LINE	18	LINE	91	TORQUE CONVERTER
3^{\prime}	LINE	20	2ND CLUTCH	92	TORQUE CONVERTER
$3^{\prime \prime}$	LINE	21	2ND CLUTCH	93	OIL COOLER
4	LINE	25	LINE	94	TORQUE CONVERTER
4^{\prime}	LINE	30	3RD CLUTCH	95	LUBRICATION
5	LINE	31	3RD CLUTCH	96	TORQUE CONVERTER
6	MODULATE	40	4TH CLUTCH	97	TORQUE CONVERTER
6^{\prime}	MODULATE (DUTY CONTROL)	41	4TH CLUTCH	99	SUCTION
$6^{\prime \prime}$	MODULATE	55	THROTTLE B	\times	LEAK
9	LINE	56	THROTTLE B		
10	1ST CLUTCH	57	THROTTLE B		

N Position

As the engine turns, the oil pump also starts to operate. Automatic transmission fluid (ATF) is drawn from (99) and discharged into (1). Then, ATF pressure is controlled by the regulator valve and becomes the line pressure (1). The torque converter inlet pressure (92) enters (94) of the torque converter through the orifice and discharges into (90). The torque converter check valve prevents the torque converter pressure from rising.
Under this condition, the hydraulic pressure is not applied to the clutches as the manual valve stops line pressure (1).
NOTE:
When used, "left" or "right" indicates direction on the flowchart.

(cont'd)

Description

Hydraulic Flow (cont'd)

1 Position

The line pressure (1) becomes line pressure (4) at the manual valve and passes to the 1 st clutch and 1 st accumulator. Then line pressure (4) flows through the 1 st-hold clutch and 1st-hold accumulator. The power is transmitted only during deceleration through the 1 st-hold clutch.

Fluid flows by way of:
-Line Pressure (4) \rightarrow 1-2 Shift Valve \rightarrow 2-3 Shift Valve - 3rd Clutch Pressure (31) \rightarrow 3-4 Shift Valve-4th Clutch Pressure $(41) \rightarrow$ Manual Valve - 1st-hold Clutch Pressure (16) \rightarrow 1st-hold Clutch

The modulator pressure (6) is supplied to the 1-2 and 2-3 shift valves.
The line pressure (1) also flows to throttle valve B.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

2 Position

The line pressure (1) becomes line pressure (4) as it passes through the manual valve. It then goes through line (20) to the 2 nd clutch. Also, line pressure (1) goes to the modulator valve through the filter and becomes the modulator pressure (6). Modulator pressure (6) is not supplied to the $1-2,2-3$ and $3-4$ shift valves. Line pressure (1) also flows to throttle valve B.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

(cont'd)

Description

Hydraulic Flow (cont'd)

D_{3} or D_{4} Position

1. 1st Speed

The flow of fluid throuth the torque converter circuit is the same as in N position.
The line pressure (1) becomes line pressure (4) and 1 st clutch pressure (10). The 1 st clutch pressure is applied to the 1 st clutch and 1 st accumulator; consequently, the vehicle will move as the engine power is transmitted.
The line pressure (1) becomes the modulator pressure (6) by the modulator valve and travels to 1-2 and 3-4 shift valves. The $1-2$ shift valve is moved to the right side because the shift control solenoid valve A is turned off and B is turned on by the TCM. This valve stops 2 nd clutch pressure and the power is not transmitted to the 2 nd clutch. Line pressure (4) also flows to the servo valve and line pressure (1) also flows to throttle valve B.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

2. 2nd Speed

The flow of fluid up the 1-2 and 2-3 shift valves is the same as in 1 st speed. As the speed of the car reaches the prescribed value, the solenoid valve A is turned on by means of the TCM. As a result, the 1-2 shift valve is moved to the left and uncovers the port leading to the 2 nd clutch; the $2 n d$ clutch is engaged.

Fluid flows by way of:

- Line pressure (4) \rightarrow 1-2 Shift Valve \rightarrow 2-3 Shift Valve -2 2nd Clutch Pressure (21) \rightarrow 2nd Clutch

The hydraulic pressure also flows to the 1 st clutch. However, no power is transmitted because of the one-way clutch.
NOTE:
When used, "left" or "right" indicates direction on the flowchart.

(cont'd)

Description

Hydraulic Flow (cont'd)

3. 3rd Speed

The flow of fluid up to the 1-2, 2-3 and 3-4 shift valves is the same as in the 2 nd speed. As the speed of the car reaches the prescribed value, the shift control solenoid valve B is turned off (shift control solenoid valve A remains on). The 2-3 shift valve is then moved to the left, uncovering the oil port leading to the 3rd clutch. Since the $3-4$ shift valve is moved to the right to cover the oil port to the 4th clutch, the 3rd clutch is turned on.

Fluid flows by way of:

- Line Pressure (4) \rightarrow 1-2 Shift Valve \rightarrow 2-3 Shift Valve - 3rd Clutch Pressure (31) \rightarrow 3-4 Shift Valve
- 3rd Clutch Pressure $(30) \rightarrow$ 3rd Clutch

The hydraulic pressure also flows to the 1 st clutch. However, no power is transmitted because of the one-way clutch as in the 2nd speed.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

D4 Position

4th Speed

The flow of fluid up to the 1-2, 2-3 and 3-4 shift valves is the same as in the 3rd speed. As the speed of the car reaches the prescribed value, the shift control solenoid valve A is turned off (shift control solenoid valve B remains off).
As this takes place, $3-4$ shift valve is moved to the left and uncovers the oil port leading to the 4 th clutch. Since the 1-2 and 2-3 shift valves are kept on the left side, the fluid flows through the 4 th clutch; the power is transmitted through the 4 th clutch.

Fluid flows by way of:
-Line Pressure (4) \rightarrow 1-2 Shift Valve \rightarrow 2-3 Shift Valve - 3rd Ciutch Pressure (31) \rightarrow 3-4 Shift Valve - 4th Clutch pressure $(41) \rightarrow$ Manual Valve - 4th Clutch Pressure (40) \rightarrow 4th Clutch

The hydraulic pressure also flows to the 1 st clutch. However, no power is transmitted because of the one-way clutch as in 2nd and 3rd speed.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

(cont'd)

Description

- Hydraulic Flow (cont'd)

(A) Position

The flow of fluid through the torque converter circuit is the same as in the \mathbf{N} position. The fluid (1) from the oil pump flows through the manual valve and becomes line pressure (3). It then flows through the 1-2 shift valve to the servo valve ($\mathbf{3}^{\prime}$), causing the shift fork shaft to be moved in the reverse direction.
Under this condition, the shift control solenoid valve A is turned on whereas the valve B is turned off as in 3rd speed in D_{4} or D_{3} position. As a result, the $1-2$ shift valve is also moved to the left. The fluid (3^{\prime}) will flow through the servo valve and manual valve to the 4th clutch; power is transmitted through the 4th clutch.

Reverse Inhibitor Control

When the R position is selected while the vehicle is moving forward at a speed over $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h})$, the TCM outputs 1st signal (A: OFF, B: ON), and the 1-2 shift valve is moved to the right side. The line pressure (3) is intercepted by the $1-2$ shift valve; consequently, power is not transmitted as the 4th clutch and servo valve are not operated.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

P Position
The flow of fluid through the torque converter circuit is the same as in N position. The line pressure (1) becomes the line pressure (3) as it passes through the manual valve. Then line pressure (3) flows through the $1-2$ shift valve to the servo valve and the servo control valve, causing the shift fork shaft to be moved to the reverse position as in the R position. However, the hydraulic pressure is not supplied to the clutches. The power is not transmitted.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

Description

Lock-up System

Lock-up Clutch

1. Operation (clutch on)

With the lock-up clutch on, the oil in the chamber between the torque converter cover and lock-up piston is drained off, and the converter oil exerts pressure through the piston against the torque converter cover. As a result, the converter turbine is locked to the converter cover. The effect is to bypass the converter, thereby placing the car in direct drive.

Power flow

The power flows by way of:

```
Engine
\downarrow
Drive plate
\downarrow
Torque converter cover
\downarrow
Lock-up piston
\downarrow
Damper spring
\downarrow
Turbine
\downarrow
Mainshaft
```


2. Operation (clutch off)

With the lock-up clutch off, the oil flows in the reverse of CLUTCH ON. As a result, the lock-up piston moves away from the converter cover, and the torque converter lock-up is released.

Power flow
Engine
\downarrow
Drive plate
\downarrow
Torque converter cover
\downarrow
Pump
\downarrow
Turbine
\downarrow
Mainshaft

$\ln \mathrm{D}_{4}$ position in 2nd, 3rd and 4th, and D_{3} position in 3rd, pressurized fluid is drained from the back of the torque converter through an oil passage, causing the lock-up piston to be held against the torque converter cover. As this takes place, the mainshaft rotates at the same speed as the engine crankshaft. Together with hydraulic control, the TCM optimizes the timing of the lock-up system. Under certain conditions, the lock-up clutch is applied during deceleration, in 3rd and 4th speed.

The lock-up system controls the range of lock-up according to lock-up control solenoid valves A and B, and throttle valve B. When lock-up control solenoid valves A and B activate, modulator pressure changes. Lock-up control solenoid valves A and B are mounted on the torque converter housing, and are controlled by the TCM.

NOTE:
When used, 'left" or "right" indicates direction on the flowchart.

(cont'd)

Description

Lock-up System (cont'd)

No Lock-up

The pressurized fluid regulated by the modulator works on both ends of the lock-up shift valve and on the left side of the lock-up control valve. Under this condition, the pressures working on both ends of the lock-up shift valve are equal and the shift valve is moved to the right side by the tension of the valve spring alone. The fluid from the oil pump will flow through the left side of the lock-up clutch to the torque converter; i,e., the lock-up clutch is in OFF condition.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

Partial Lock-up

Lock-up Control Solenoid Valve A: ON Lock-up Control Solenoid Valve B: OFF
The TCM switches the solenoid valve A on to release the modulator pressure in the left cavity of the lock-up shift valve. The modulator pressure in the right cavity of the lock-up shift valve overcomes the spring force; thus the lock-up shift valve is moved to the left side.
The modulator pressure is separated to the two passages:
Torque Converter Inner Pressure: enters into right side to engage lock-up clutch
Torque Converter Back Pressure: enters into left side to disengage lock-up clutch
The back pressure (F2) is regulated by the lock-up control valve, whereas the position of the lock-up timing valve is determined by the throttle B pressure, tension of the valve spring, and pressure regulated by the modulator. Also the position of the lock-up control valve is determined by the back pressure of the lock-up control valve and torque converter pressure regulated by the check valve. With the lock-up control solenoid valve B kept off, the modulator pressure is maintained in the left end of the lock-up control valve; in other words, the lock-up control valve is moved slightly to the left side. This slight movement of the lock-up control valve causes the back pressure to be lowered slightly, resulting in partial lock-up.
NOTE:
When used, 'left" or "right" indicates direction on the flowchart.

(cont'd)

Description

Lock-up System (cont'd)

Half Lock-up

Lock-up Control Solenoid valve A: ON Lock-up Control Solenoid Valve B: ON
The modulator pressure is released by the solenoid valve B, causing the modulator pressure in the left cavity of the lockup control valve to lower.
Also the modulator pressure in the left cavity of the lock-up timing valve is low. However, throttle B pressure is still low at this time; consequently, the lock-up timing valve is kept on the right side by the spring force.
With the lock-up control solenoid valve B turned on, the lock-up control valve is moved somewhat to the left side, causing the back pressure (F2) to lower. This allows a greater amount of the fluid (F1) to work on the lock-up clutch so as to engage the clutch. The back pressure (F2) which still exists prevents the clutch from engaging fully.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

Full Lock-up
Lock-up Control Solenoid Valve A: ON Lock-up Control Solenoid Valve B: ON
When the vehicle speed further increases, the throttle B pressure is increased in accordance with the throttle opening.
The lock-up timing valve overcomes the spring force and moves to the left side. Also, this valve closes the oil port leading to the torque converter check valve.
Under this condition, the throttle B pressure working on the right end of the lock-up control valve becomes greater than that on the left end (modulator pressure in the left end has already been released by the solenoid valve B); i.e., the lock-up control valve is moved to the left. As this happens, the torque converter back pressure is released fully, causing the lock-up clutch to be engaged fully.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

(cont'd)

Description

- Lock-up System (cont'd)

Deceleration Lock-up

Lock-up Control Solenoid Valve A: ON Lock-up Control Solenoid Valve B: Duty Operation (ON $\leftrightarrow O F F$)
The TCM switches solenoid valve B on and off rapidly under certain conditions. The slight lock-up and half lock-up regions are maintained so as to lock the torque converter properly.

NOTE:
When used, "left" or "right" indicates direction on the flowchart.

NOTE: LHD type is shown. RHD is similar.

Circuit Diagram

Troubleshooting Procedures

When the TCM senses an abnormality in the input or output systems, the D_{4} indicator light in the gauge assembly will blink.
When the Service Check Connector (located under the dash on the passenger side) is connected with the special tool as shown, the D_{4} indicator light will blink the Diagnostic Trouble Code (DTC) when the ignition switch is turned on.

When the $\overline{D_{4}}$ indicator light has been reported on, connect the Service Check Connector with the special tool. Then turn on the ignition switch and observe the D_{4} indicator light.

Codes 1 through 9 are indicated by individual short blinks, codes 10 through 15 are indicated by a series of long and short blinks. One long blink equals 10 short blinks. Add the long and short blinks together to determine the code. After determining the code, refer to the electrical system Symptom-to-Component Chart on pages 14-50 and 51.

Some PGM-FI problems will also make the D_{4} indicator light come on. After repairing the PGM-FI system, disconnect the BACK UP fuse (7.5 A) in the under-hood fuse/relay box for more than 10 seconds to reset the TCM memory.

NOTE: Disconnecting the BACK UP fuse also cancels the radio preset stations and the clock setting. Make note of the radio presets before removing the fuse so you can reset them.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

If the inspection for a particular failure code requires the use of Test Harness (07LAJ-PT3010A or O7LAJPT30100):

1. Remove the right door sill molding (see section 20).
2. Pull the carpet back to expose the TCM.
3. Remove the ECM cover mounting nuts and turn the TCM over (see page 14-85).
4. Connect the wire harness to the Test Harness, and/or connect the Test Harness to the TCM according to the troubleshooting flowchart.

NOTE:

- Only the A and D terminals of the Test Harness are used for A / T troubleshooting.
- Unless otherwise noted, use only the Digital Multitester, commercially available or 07411-0020000, for testing.

- TCM Reset Procedure

1. Turn the ignition switch off.
2. Remove the No. 39 BACK UP fuse (7.5 A) from the under-hood fuse/relay box for 10 seconds to reset the TCM.

NOTE: Disconnecting the No. 39 BACK UP fuse also cancels the radio preset stations and the clock setting. Make note of the radio presets before removing the fuse so you can reset them.

- Final Procedure

NOTE: This procedure must be done after any troubleshooting.

1. Remove the special tool from the Service Check Connector.
2. Reset the TCM.
3. Set the radio preset stations and clock setting.

Symptom-to-Component Chart

Electrical System

Number of D_{4} indicator light blinks while Service Check Connector is connected with the special tool.	D_{4} indicator light	Symptom	Possible Cause	Refer to page
1	Blinks	- Lock-up clutch does not engage. - Lock-up clutch does not disengage. - Unstable idle speed.	- Disconnected lock-up control solenoid valve A connector - Short or open in lock-up control solenoid valve A wire - Faulty lock-up control solenoid valve A	14-52
2	Blinks	- Lock-up clutch does not engage.	- Disconnected lock-up control solenoid valve B connector - Short or open in lock-up control solenoid valve B wire - Faulty lock-up control solenoid valve B	14-54
3	Blinks or OFF	- Lock-up clutch does not engage.	- Disconnected throttle position (TP) sensor connector - Short or open in TP sensor wire - Faulty TP sensor	14-56
4	Blinks	- Lock-up clutch does not engage.	- Disconnected vehicle speed sensor (VSS) connector - Short or open in VSS wire - Faulty VSS	14-57
5	Blinks	- Fails to shift other than 2nd $\leftrightarrow 4$ th gears. - Lock-up clutch does not engage.	- Short in A/T gear position switch wire - Faulty A/T gear position switch	14-58
6	OFF	- Fails to shift other than 2nd $\leftrightarrow 4$ th gears. - Lock-up clutch does not engage. - Lock-up clutch engages and disengages alternately.	- Disconnected A/T gear position switch connector - Open in A/T gear position switch wire - Faulty A/T gear position switch	14-60
7	Blinks	- Fails to shift (between 1 st $\leftrightarrow 4$ th, $2 \mathrm{nd} \leftrightarrow 4$ th or 2nd $\leftrightarrow 3$ rd gears only). - Fails to shift (stuck in 4th gear).	- Disconnected shift control solenoid valve A connector - Short or open in shift control solenoid valve A wire - Faulty shift control solenoid valve A	14-62
8	Blinks	- Fails to shift \{stuck in 1st or 4th gears).	- Disconnected shift control solenoid valve B connector - Short or open in shift control solenoid valve B wire - Faulty shift control solenoid valve B	14-64
9	Blinks	- Lock-up clutch does not engage.	- Disconnected countershaft speed sensor connector - Short or open in the countershaft speed sensor wire - Faulty countershaft speed sensor	14-66

Number of D_{4} indicator light blinks while Service Check Connector is connected with the special tool.	D_{4} indicator light	Symptom	Possible Cause	Refer to page
10	Blinks	- Lock-up clutch does not engage.	- Disconnected engine coolant temperature (ECT) sensor connector - Short or open in ECT sensor wire - Faulty ECT sensor	14-68
11	OFF	- Lock-up clutch does not engage.	- Disconnected ignition coil connector - Short or open in ignition coil wire - Faulty ignition coil	14-70
13 NOTE: A code 13 is applicable to KH model.	Blinks	- No specific symptom appears.	- Short or open in BLU/WHT wire between the D3 terminal and ECM - Faulty barometric pressure (BARO) sensor NOTE: The BARO sensor is built into the ECM	14-71
14	Blinks	- Transmission jerks hard when shifting.	- Short or open in FAS (BRN/WHT) wire between the D16 terminal and ECM - Faulty ECM	14-73
15	OFF	- Transmission jerks hard when shifting.	- Disconnected mainshaft speed sensor connector - Short or open in mainshaft speed sensor wire - Faulty mainshaft speed sensor	14-75

If the self-diagnosis D_{4} indicator light does not blink, perform an inspection according to the table below.

Symptom	Inspection	Ref.page
D_{4} indicator light is on steady, not blinking whenever the ignition is on.	-	$14-77$
D_{4} turned on.	-	$14-78$
Lock-up clutch does not have duty operation (ON \leftrightarrow OFF).	Check A/C signal with A/C on.	$14-80$
Lock-up clutch does not engage.	Check brake switch signal.	$14-81$
Shift lever cannot be moved from depressed.	position with the brake pedal	

- If a customer describes the symptoms for codes 3 , (yet the D_{4} indicator light is not blinking), 6, 11 or 15 , it will be necessary to recreate the symptom by test driving, and then checking the D_{4} indicator light with the ignition still ON.
- If the D_{4} indicator light displays codes other than those listed above, the TCM is faulty.
- Sometimes the D_{4} indicator light and the Malfunction Indicator Lamp (MIL) may come on simultaneously. If so, check the PGM-FI system according to the number of blinks on the MIL, then reset the memory by removing the BACK UP fuse in the under-hood fuse/relay box for more than 10 seconds. Drive the vehicle for several minutes at speed over $30 \mathrm{mph}(50 \mathrm{~km} / \mathrm{h})$, then recheck the MIL.

NOTE: Disconnecting the BACK UP fuse also cancels the radio preset stations and the clock setting. Make note of the radio presets before removing the fuse so you can reset them.

Electrical Troubleshooting

Troubleshooting Flowchart

Self-diagnosis D4 indicator light blinks once.

Turn the ignition switch ON.

Check whether the Malfunction Indicator Lamp (MIL) blinks (see section 11).

NO
Turn the ignition switch OFF.

Disconnect the 26P and 22P connectors from the TCM.
Connect the Test Harness " A " and " D " connectors to the wire harness only, not to the TCM (see page 14-49).

Turn the ignition switch ON.

Measure the voltage between the D18 (+) and A25 or A26 (-) terminals.

YES

Measure the voltage between the A6 (+) and A25 or A26 (-) terminals.

Turn the ignition switch OFF.

To page 14-53

14-52

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Self-diagnosis D4 indicator light blinks twice.

Turn the ignition switch ON .

Check whether the Malfunction Indicator Lamp (MIL) blinks (see section 11).

Possible Cause
- Disconnected lock-up control
solenoid valve B connector
- Short or open in lock-up control
solenoid valve B wire
- Faulty lock-up control solenoid
valve B

Repair the PGM-FI System (see section 11).
NO
Turn the ignition switch OFF.

Disconnect the 26P and 22P connectors from the TCM.
Connect the Test Harness " A " and " D " connectors to the wire harness only, not to the TCM (see page 14-49).

Turn the ignition switch ON.

Measure the voltage between the D18 (+) and A25 or A26 (-) terminals.

Repair open or short in LT GRN/ BLK wire between the D18 terminal and the ECM.

Measure the voltage between the A4 (+) and A25 or A26 (-) terminals.

Repair short to power source in GRN/BLK wire between the A4 terminal and the lock-up control solenoid valve B.

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Possible Cause
- Disconnected throttle position
(TP) sensor connector
- Short or open in TP sensor wire
- Faulty TP sensor

Measure the voltage between the D18 (+) and A25 or A26(-) terminals.

Repair the PGM-FI System (see section 11).

Check for loose TCM connectors. If necessary, substitute a knowngood TCM and recheck.

Self-diagnosis D_{4} indicator light blinks four times.

- Disconnected vehicle speed sensor (VSS) connector
- Short or open in VSS wire
- Faulty VSS

Refer to section 23 for vehicle speed sensor (VSS) test.

A warning

Make sure lifts, jacks, and safety stands are placed properly (see section 1).

- Set the parking brake securely and block the rear wheels.
- Jack up the front of the car and support with safety stands.

Rotate the front wheel and check for voltage between the D9 (+) and A25 or A26 (-) terminals. Block the other wheel so it does not turn.

Check for short or open in ORN wire between the D9 terminal and the VSS. If wire is OK, check the VSS (see section 23).

Check for loose TCM connectors. If necessary, substitute a knowngood TCM and recheck.

Electrical Troubleshooting
Troubleshooting Flowchart (cont'd)

Self-diagnosis D_{4} indicator light blinks five times.

Turn the ignition switch ON .

Observe the A / T gear position indicator, and select each position separately.

Turn the ignition switch OFF.

Connect the Test Harness between the TCM and connectors (see page $14-49$).

Possible Cause
- Short in A / T gear position
switch wire
- Faulty A/T gear position switch

NOTE: Code 5 is caused when the TCM receives two gear position inputs at the same time.

The system is OK at this time. Check the wire harness for damage.

Check for short in GRN/RED wire between the A21 terminal and the A/T gear position switch or A/T gear position indicator. If wire is OK, check for loose TCM connectors. If necessary, substitute a known-good TCM and recheck.

Check for short in LT GRN wire between the A19 terminal and the A/T gear position indicator, or a short in GRN/WHT or GRN wires between the A/T gear position indicator and the A/T gear position switch. If wires are OK, check for loose TCM connectors. If necessary, substitute a known-good TCM and recheck.

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Self-diagnosis D4 indicator light blinks seven times.

Turn the ignition switch ON.

Check whether the Malfunction Indicator Lamp (MIL) blinks (see section 11).
 NO

Turn the ignition switch OFF.

Disconnect the 26P and 22P connectors from the TCM.
Connect the Test Harness " A " and " D " connectors to the wire harness only, not to the TCM (see page $14-49$).

Turn the ignition switch ON.

Measure the voltage between the D18 (+) and A25 or A26 (-) terminals.

Repair open or short in LT GRN/ BLK wire between the D18 terminal and the ECM.

Measure the voltage between the A5 (+) and A25 or A26 (-) terminals.
 NO

Turn the ignition switch OFF.

To page 14-63
Repair short to power source in BLU/YEL wire between the A5 terminal and the shift control solenoid valve A.

(cont'd)

Electrical Troubleshooting

- Troubleshooting Flowchart (cont'd)

Self-diagnosis D_{4} Indicator light
blinks eight times.

Turn the ignition switch ON.
$\begin{array}{l}\text { Check whether the Malfunction } \\ \text { Indicator Lamp (MIL) blinks (see }\end{array}$

YES
Is the MIL blinking?
NO
Turn the ignition switch OFF.

Disconnect the 26P and 22P connectors from the TCM.
Connect the Test Harness " A " and " D " connectors to the wire harness only, not to the TCM (see page 14-49).

Repair open or short in LT GRN/ BLK wire between the D18 terminal and the ECM.

To page 14-65

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

To page 14-67

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Possible Cause

- Disconnected ignition coil connector
- Short or open in ignition coil wire
- Faulty ignition coil

NOTE: View from wire side.

Check for loose TCM connectors. If necessary, substitute a knowngood TCM and recheck.

Self-diagnosis D_{4} indicator light blinks thirteen times.

Possible Cause
- Short or open in BLU/WHT wire between the
D3 terminal and the ECM.
- Faulty barometric pressure (BARO) sensor.
NOTE: The BARO sensor is built into the ECM.

NOTE: A code 13 is applicable to KH model.

Measure the voltage between the D18 (+) and A25 or A26 (-) terminals.

Repair open or short in LT GRN/ BLK wire between the D18 terminal and the ECM.

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Check for loose TCM and ECM connectors. If necessary, substitute a known-good TCM and recheck.

Self-diagnosis D_{4} indicator light

Possible Cause
- Short or open in FAS
(BRN/WHT) wire.
- Faulty ECM.

YES Repair the PGM-FI System (see section 11).

Measure the voltage between the D16(+) and A25 or A26(-) terminals.

Disconnect the Test Harness from the TCM, but leave it connected to the car harness.

Turn the ignition switch ON.
Check for loose TCM connectors. If necessary, substitute a knowngood TCM and recheck.

$$
0 .
$$

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Possible Cause
- Disconnected mainshaft speed
sensor connector
- Short or open in mainshaft
speed sensor wire.
- Faulty mainshaft speed sensor.

NOTE:

- A code 15 on the TCM doesn't always mean there's an electrical problem in the mainshaft or countershaft speed sensor circuit; code 15 may also indicate a mechanical problem in the transmission.

To page 14-76
(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

 tween D12 terminal and the mainshaft speed sensor.

Check for loose TCM connectors. If necessary, substitute a knowngood TCM and recheck.

Turn the ignition switch OFF.

Disconnect the 26 P connector from the TCM.
Connect the Test Harness " A " connector to the wire harness only, not to the TCM (see page 14-49).

Measure the voltage between the A8 $(+)$ terminal and body ground (-).

Measure the voltage between the A17 terminal and body ground with the selector lever in any position other than D_{4} position.

0000000000000	$6 \% \%$ \% 6%	W0\%	00000000000
0000000000000	\%oberaco	Q 0,48	00000000000

$$
\begin{aligned}
& \mathbf{A B (+)} \\
& \frac{1}{6} \\
& \frac{1}{=}(-)
\end{aligned}
$$

Repair short to power in BLU/RED wire between A8 terminal and gauge assembly.

Check for a short to ground on the LT GRN/BLK wire. If the wire is OK, replace the A/T gear position indicator.

Replace the TCM.

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

(cont'd)

Electrical Troubleshooting

Troubleshooting Flowchart (cont'd)

Symptom

- Lock-up clutch does not have duty operation (ON \leftrightarrow OFF).
- Lock-up clutch does not engage.

Repair open in RED/BLU wire between the A22 terminal and A/C compressor clutch relay.

- A/C signal is OK.
- Check for loose TCM connectors. If necessary, substitute a known-good TCM and recheck.
- Inspect the air conditioning (see section 22).

Inspection of the brake switch signal.

Symptom
Shift lever cannot be moved from P position with the brake pedal depressed. l

Check that the brake lights come on with the brake pedal depressed.

Disconnect the 26P and 22P connectors from the TCM.
Connect the Test Harness "A" and " D " connectors to the wire harness only, not to the TCM (see page 14-49).

Measure the voltage between the D2 (+) and A25 or A26 (-) terminals with the brake pedal depressed.

- Brake switch signal OK.
- Check for loose TCM connectors. If necessary, substitute a known-good TCM and recheck.
- Inspect the brake switch circuit (see section 23).

Lock-up Control Solenoid Valve A/B

Test

NOTE:
Lock-up control solenoid valves A and B must be removed/ replaced as an assembly.

1. Disconnect the connector from the lock-up control solenoid valve A / B.
2. Measure the resistance between the No. 1 terminal (solenoid valve A) of the lock-up control solenoid valve connector and body ground, and between the No. 2 terminal (solenoid valve B) and body ground.

STANDARD: $12-24 \Omega$
View from terminal side.

LOCK-UP CONTROL
SOLENOID VALVE
ASSEMBLY
3. Replace the lock-up control solenoid valve assembly if the resistance is out of specification.
4. If the resistance is within the standard, connect the No. 1 terminal of the lock-up control solenoid valve connector to the battery positive terminal. A clicking sound should be heard. Connect the No. 2 terminal to the battery positive terminal. A clicking sound should be heard. Replace the lock-up control solenoid valve assembly if no clicking sound is heard.

Replacement

1. Remove the mounting bolts and lock-up control solenoid valve assembly.

NOTE:
Be sure to remove or replace the lock-up control solenoid valves A and B as an assembly.
2. Check the lock-up control solenoid valve oil passages for dust or dirt, and replace as an assembly, if necessary.

FILTER/GASKET
Replace.
3. Clean the mounting surface and oil passages of the lock-up control solenoid valve assembly, and install a new filter/gasket.
4. Check the connector for rust, dirt or oil, and reconnect it securely.

Shift Control Solenoid Valve A/B

- Test

NOTE:
Shift control solenoid valves A and B must be removed/ replaced as an assembly.

1. Disconnect the connector from the shift control solenoid valve A/B.
2. Measure the resistance between the No. 1 terminal (solenoid valve A) of the shift control solenoid valve connector and body ground, and between the No. 2 terminal (solenoid valve B) and body ground.

STANDARD: $12-24 \Omega$

SHIFT CONTROL
SOLENOID VALVE
ASSEMBLY
3. Replace the shift control solenoid valve assembly if the resistance is out of specification.
4. If the resistance is within the standard, connect the No. 1 terminal of the shift control solenoid valve connector to the battery positive terminal. A clicking sound should be heard. Connect the No. 2 terminal to the battery positive terminal. A clicking sound should be heard. Replace the shift control solenoid valve assembly if no clicking sound is heard.

Replacement

1. Remove the mounting bolts and shift control solenoid valve assembly.

NOTE:
Be sure to remove or replace the shift control solenoid valves A and B as an assembly.
2. Check the shift control solenoid valve oil passages for dust or dirt, and replace as an assembly, if necessary.

3. Clean the mounting surface and oil passages of the shift control solenoid valve assembly, and install a new filter/gasket.
4. Check the connector for rust, dirt or oil, and reconnect it securely.

Mainshaft/Countershaft Speed Sensors

Replacement

1. Remove the 6 mm bolt from the transmission housing, and remove the mainshaft or countershaft speed sensor.

2. Replace the O-ring with a new one before reinstalling the mainshaft or countershaft speed sensor.

Transmission Control Module (TCM)

Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the right door sill molding (see section 20).
2. Pull the carpet back to expose the TCM.
3. Remove the ECM cover mounting nuts and turn the TCM over.

4. Remove the TCM and disconnect the wire harness connectors.

Symptom-to-Component Chart

Hydraulic System

SYMPTOM	Check these items on the PROBABLE CAUSE List	Check these items on the NOTES List
Engine runs, but car does not move in any gear.	1, 6, 7, 16	K, L, R, S
Car moves in R and 2, but not in D_{3}, D_{4} or 1 position.	8, 29, 44, 48	C, M, O
Car moves in D3, D4, 1, R, but not in 2 position.	9, 30, 49	C, L
Car moves in $\mathrm{D}_{3}, \mathrm{D}_{4}, 2,1$, but not in B position.	1, 11, 22, 34, 38, 39, 40	C, L, Q
Car moves in N position.	1, 8, 9, 10, 11, 46, 47	C, D
Excessive idle vibration.	5,17	B, K, L
Slips in all gears.	6, 7, 16	C, L
No engine braking in 1 position.	12	C, D, L
Slips in 1st gear.	8, 29, 44, 48	C, N, O
Slips in 2nd gear.	9, 20, 23, 30, 49	C, L
Slips in 3rd gear.	10, 21, 23, 31, 49	C, L
Slips in 4th gear.	11, 23, 32, 44	C. L, N
Slips in reverse gear.	11, 32, 34, 44	C, N
Flares on 1-2 upshift.	3, 15, 23	E, L, V
Flares on 2-3 upshift.	3, 15, 23, 24, 49	E, L, V
Flares on 3-4 upshift.	3, 15, 23, 25, 49	E, L, N, V
No upshift; transmission stays in 1st gear.	14, 19, 23	G, L
No downshift to 1st gear.	12, 19	G, L
Late upshift.	14	L, V
Erratic shifting.	2, 14, 26	V
Harsh shift (up and down shifting).	$\begin{aligned} & 2,4,15,23,24,25,26,27, \\ & 47 \end{aligned}$	A, E, H, I, L, V
Harsh shift (1-2).	2, 9, 15, 23	C, D, E, V
Harsh shift ($2-3)$.	2, 10, 15, 23, 24	C, D, E, H, L, V
Harsh shift (3-4).	2, 11, 15, 23, 25	C, D, E, I, L, V
Harsh kick-down shifts.	2, 15, 23, 26, 27, 28	E, L, Q, V
Harsh kick-down shift (2-1).	48	\bigcirc
Harsh downshift at closed throttle.	2, 15, 23	E, T
Harsh shift when manually shifting to 1 position.	33	L
Axle(s) slips out of transmission on turns.	43,50	L, P, Q
Axle(s) stuck in transmission.	43	L, Q
Ratcheting noise when shifting into R position.	6, 7, 38, 39, 40	K, L, Q
Loud popping noise when taking off in B position.	38, 39, 40	L, Q
Ratcheting noise when shifting from R to position or from R to N position.	38, 39, 40, 45	L, Q
Noise from transmission in all selector lever positions.	6, 17	K, L, Q
Noise from transmission only when wheels are rolling.	39, 42	L, o
Gear whine, rpm related (pitch changes with shifts).	8, 13, 41	K, L, Q
Gear whine, speed related (pitch changes with speed).	38, 42	L, O
Transmission will not shift into 4th gear in D44 position	1, 21, 28, 32	L
Lock-up clutch does not lock-up smoothly.	17, 36, 37	L
Lock-up clutch does not operate properly.	$2,3,14,15,18,35,36,37$	E, L, V
Transmission has multitude of problems shifting. At disassembly, large particles of metal are found on magnet.	43	L, O

PROBABLE CAUSE

1.	Shift cable broken/out of adjustment.
2.	Throttle cable too short.
3.	Throttle cable too long.
4.	Wrong type ATF.
5.	Idle rpm too low/high.
6.	Oil pump worn or binding.
7.	Pressure regulator stuck.
8.	1st clutch defective.
9.	2nd clutch defective.
10.	3rd clutch defective.
11.	4th clutch defective.
12.	1st-hold clutch defective.
13.	Mainshaft, countershaft, and secondary shaft idler gears worn/damaged.
14.	Modulator valve stuck.
15.	Throttle valve B stuck.
16.	ATF strainer clogged.
17.	Torque converter defective.
18.	Torque converter check valve stuck.
19.	1-2 shift valve stuck.
20.	$2-3$ shift valve stuck.
21.	3-4 shift valve stuck.
22.	Servo control valve stuck.
23.	Clutch pressure control (CPC) valve stuck.
24.	2nd orifice control valve stuck.
25.	Orifice control valve stuck.
26.	Main orifice control valve stuck.
27.	3rd kick-down valve stuck.
28.	4th exhaust valve stuck.
29.	1st accumulator defective.
30.	2nd accumulator defective.
31.	3rd accumulator defective.
32.	4th accumulator defective.
33.	1st-hold accumulator defective.
34.	Servo valve stuck.
35.	Lock-up timing valve stuck.
36.	Lock-up shift valve stuck.
37.	Lock-up control valve stuck.
38.	Shift fork bent.
39.	Reverse gears worn/damaged (3 gears).
40.	Reverse selector worn.
41.	3rd gears worn/damaged (2 gears).
42.	Final gears worn/damaged (2 gears).
43.	Differential pinion shaft worn.
44.	Feed pipe O-ring broken.
45.	4th gears worn/damaged (2 gears).
46.	Gear clearance incorrect.
47.	Clutch clearance incorrect.
48.	One-way (sprag) clutch defective.
49.	Sealing rings/guide worn.
50.	Axle-inboard joint clip missing.

Symptom-to-Component Chart

Hydraulic System (cont'd)

The following symptoms can be caused by improper repair or assembly	Check these items on the PROBABLE CAUSE DUE TO IMPROPER REPAIR List	Items on the NOTES List
Car creeps in N position.	R1, R2	
Car does not move in D_{3} or D_{4} position.	R4	
Transmission locks up in R position.	R3, R12	
Excessive drag in transmission.	R6	K, R
Excessive vibration, rpm related.	R7	
Noise with wheels moving only.	R5	
Main seal pops out.	R8	S
Various shifting problems.	R9, R10	
Harsh upshifts.	R11	

PROBABLE CAUSE DUE TO IMPROPER REPAIR	
R1.	Improper clutch clearance.
R2.	Improper gear clearance.
R3.	Parking brake lever installed upside down.
R4.	One-way (sprag) clutch installed upside down.
R5.	Reverse selector hub installed upside down.
R6.	Oil pump binding.
R7.	Torque converter not fully seated in oil pump.
R8.	Main seal improperly installed.
R9.	Springs improperly installed.
R10.	Valves improperly installed.
R11.	Check valve balls not installed.
R12.	Shift fork bolt not installed.

NOTES	
B.	Set idle rpm in gear to specified idle speed. If still no good, adjust motor mounts as outlined in engine section of service manual.
C.	If the large clutch piston O-ring is broken, inspect the piston groove for rough machining.
D.	If the clutch pack is seized or is excessively worn, inspect the other clutches for wear, and check the orifice control valves and throttle valves for free movement.
E.	If throttle valve B is stuck, inspect the clutches for wear.
G.	If the $1-2$ shift valve is stuck closed, the transmission will not upshift. If stuck open, the transmission has no 1 st gear.
H.	If the 2 nd orifice control valve is stuck, inspect the 2 nd and 3rd clutch packs for wear.
1.	If the orifice control valve is stuck, inspect the 3rd and 4th clutch packs for wear.
J.	If the clutch pressure control valve is stuck closed, the transmission will not shift out of 1st gear.
K.	Improper alignment or main valve body and torque converter housing may cause oil pump seizure. The symptoms are mostly an rpm-related ticking noise or a high-pitched squeak.
L.	If the ATF strainer is clogged with particles of steel or aluminum, inspect the oil pump and differential pinion shaft. If both are OK and no cause for the contamination is found, replace the torque converter.
M.	If the 1 st clutch feed pipe guide in the right side cover is scored by the secondary shaft, inspect the ball bearing for excessive movement in the transmission housing. If OK, replace the right side cover as it is dented. The O-ring under the guide is probably worn.
N.	- Replace the mainshaft if the bushing for the 4th feed pipe is loose or damaged. If the 4th feed pipe is damaged or out of round, replace it. - Replace the countershaft if the bushing for the 1 st-hold feed pipe is loose or damaged. If the 1 st-hold feed pipe is damaged or out of round, replace it. - Replace the secondary shaft if the bushing for the 1 st feed pipe is loose or damaged. If the 1st feed pipe is damaged or out of round, replace it.
0.	A worn or damaged sprag clutch is mostly a result of shifting the transmission in [D3] or D_{4} position while the wheels rotate in reverse, such as rocking the car in snow.
P.	Inspect the frame for collision damage.
Q.	Inspect for damage or wear: 1. Reverse selector gear teeth chamfers. 2. Engagement teeth chamfers of countershaft 4th and reverse gear. 3. Shift fork for scuff marks in center. 4. Differential pinion shaft for wear under pinion gears. 5. Bottom of 1 st-hold clutch for swirl marks. Replace items 1, 2, 3 and 4 if worn or damaged. If transmission makes clicking, grinding or whirring noise, also replace mainshaft 4th gear and reverse idler gear and countershaft 4th gear in addition to $1,2,3$ or 4. If differential pinion shaft is worn, overhaul differential assembly, and replace ATF strainer, and thoroughly clean transmission, flush torque converter, cooler and lines. If bottom of 1 st-hold clutch is swirled and transmission makes gear noise, replace the countershaft and final driven gear.
R.	Be very careful not to damage the torque converter housing when replacing the main ball bearing. You may also damage the oil pump when you torque down the main valve body. This will result in oil pump seizure if not detected. Use proper tools.
S.	Install the main seal flush with the torque converter housing. If you push it into the torque converter housing until it bottoms out, it will block the oil return passage and result in damage.
T.	Harsh downshifts when coasting to a stop with zero throttle may be caused by a bent-in throttle valve retainer/cam stopper. Throttle cable adjustment may clear this problem.
v.	Throttle cable adjustment is essential for proper operation of the transmission. Not only does it affect the shift points if misadjusted, but also the shift quality and lock-up clutch operation. A cable adjusted too long will result in throttle pressure being too low for the amount of engine torque input into the transmission and may cause clutch slippage. A cable adjusted too short will result in too high throttle pressure which may cause harsh shifts, erratic shifts and torque converter hunting.

Road Test

NOTE: Warm up the engine to normal operating temperature (the radiator fan comes on).
1 Apply parking brake and block the wheels. Start the engine, then move the selector lever to D_{4} position while depressing the brake pedal. Depress the accelerator pedal and release it suddenly. The engine should not stall.
2. Repeat same test in D_{3} position.
3. Shift the selector lever to D_{4} position, and check that the shift points occur at approximate speeds shown. Also check for abnormal noise and clutch slippage.

NOTE:
Throttle position sensor voltage represents the throttle opening.
-1. Connect the Test Harness between the ECM and connector (see section 11).
-2. Set the digital multimeter to check voltage between D11 (+) terminal and D22 (-) terminal for the throttle position sensor.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

NOTE: LHD is shown; RHD is similar.

F20B3/F22B5 Engine: KG, KE models
(D4 Position

- Upshift		1st \rightarrow 2nd	2nd \rightarrow 3rd	3rd $\rightarrow 4$ th	Lock-up Clutch ON
Throttle position sensor voltage: 0.8 V	mph	11-13	19-21	29-33	-
	km/h	18-21	33-37	47-53	-
Throttle position sensor voltage:$2.25 \mathrm{~V}$	mph	18-21	38-41	54-59	63-67
	km/h	29-34	61-66	87-95	101-108
Full throttle Throttle position sensor voltage: $4.5 \mathrm{~V}$	mph	31-35	68-73	93-98	84-88
	km/h	50-56	109-117	150-158	135-142

- Downshift		Lock-up Clutch OFF	4th \rightarrow 3rd	3rd \rightarrow 2nd	2nd \rightarrow 1st
Throttle position sensor voltage: 0.8 V	mph	13-16	-	17-19 (4th \rightarrow 2nd)	7-9
	km/h	21-26	-	27-31 (4th $\rightarrow 2 \mathrm{nd}$)	11-14
Throttle position sensor voltage:$2.25 \mathrm{~V}$	mph	49-54	42-45	26-30	7-9
	km/h	79-87	68-72	42-48	11-14
Full throttle Throttle position sensor voltage:$4.5 \mathrm{~V}$	mph	80-85	78-84	54-61	26-30
	km/h	129-137	126-135	87-98	42-48

F22B1/F22B2 Engine: KH model

D_{4} Position

- Upshift		1st-2nd	2nd \rightarrow 3rd	3rd \rightarrow 4th	Lock-up Clutch ON
Throttle position sensor voltage:$0.8 \mathrm{~V}$	mph	11-13	21-23	29-33	-
	km/h	18-21	33-37	47-53	-
Throttle position sensor voltage:$2.25 \mathrm{~V}$	mph	18-21	38-41	54-59	63-67
	km/h	29-34	61-66	87-95	101-108
Full throttle Throttle position sensor voltage:$4.5 \mathrm{~V}$	mph	31-35	63-68	93-98	84-88
	km/h	50-56	101-109	150-158	135-142
- Downshift		Lock-up Clutch OFF	4th -3 rd	3rd \rightarrow 2nd	2nd-1st
Throttle position sensor voltage:$0.8 \mathrm{~V}$	mph	13-16	-	19-21 (4th $\rightarrow 2 \mathrm{nd}$)	7-9
	km/h	21-26	-	31-34 (4th-2nd)	11-14
Throttle position sensor voltage:$2.25 \mathrm{~V}$	mph	49-54	42-45	26-30	7-9
	km/h	79-87	68-72	42-48	11-14
Full throttle Throttle position sensor voltage:$4.5 \mathrm{~V}$	mph	80-85	78-84	54-61	26-30
	km/h	129-137	126-135	87-98	42-48

(cont'd)

Road Test

(cont'd)
4. Accelerate to about $35 \mathrm{mph}(57 \mathrm{~km} / \mathrm{h})$ so the transmission is in 4 th , then shift from D_{4} position to 2 position. The car should immediately begin slowing down from engine braking.

CAUTION:

Do not shift from D_{4} or D_{3} position to 2 or 1 position at speeds over $63 \mathrm{mph}(100 \mathrm{~km} / \mathrm{h}$); you may damage the transmission.
5. Check for abnormal noise and clutch slippage in the following positions.

1 (1st Gear) Position
-1. Accelerate from a stop at full throttle. Check that there is no abnormal noise or clutch slippage.
-2. Upshifts should not occur with the selector in this position.
2 (2nd Gear) Position
-1. Accelerate from a stop at full throttle. Check that there is no abnormal noise or clutch slippage.

- 2. Upshifts and downshifts should not occur with the selector in this position.

R (Reverse) Position
Accelerate from a stop at full throttle, and check for abnormal noise and clutch slippage.
6. Test in P (Parking) Position

Park car on slope (approx. 16°), apply the parking brake, and shift into P position. Release the brake; the car should not move.

Stall Speed

Test

CAUTION:

- To prevent transmission damage, do not test stall speed for more than 10 seconds at a time.
- Do not shift the lever while raising the engine speed.
- Be sure to remove the pressure gauge before testing stall speed.

1. Engage parking brake and block the front wheels.
2. Connect tachometer, and start the engine.
3. Make sure the A / C switch is OFF.
4. After the engine has warmed up to normal operating temperature (the radiator fan comes on), shift into 2 position.
5. Fully depress the brake pedal and accelerator for 6 to 8 seconds, and note engine speed.
6. Allow 2 minutes for cooling, then repeat the test in $D_{4}, 1$, and R positions.

NOTE:

- Stall speed tests should be used for diagnostic purposes only.
- Stall speed should be the same in $D_{4}, 2,1$ and R positions.

Stall Speed RPM:
F20B3 Engine
Specification: 2,550 rpm $\left(\right.$ min $\left.^{-1}\right)$
Service Limit: 2,400-2,700 rpm (min ${ }^{-1}$)
F22B1,F22B2 and F22B5 Engines
Specification: 2,650 rpm (min- ${ }^{-1}$)
Service Limit: 2,500-2,800 rpm (min ${ }^{-1}$)

TROUBLE	PROBABLE CAUSE
Stall rpm high in $\mathrm{D}_{4}, 2,2,1$ and R positions	- Low fluid level or oil pump output - Clogged ATF strainer - Pressure regulator valve stuck closed - Slipping clutch
Stall rpm high in R position	- Slippage of 4 th clutch
Stall rpm high in 2 and D_{4} positions	- Slippage of 2nd clutch
Stall rpm high in 1 position	- Slippage of 1st clutch or 1 st gear one-way clutch
Stall rpm low in $D_{4}, 2,2,1$ and R positions	Engine output low Torque converter one-way clutch slipping

Checking/Changing

Checking

NOTE:
Check the fluid level with the engine at normal operating temperature (the radiator fan comes on).

1. Park the car on level ground. Turn off the engine.
2. Remove the dipstick (yellow loop) from the transmission, and wipe it with a clean cloth.
3. Insert the dipstick into the transmission.

4. Remove the dipstick and check the fluid level. It should be between the upper and lower marks.

5. If the level is below the lower mark, add fluid into the tube to bring it to the upper mark. Use Honda Premium Formula Automatic Transmission Fluid or an equivalent DEXRON® II Automatic Transmission Fluid (ATF) only.
6. Insert the dipstick back into the transmission.

Changing

1. Bring the transmission up to normal operating temperature (the radiator fan comes on) by driving the car. Park the car on level ground, turn the engine off, and then remove the drain plug.
2. Reinstall the drain plug with a new sealing washer, then refill the transmission to the upper mark on the dipstick.

Automatic Transmission Fluid Capacity: $2.4 \ell(2.5$ US qt , 2.1 $\mathrm{lmp} q \mathrm{t})$ at changing 6.0 \& (6.3 US qt, 5.3 Impq) at overhaul

Pressure Testing

A warning

- While testing, be careful of the rotating front wheels.
- Make sure lifts, jacks, and safety stands are placed properly (see section 1).

CAUTION:

- Before testing, be sure the transmission fluid is filled to the proper level.
- Warm up the engine before testing.

1. Raise the car (see section 1).
2. Warm up the engine, then stop the engine and connect a tachometer.
3. Connect the oil pressure gauge to each inspection hole.

TORQUE: $18 \mathrm{~N} \cdot \mathrm{~m}(1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft})$
CAUTION: Connect the oil pressure gauge securely; be sure not to allow dust and other foreign particles to enter the inspection hole.

A/T OIL PRESSURE
GAUGE SET
07406-0020004

A/T LOW PRESSURE GAUGE 07406-0070001
4. Start the engine, and measure the respective pressure as follows.

- Line Pressure
- Clutch Pressure
- Throttle B Pressure

5. Install a new washer and the sealing bolt in the inspection hole, and tighten to the specified torque.

TORQUE: $18 \mathrm{~N} \cdot \mathrm{~m}(1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft})$
NOTE: Do not reuse old aluminum washers.

- Line Pressure Measurement

-1 . Set the parking brake and block both rear wheels securely.
-2. Run the engine at $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
-3. Shift the select lever to N or position.
NOTE: Higher pressures may be indicated if measurements are made in selector positions other than N or P position.
-4. Measure line pressure.
 INSPECTION HOLE

PRESSURE	SELECTOR POSITION	SYMPTOM	PROBABLE CAUSE	FLUID PRESSURE	
				Standard	Service Limit
Line	N or P	No (or low) line pressure	Torque converter, oil pump, pressure regulator, torque converter check valve	$\begin{aligned} & 830-880 \mathrm{kPa} \\ & \left(8.5-9.0 \mathrm{kgf} / \mathrm{cm}^{2}\right. \\ & 120-130 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & 780 \mathrm{kPa} \\ & \left(8.0 \mathrm{kgf} / \mathrm{cm}^{2},\right. \\ & 110 \mathrm{psi}) \end{aligned}$

- Clutch Pressure Measurement

A WARNING While testing, be careful of the rotating front wheels.
-1. Set the parking brake and block both rear wheels securely.
-2. Raise the front of the car and support it with safety stands.
-3 . Allow the front wheels to rotate freely.
-4. Run the engine at $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
-5 . Measure each clutch pressure.

PRESSURE	SELECTOR POSITION	SYMPTOM	PROBABLE CAUSE	FLUID PRESSURE	
				Standard	Service Limit
1st Clutch	1 or D_{4}	No or low 1st pressure	1st Clutch	$\begin{aligned} & 830-880 \mathrm{kPa} \\ & \left(8.5-9.0 \mathrm{kgf} / \mathrm{cm}^{2}\right. \\ & 120-130 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & 780 \mathrm{kPa} \\ & \left(8.0 \mathrm{kgf} / \mathrm{cm}^{2}, 110 \mathrm{psi}\right) \end{aligned}$
1st-hold Clutch	1	No or low 1 st-hold pressure	1st-hold Clutch		
2nd Clutch	2	No or low 2nd pressure	2nd Clutch		
2nd Clutch	D_{4}	No or low 2nd pressure	2nd Clutch	$490 \mathrm{kPa}\left(5.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $71 \mathrm{psi})$ (Throttle control lever fully closed) $880 \mathrm{kPa}\left(9.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $130 \mathrm{psi})$ (Throttle control lever more than $2 / 8$ opened)	$440 \mathrm{kPa}\left(4.5 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 64 psi) (Throttle control lever fully closed) 780 kPa ($8.0 \mathrm{kgf} / \mathrm{cm}^{2}, 110 \mathrm{psi}$) (Throttle control lever more than $2 / 8$ opened)
3rd Clutch		No or low 3rd pressure	3rd Clutch		
4th Clutch		No or low 4th pressure	4th Clutch	$520 \mathrm{kPa}\left(5.3 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $75 \mathrm{psi})$ (Throttle control lever fully closed) $880 \mathrm{kPa}\left(9.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $130 \mathrm{psi})$ (Throttle control lever more than 2/8 opened)	$460 \mathrm{kPa}\left(4.7 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $67 \mathrm{psi})$ (Throttle control lever fully closed) $780 \mathrm{kPa}\left(8.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $110 \mathrm{psi})$ (Throttle control lever more than 2/8 opened)
	R		Servo Valve or 4th Clutch	$\begin{aligned} & 830-880 \mathrm{kPa} \\ & \left(8.5-9.0 \mathrm{kgf} / \mathrm{cm}^{2},\right. \\ & 120-130 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & 780 \mathrm{kPa} \\ & \left(8.0 \mathrm{kgf} / \mathrm{cm}^{2}, 110 \mathrm{psi}\right) \end{aligned}$

Pressure Testing

(cont'd)

- Throttle B Pressure Measurement
-1 . Set the parking brake securely and block the wheels.
-2. Run the engine at $1,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
-3. Disconnect the throttle control cable from the throttle control lever.
-4. Measure full-closed throttle B pressure.
-5. Move the throttle control lever to full-opened throttle position.
-6. Measure full-opened throttle B pressure.

PRESSURE	SELECTOR POSITION	SYMPTOM	PROBABLE CAUSE	FLUID PRESSURE	
				Standard	Service Limit
Throttle B	D_{4}	Pressure too high	Throttle Valve B	$0 \mathrm{kPa}\left(0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $0.0 \mathrm{psi})$ throttle control lever fully closed	-
		No or low pressure		$\begin{aligned} & 830-880 \mathrm{kPa} \\ & \left(8.5-9.0 \mathrm{kgf} / \mathrm{cm}^{2},\right. \\ & 120-130 \mathrm{psi}) \\ & \text { throttle control lever } \\ & \text { fully opened } \\ & \hline \end{aligned}$	780 kPa ($8.0 \mathrm{kgf} / \mathrm{cm}^{2}, 110 \mathrm{psi}$) throttle control lever fully opened

A WARNING

- Make sure lifts. jacks and safety stands are placed properly, and hoist brackets are attached to the correct position on the engine (see section 1).
- Apply parking brake and block rear wheels so car will not roll off stands and fall on you while working under it.

CAUTION: Use fender covers to avoid damaging painted surfaces.

1. Disconnect the battery negative (-) and positive (+) cables from the battery.
2. Remove the battery set plate, then remove the battery.
3. Remove the drain plug, and drain the automatic transmission fluid (ATF). Reinstall the drain plug with a new sealing washer.

TORQUE: $49 \mathrm{~N} \cdot \mathrm{~m}(5.0 \mathrm{kgf} \cdot \mathrm{m}, 36 \mathrm{lbf} \cdot \mathrm{ft})$

4. Remove the intake air duct B and intake air duct/air cleaner housing assembly.

5. Disconnect the intake air resonator control solenoid valve connector, then remove the vacuum hoses and intake air resonator (F22B1 and F22B5 engines).

Transmission

Removal (cont'd)

6. Remove the battery cable and ground cable stay from the battery base.
7. Remove the battery base.
8. Remove the battery base stay.

9 Disconnect the transmission ground cable from the transmission.
10. Disconnect the lock-up control solenoid valve and shift control solenoid valve connectors.
11. Disconnect the throttle control cable from the throttle control lever.
12. Disconnect the mainshaft speed sensor connector.
13. Remove the ATF cooler hoses at the joint pipes. Turn the ends of the ATF cooler hoses up to prevent ATF from flowing out, then plug the joint pipes.

NOTE:
Check for any signs of leakage at the hose joints.

14. Remove the starter motor cables.
15. Disconnect the countershaft speed sensor connector.

CABLES

16. Disconnect the vehicle speed sensor connecter.

17. Remove the transmission housing mounting bolts.

18. Loosen the front engine mount bracket bolts.

19. Remove the transmission mount.

20. Remove the splash shield.

Transmission

Removal (cont'd)

21. Remove the center beam.

22. Remove the cotter pins and castle nuts, then separate the ball joints from the lower arm (see section 18).
23. Remove the damper fork bolts, then separate the damper fork and lower arm.

24. Pry the driveshafts out of the differential.
25. Pull on the inboard joint, and remove the right and left driveshafts (see section 16).
26. Tie plastic bags over the driveshaft ends.

NOTE:
Coat all precision finished surfaces with clean engine oil or grease.

27. Remove the right damper pinch bolt, then separate the damper fork and damper.
28. Remove the self-locking bolts and self-locking nut, then remove the right radius rod.

29. Remove the torque converter cover and shift cable cover.
30. Remove the lock bolt securing the control lever, then remove the shift cable with the control lever.

CAUTION:

Take care not to bend the shift cable while removing it.

31. Remove the eight drive plate bolts one at a time while rotating the crankshaft pulley.

DRIVE PLATE
32. Place a jack under the transmission, and raise the transmission just enough to take weight off of the mount.
33. Remove the intake manifold bracket.
34. Remove the transmission housing mounting bolts and rear engine mounting bolts.
35. Pull the transmission away from the engine until it clears the 14 mm dowel pins, then lower it on the transmission jack.

Illustrated Index

Right Side Cover

(1) RIGHT SIDE COVER
(2) MAINSHAFT SPEED SENSOR
(3) O-RING Replace.
(4) O-RING Replace.
(5) DOWEL PIN
(6) 4TH CLUTCH FEED PIPE
(7) O-RINGS Replace.
(8) RIGHT SIDE COVER GASKET Replace.
(9) FEED PIPE GUIDE
(10) SNAP RING
(11) 1ST CLUTCH FEED PIPE
(12) O-RINGS Replace.
(13) FEED PIPE GUIDE
(14) SNAP RING
(15) O-RING Replace.
(16) COUNTERSHAFT SPEED SENSOR
(17) DOWEL PIN
(18) 1ST-HOLD CLUTCH FEED PIPE
(19) O-RINGS Replace.
(20) FEED PIPE GUIDE
(21) SNAP RING
(22) LOCK WASHER Replace.
(23) THROTTLE CONTROL LEVER
(24) THROTTLE CONTROL LEVER SPRING
(25) THROTTLE CONTROL CABLE STAY/ TRANSMISSION HANGER
(26) ATF LEVEL GAUGE
(27) COUNTERSHAFT LOCKNUT, $24 \times 1.25 \mathrm{~mm}$ (Flange nut) Replace.
(28) CONICAL SPRING WASHER Replace.
(29) PARKING GEAR
(30) THRUST NEEDLE BEARING
(31) COUNTERSHAFT IDLER GEAR
(32) MAINSHAFT LOCKNUT, $24 \times 1.25 \mathrm{~mm}$ (Flange nut) Replace.
(33) CONICAL SPRING WASHER Replace.
(34) MAINSHAFT IDLER GEAR
(35) HARNESS STAY
(36) NEEDLE BEARING
(37) THRUST NEEDLE BEARING
(38) THRUST WASHER
(39) SECONDARY SHAFT LOCKNUT, $24 \times 1.25 \mathrm{~mm}$ (Flange nut) Replace.
(40) CONICAL SPRING WASHER Replace.
(41) SECONDARY SHAFT IDLER GEAR
(42) DRAIN PLUG
(43) SEALING WASHER Replace.
(44) REVERSE IDLER GEAR SHAFT HOLDER
(45) O-RING Replace.
(46) REVERSE IDLER GEAR SHAFT
(47) NEEDLE BEARING
(48) O-RING Replace.
(49) PARKING BRAKE PAWL
(50) PARKING BRAKE PAWL SPRING
(51) PARKING BRAKE PAWL SHAFT
(52) PARKING BRAKE PAWL STOPPER
(53) LOCK WASHER Replace.
(54) PARKING BRAKE STOPPER
(55) PARKING BRAKE LEVER
(56) PARKING BRAKE LEVER SPRING
(57) TRANSMISSION HOUSING
(58) DOWEL PIN
(59) TRANSMISSION HOUSING GASKET Replace.
(60) TRANSMISSION HANGER
(61) ATF COOLER PIPES
2) JOINT BOLT
(63) SEALING WASHERS Replace.
(64) JOINT BOLT
(65) SEALING WASHERS Replace.
6) VEHICLE SPEED SENSOR
(67) O-RING Replace.

TORQUE SPECIFICATIONS

Ref No.	Torque Value	Bolt Size	Remarks
A	$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 1.0 \mathrm{~mm}$	
B	$14 \mathrm{~N} \cdot \mathrm{~m}(1.4 \mathrm{kgf} \cdot \mathrm{m}, 10 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 1.0 \mathrm{~mm}$	
C	$18 \mathrm{~N} \cdot \mathrm{~m}(1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft})$	$8 \times 1.25 \mathrm{~mm}$	
D	$54 \mathrm{~N} \cdot \mathrm{~m}(5.5 \mathrm{kgf} \cdot \mathrm{m}, 40 \mathrm{lbf} \cdot \mathrm{ft})$	$10 \times 1.25 \mathrm{~mm}$	
E	$28 \mathrm{~N} \cdot \mathrm{~m}(2.9 \mathrm{kgf} \cdot \mathrm{m}, 21 \mathrm{lbf} \cdot \mathrm{ft})$	$12 \times 1.25 \mathrm{~mm}$	Joint bolt
G	$49 \mathrm{~N} \cdot \mathrm{~m}(5.0 \mathrm{kgf} \cdot \mathrm{m}, 36 \mathrm{lbf} \cdot \mathrm{ft})$	$18 \times 1.5 \mathrm{~mm}$	Drain plug
H	$226 \mathrm{~N} \cdot \mathrm{~m}(23.0 \mathrm{kgf} \cdot \mathrm{m}, 166 \mathrm{lbf} \cdot \mathrm{ft}) \rightarrow 0 \rightarrow$	$24 \times 1.25 \mathrm{~mm}$	Mainshaft locknut
	$167 \mathrm{~N} \cdot \mathrm{~m}(17.0 \mathrm{kgf} \cdot \mathrm{m}, 123 \mathrm{lbf} \cdot \mathrm{ft})$		Left-hand threads
I	$226 \mathrm{~N} \cdot \mathrm{~m}(23.0 \mathrm{kgf} \cdot \mathrm{m}, 166 \mathrm{lbf} \cdot \mathrm{ft}) \rightarrow 0 \rightarrow$	$24 \times 1.25 \mathrm{~mm}$	Secondary shaft locknut
	$167 \mathrm{~N} \cdot \mathrm{~m}(17.0 \mathrm{kgf} \cdot \mathrm{m}, 123 \mathrm{lbf} \cdot \mathrm{ft})$		
J	$226 \mathrm{~N} \cdot \mathrm{~m}(23.0 \mathrm{kgf} \cdot \mathrm{m}, 166 \mathrm{lbf} \cdot \mathrm{ft}) \rightarrow 0 \rightarrow$	$24 \times 1.25 \mathrm{~mm}$	Countershaft locknut
	$167 \mathrm{~N} \cdot \mathrm{~m}(17.0 \mathrm{kgf} \cdot \mathrm{m}, 123 \mathrm{lbf} \cdot \mathrm{ft})$		
K	$8 \mathrm{~N} \cdot \mathrm{~m}(0.8 \mathrm{kgf} \cdot \mathrm{m}, 6 \mathrm{lbf} \cdot \mathrm{ft})$		

Illustrated Index

Transmission Housing

(1) THRUST WASHER
(2) THRUST NEEDLE BEARING
(3) SECONDARY SHAFT 2ND GEAR
(4) NEEDLE BEARINGS
(5) THRUST NEEDLE BEARING
(6) SPLINED WASHER Selective part
(7) 1ST/2ND CLUTCH ASSEMBLY
(8) O-RINGS Replace.
(9) SECONDARY SHAFT
(10) THRUST NEEDLE BEARING
(11) NEEDLE BEARING
(12) SECONDARY SHAFT 1ST GEAR
(13) DISTANCE COLLAR, 5.0 mm
(14) COTTERS, 29 mm
(15) COTTER RETAINER
(16) SNAP RING
(17) SEALING RINGS, 32 mm
(18) LOCK WASHER Replace.
(19) SHIFT FORK
(20) COUNTERSHAFT 2ND GEAR
(21) COUNTERSHAFT REVERSE GEAR
(22) NEEDLE BEARING
(23) REVERSE SELECTOR HUB
4) REVERSE SELECTOR

COUNTERSHAFT 4TH GEAR
NEEDLE BEARING
SNAP RING
(28) COLLAR, 32 mm

COTTERS, 29 mm
DISTANCE COLLAR
(1) COUNTERSHAFT 3RD GEAR
(32) THRUST NEEDLE BEARING
(33) ONE-WAY CLUTCH
(34) COUNTERSHAFT 1ST GEAR
(35) NEEDLE BEARING
(36) THRUST WASHER
(37) COUNTERSHAFT 1ST GEAR COLLAR

1ST-HOLD CLUTCH ASSEMBLY
O-RINGS Replace.
(40) COUNTERSHAFT
(41) SNAP RING
(42) COLLAR
(43) THRUST NEEDLE BEARING
(44) MAINSHAFT 4TH/REVERSE GEAR
(45) NEEDLE BEARINGS
(46) THRUST NEEDLE BEARING
(47) MAINSHAFT 4TH GEAR COLLAR

3RD/4TH CLUTCH ASSEMBLY
MAINSHAFT 3RD GEAR COLLAR
(50) THRUST NEEDLE BEARING
(51) NEEDLE BEARING

MAINSHAFT 3RD GEAR
THRUST NEEDLE BEARING
O-RINGS Replace.
MAINSHAFT
SEALING RINGS, 35 mm
SEALING RING, 29 mm
NEEDLE BEARING
SET RING
REVERSE IDLER GEAR SHAFT HOLDER
O-RING Replace.
REVERSE IDLER GEAR SHAFT
NEEDLE BEARING
O-RING Replace.
TRANSMISSION HOUSING
OIL SEAL Replace.
DOWEL PIN
TRANSMISSION HOUSING GASKET Replace.
SNAP RING
TRANSMISSION HOUSING MAINSHAFT BEARING
(11) TRANSMISSION HOUSING SECONDARY SHAFT BEARING
TRANSMISSION HOUSING COUNTERSHAFT BEARING
REVERSE IDLER GEAR
(14) TRANSMISSION HOUSING OIL SEAL Replace.
(55) THRUST SHIM Selective part
(76) TAPERED ROLLER BEARING OUTER RACE
(77) DIFFERENTIAL ASSEMBLY
(8) TAPERED ROLLER BEARING OUTER RACE
(99) TORQUE CONVERTER HOUSING OIL SEAL Replace.
(80) TORQUE CONVERTER HOUSING

TORQUE SPECIFICATIONS

Ref. No.	Torque Value	Bolt Size	Remarks
A	$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 1.0 \mathrm{~mm}$	
B	$14 \mathrm{~N} \cdot \mathrm{~m}(1.4 \mathrm{kgf} \cdot \mathrm{m}, 10 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 1.0 \mathrm{~mm}$	

Illustrated Index

Torque Converter Housing

(1) ATF STRAINER
(2) 4 TH ACCUMULATOR COVER
(3) O-RING Replace.
(4) OIL FEED PIPES
(5) SERVO DETENT BASE
(6) SERVO BODY
(7) SERVO SEPARATOR PLATE
(8) CHECK BALLS
(9) SECONDARY VALVE BODY
(10) DOWEL PINS
(11) SECONDARY SEPARATOR PLATE
(12) ACCUMULATOR BODY COVER
(13) CHECK BALL
(14) $\mathbf{1 S T} / 2 N D$ ACCUMULATOR BODY
(15) THROTTLE CONTROL SHAFT
(16) THROTTLE VALVE BODY
(17) THROTTLE SEPARATOR PLATE
(18) DOWEL PINS

REGULATOR VALVE BODY
O-RING Replace.
STATOR SHAFT
E-RING
FILTER Replace.
STOPPER SHAFT
TORQUE CONVERTER CHECK VALVE
TORQUE CONVERTER CHECK VALVE SPRING
DOWEL PINS
OIL FEED PIPE
MAIN VALVE BODY
OIL PUMP DRIVEN GEAR SHAFT
OIL PUMP DRIVE GEAR
OIL PUMP DRIVEN GEAR
OIL FEED PIPE
(34) FILTER Replace.
(35) CHECK BALLS
(36) DETENT ARM SHAFT

DETENT ARM
CONTROL SHAFT
(39) DETENT ARM SPRING

DOWEL PINS
MAIN SEPARATOR PLATE
(42) TORQUE CONVERTER HOUSING COUNTERSHAFT NEEDLE BEARING
(43) OIL GUIDE PLATE
(44) TORQUE CONVERTER HOUSING SECONDARY SHAFT BALL BEARING
(45) OIL GUIDE PLATE
(46) OIL SEAL Replace.
(47) LOCK WASHER Replace.
(48) CONTROL LEVER
(49) MAINSHAFT OIL SEAL Replace.
(50) TORQUE CONVERTER HOUSING MAINSHAFT BALL BEARING
(51) TORQUE CONVERTER HOUSING
52) SOLENOID VALVE CONNECTOR STAY
(53) SHIFT CONTROL SOLENOID VALVE FILTER/GASKET Replace.
(54) SHIFT CONTROL SOLENOID VALVE ASSEMBLY
(55) LOCK-UP CONTROL SOLENOID VALVE FILTER/GASKET Replace.
(56) LOCK-UP CONTROL SOLENOID VALVE ASSEMBLY

TORQUE SPECIFICATIONS

Ref. No.	Torque Value	Bolt Size	Remarks
A	$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 1.0 \mathrm{~mm}$	
B	$14 \mathrm{~N} \cdot \mathrm{~m}(1.4 \mathrm{kgf} \cdot \mathrm{m}, 10 \mathrm{lbf} \cdot \mathrm{ft})$	$6 \times 10 \mathrm{~mm}$	
C	$18 \mathrm{~N} \cdot \mathrm{~m}(1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft})$	$8 \times 1.25 \mathrm{~mm}$	

Right Side Cover

Removal

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry with compressed air.
- Blow out all passages.
- When removing the transmission right side cover, replace the following:
- Right side cover gasket
- Lock washers
- Transmission housing gasket
- O-rings
- Each shaft locknut and conical spring washer
- Sealing washers

1. Remove the eleven bolts securing the right side cover, then remove the right side cover.
2. Slip the special tool onto the mainshaft.

LOCKNUT Replace.

3. Engage the parking brake pawl with the parking gear.
4. Cut the lock tabs of each shaft locknut using a chisel as shown. Then remove the locknuts and conical spring washers from each shaft.

NOTE:

- Mainshaft locknut has left-hand threads.
- Clean the old locknuts; they are used to install the press fit idler gears on the mainshaft and secondary shaft and the parking gear on the countershaft.
- Always wear safety glasses.

CAUTION:

Keep all of the chiseled particles out of the transmission.

5. Remove the special tool from the mainshaft after removing the locknuts.
6. Remove the parking gear using a puller from the countershaft as shown. Then remove the idler gears from the mainshaft and secondary shaft using a puller.

7. Remove the countershaft idler gear, needle bearing, thrust needle bearing, and thrust washer from the countershaft.
8. Remove the parking brake pawl, spring, shaft, and stopper from the housing.
9. Remove the throttle control lever and spring from the throttle control shaft.
10. Remove the ATF cooler pipe mounting bolt from the transmission hanger.
11. Remove the transmission housing mounting bolts.
12. Remove the reverse idler gear shaft and reverse idler gear shaft holder using a $5 \times 0.8 \mathrm{~mm}$ bolt as shown .

13. Move the reverse idler gear to disengage it from the countershaft and mainshaft reverse gears as shown.

NOTE:
The transmission housing will not separate from the torque converter housing if the reverse idler gear is not removed.

Transmission Housing

14-112

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry with compressed air.
- Blow out all passages.
- When removing the transmission housing, replace the following:
- Transmission housing gasket
- Lock washer

1. Remove the transmission housing mounting bolts and hangers.
2. Align the spring pin of the control shaft with the transmission housing groove by turning the control shaft.
3. Install the special tool on the transmission housing, then remove the housing as shown.

4. Remove the reverse idler gear from the transmission housing.
5. Remove the countershaft 2nd gear, reverse gear, secondary shaft 2 nd gear, thrust washer, and thrust needle bearing together from the countershaft and secondary shaft.
6. Remove the lock bolt securing the shift fork, then remove the fork with the reverse selector from the countershaft.
7. Remove the needle bearings, thrust needle bearing, and splined washer from the secondary shaft.
8. Remove the secondary shaft sub-assembly.
9. Remove the mainshaft sub-assembly.
10. Remove the countershaft sub-assembly.
11. Remove the differential assembly.

Torque Converter Housing/Valve Body

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry with compressed air.
- Blow out all passages.
- When removing the valve body, replace the following:
- O-rings
- Lock washer

1. Remove the servo detent base (two bolts).
2. Remove the ATF strainer (two bolts).
3. Remove the oil feed pipes from the servo body and main valve body.
4. Remove the 4th accumulator cover (three bolts).

NOTE: The 4th accumulator cover is spring loaded. To prevent stripping the threads in the servo body, press down on the accumulator cover while unscrewing the bolts in a crisscross pattern.
5. Remove the seven bolts securing the servo body, then remove the servo body and separator plate.
6. Remove the secondary valve body and separator plate.
7. Remove the seven bolts securing the throttle valve body, then remove the throttle valve body and separator plate.
8. Remove the regulator valve body (one bolt).
9. Remove the stator shaft and stopper shaft.
10. Remove the detent spring from the detent arm, then remove the control shaft from the torque converter housing.
11. Remove the detent arm and detent arm shaft from the main valve body.
12. Remove the main valve body (four bolts).
13. Remove the $1 \mathrm{st} / 2 \mathrm{nd}$ accumulator body (six bolts).
14. Remove the oil pump driven gear shaft, then remove the oil pump gears.
15. Remove the main separator plate with three dowel pins.

Valve Body

Repair

NOTE:
This repair is only necessary if one or more of the valves in a valve body do not slide smoothly in their bores. You may use this procedure to free the valves in the valve bodies.

1. Soak a sheet of \#600 abrasive paper in ATF for about 30 minutes.
2. Carefully tap the valve body so the sticking valve drops out of its bore.

CAUTION:

It may be necessary to use a small screwdriver to pry the valve free. Be careful not to scratch the bore with the screwdriver.
3. Inspect the valve for any scuff marks. Use the ATFsoaked \#600 paper to polish off any burrs that are on the valve, then wash the valve in solvent and dry it with compressed air.
4. Roll up half a sheet of ATF-soaked \#600 paper and insert it in the valve bore of the sticking valve.
Twist the paper slightly, so that it unrolls and fits the bore tightly, then polish the bore by twisting the paper as you push it in and out.

CAUTION:

The valve body is aluminum and doesn't require much polishing to remove any burrs.

5. Remove the \#600 paper. Thoroughly wash the entire valve body in solvent, then dry with compressed air.
6. Coat the valve with ATF, then drop it into its bore. It should drop to the bottom of the bore under its own weight. If not, repeat step 4, then retest.

7. Remove the valve and thoroughly clean it and the valve body with solvent. Dry all parts with compressed air, then reassemble using ATF as a lubricant.

Assembly

NOTE:

Coat all parts with ATF before assembly.

- Install the valve, valve spring and cap in the valve body, and secure with the roller.

- Set the spring in the valve and install them in the valve body. Push the spring in with a screwdriver, then install the spring seat.

- Install the valve, spring and cap in the valve body. Push the cap, then install the valve cap stopper.

Valve Caps

Description

- Caps with one projected tip and one flat end are installed with the flat end toward the inside of the valve body.
- Caps with a projected tip on each end are installed with the smaller tip toward the inside of the valve body. The small tip is a spring guide.

TOWARD OUTSIDE OF VALVE BODY

TOWARD INSIDE OF VALVE BODY

- Caps with one projected tip and hollow end are installed with the tip toward the inside of the valve body. The tip is a spring guide.
- Caps with hollow ends are installed with the hollow end away from the inside of the valve body.
- Caps with notched ends are installed with the notch toward the inside of the valve body.
- Caps with flat ends and a hole through the center are installed with the smaller hole toward the inside of the valve body.

TOWARD OUTSIDE OF VALVE BODY

TOWARD INSIDE OF VALVE BODY

TOWARD INSIDE OF VALVE BODY

Inspection

1. Install the oil pump gears and oil pump driven gear shaft in the main valve body.

2. Measure the side clearance of the oil pump drive and driven gears.

Oil Pump Gears Side (Radial) Clearance:
Standard (New):
Oil Pump Drive Gear
$0.210-0.265 \mathrm{~mm}(0.0083-0.0104 \mathrm{in})$
Oil Pump Driven Gear
$0.070-0.125 \mathrm{~mm}(0.0028-0.0049 \mathrm{in})$

3. Remove the oil pump driven gear shaft. Measure the thrust clearance of the oil pump driven gear-to-valve body.

Oil Pump Drive/Driven Gear Thrust (Axial) Clearance: Standard (New): $0.03-0.05 \mathrm{~mm}$ ($0.001-0.002 \mathrm{in}$) Service Limit: $\quad 0.07 \mathrm{~mm}(0.003 \mathrm{in})$

Main Valve Body

Disassembly/Inspection/Reassembly

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Replace the valve body as an assembly if any parts are worn or damaged.
- Check all valves for free movement. If any fail to slide freely, see Valve Body Repair on page 14-116.

CAUTION: Do not use a magnet to remove the check balls; it may magnetize the balls.

SPRING SPECIFICATIONS
Unit: mm(in)

No.	Spring	Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils
(1)	Lock-up control valve spring	$0.7(0.028)$	$6.6(0.260)$	$36.3(1.429)$	14.1
(2)	Lock-up shift valve spring	$0.9(0.035)$	$7.6(0.299)$	$73.7(2.902)$	32.0
(3)	Cooler relief valve spring	$1.1(0.043)$	$8.4(0.331)$	$46.8(1.843)$	17.0
(4)	Modulator valve spring	$1.4(0.055)$	$9.4(0.370)$	$33.0(1.299)$	10.5
(5)	CPC valve spring	$1.4(0.055)$	$9.4(0.370)$	$33.0(1.299)$	10.5
(6)	Main orifice control valve spring	$1.1(0.043)$	$7.1(0.280)$	$49.1(1.933)$	22.7
(7)	$1-2$ shift valve spring	$0.9(0.035)$	$8.6(0.339)$	$40.4(1.591)$	14.5
(8)	$2-3$ shift valve spring	$0.9(0.035)$	$7.6(0.299)$	$57.0(2.244)$	26.8

Secondary Valve Body

Disassembly/Inspection/Reassembly

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Check all valves for free movement. If any fail to slide freely, see Valve Body Repair on page 14-116.
- Coat all parts with ATF before assembling.
- Replace the valve body as an assembly if any parts are worn or damaged.

CAUTION:

Do not use a magnet to remove the check balls; it may magnetize the balls.

SPRING SPECIFICATIONS
Unit: mm(in)

No.	Spring	Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils
(1)	4th exhaust valve spring	$0.8(0.031)$	$7.1(0.280)$	$48.8(1.921)$	17.2
(2)	3-4 shift valve spring	$0.9(0.035)$	$7.6(0.299)$	$57.0(2.244)$	26.8
(3)	3rd kick-down valve spring	$1.0(0.039)$	$7.6(0.299)$	$48.3(1.902)$	15.6
(4)	Servo control valve spring	$1.0(0.039)$	$8.1(0.319)$	$52.6(2.071)$	22.4
(5)	Orifice control valve spring	$0.7(0.028)$	$6.6(0.260)$	$52.5(2.067)$	18.4
(6)	2nd orifice control valve spring	$0.6(0.024)$	$6.6(0.260)$	$66.4(2.614)$	25.0

Regulator Valve Body

Disassembly/Inspection/Reassembly

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Replace the valve body as an assembly if any parts are worn or damaged.
- Check all valves for free movement. If any fail to slide freely, see Valve Body Repair on page 14-116.

1. Hold the regulator spring cap in place while removing the stopper bolt. Once the stopper bolt is removed, release the spring cap slowly.

CAUTION:
The regulator spring cap can pop out when the lock bolt is removed.
2. Reassembly is the reverse order of disassembly.

NOTE:

- Coat all parts with ATF.
- Align the hole in the regulator spring cap with the hole in the valve body, then press the spring cap into the valve body, and tighten the stopper bolt.

SPRING SPECIFICATIONS
Unit: mm(in)

No.	Spring	Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils
(1)	Regulator valve spring A	$1.8(0.071)$	$14.7(0.579)$	$88.6(3.488)$	16.5
(2)	Regulator valve spring B	$1.8(0.071)$	$9.6(0.378)$	$44.0(1.732)$	12.7
(3)	Stator reaction spring	$4.5(0.177)$	$35.4(1.394)$	$30.3(1.193)$	1.92
(4)	Lock-up timing valve spring	$0.8(0.031)$	$6.6(0.260)$	$51.1(2.012)$	14.7
(5)	Torque converter check valve spring	$1.1(0.043)$	$8.4(0.331)$	$38.2(1.504)$	14.0

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Check all valves for free movement. If any fail to slide freely, see Valve Body Repair on page 14-116.
- Coat all parts with ATF before assembling.
- Replace the valve body as an assembly if any parts are worn or damaged.

No.	Spring	Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils
(1)	Throttle valve B spring	$1.4(0.055)$	$8.5(0.335)$	$41.5(1.634)$	10.5
		$1.4(0.055)$	$8.5(0.335)$	$41.5(1.634)$	11.2
(2)	Throttle valve B adjusting spring	$1.4(0.055)$	$8.5(0.335)$	$41.6(1.638)$	12.4
(3)	Relief valve spring	$0.8(0.031)$	$6.2(0.244)$	$30.0(1.181)$	8.0

Servo Body

Disassembly/Inspection/Reassembly

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Replace the servo body as an assembly if any parts are worn or damaged.
- Replace ATF strainer if its inlet opening is clogged.
- Coat all parts with ATF before assembly.

SPRING SPECIFICATIONS
Unit: mm(in)

No.	Spring	Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils
(1)		$2.9(0.114)$	$22.0(0.866)$	$90.1(3.547)$	10.9
(2)		$4.0(0.157)$	$25.0(0.984)$	$64.7(2.547)$	7.3
(3)		$2.9(0.114)$	$17.5(0.689)$	$99.6(3.921)$	16.1

1st/2nd Accumulator Body

Disassembly/Inspection/Reassembly

NOTE:

- Clean all part thoroughly in solvent or carburetor cleaner, and dry them with compressed air. Blow out all passages.
- Coat all parts with ATF before assembly.

CAUTION: Do not use a magnet to remove the check ball; it may magnetize the ball.

ACCUMULATOR BODY COVER

SPRING SPECIFICATIONS
Unit: mm(in)

No.	Spring		Standard (New)			
		Wire Dia.	O.D.	Free Length	No. of Coils	
(1)	1st accumulator spring B	$1.8(0.071)$	$6.3(0.248)$	$70.5(2.776)$	15.3	
(2)	1st accumulator spring A	$2.3(0.091)$	$16.3(0.642)$	$109.6(4.315)$	20.0	
(3)	2nd accumulator spring	$3.5(0.138)$	$22.0(0.866)$	$91.0(3.583)$	10.8	

Mainshaft

Disassembly/Inspection/Reassembly

NOTE:

- Lubricate all parts with ATF during reassembly.
- Install the thrust needle bearings with unrolled edge of bearing retainer facing the washer.
- Inspect the thrust needle bearing and the needle bearings for galling and rough movement.
- Before installing the O-rings, wrap the shaft splines with tape to prevent damage to the O-rings.

Countershaft

Disassembly/Inspection/Reassembly

NOTE:

- Lubricate all parts with ATF during reassembly.
- Install the thrust needle bearings with unrolled edge of bearing retainer facing the washer.
- Inspect the thrust needle bearings and the needle bearings for galling and rough movement.
- Before installing the O-rings, warp the shaft splines with tape to prevent damage to the O-rings.

Countershaft

[Removal

1. Using a press, press out the countershaft while supporting the 1 st-hold clutch.

NOTE:
Place an attachment between the press and countershaft to prevent damage to the shaft.

Installation

NOTE:

Lubricate all parts with ATF during assembly.

1. Install two new O-rings on the countershaft.

NOTE:
Before installing the O-rings, wrap the shaft splines with tape to prevent damage to the O-rings.
2. Assemble the 1 st-hold clutch assembly, 1 st gear collar, thrust washer, needle bearing, 1st gear, one-way clutch, thrust needle bearing and 3rd gear.

3. Install the above assembly on the countershaft.
4. Align the shaft splines with those of 3rd gear, then press the countershaft into 3 rd gear with a press.

NOTE:

- Also align the shaft splines with those of the 1 sthold clutch when pressing the countershaft into the 3rd gear.
- Use an attachment between the shaft and a press to prevent damage to the countershaft.
- Stop pressing the countershaft when the 1 st-hold clutch contacts the final drive gear.

One-way Clutch

Disassembly/Inspection/Reassembly

1. Separate countershaft 3rd gear from countershaft 1st gear by turning 3rd gear in the direction shown.

2. Remove the one-way clutch by prying it up with the end of a screwdriver.

3. Inspect the parts as follows:

Inspect the thrust needle bearing for damage and faulty movement.

Inspect 1st gear for wear and scoring.
4. After the parts are assembled, hold countershaft 1st gear and turn countershaft 3rd gear in the direction shown to be sure it turns freely.

Secondary Shaft

Disassembly/Inspection/Reassembly

NOTE:

- Lubricate all parts with ATF during reassembly.
- Install the thrust needle bearings with unrolled edge of bearing retainer facing the washer.
- Inspect the thrust needle bearings and the needle bearings for galling and rough movement.
- Before installing the O-rings, wrap the shaft splines with tape to prevent damage to the O-rings.

Secondary Shaft

Inspection

- Clearance Measurement

NOTE: Lubricate all parts with ATF during assembly.

1. Remove the secondary shaft bearing from the transmission housing.
2. Assemble the secondary shaft assembly without O-rings.
3. Install the secondary shaft bearing on the secondary shaft.

4. Set the dial indicator to the $2 n d$ gear as shown.

5. Hold the secondary shaft bearing against the $1 \mathrm{st} / 2 \mathrm{nd}$ clutch assembly. Measure the 2nd gear axial clearance while moving the 2 nd gear.

STANDARD: $0.07-0.15 \mathrm{~mm}(0.003-0.006 \mathrm{in})$
NOTE: Take measurements in at least three places, and use the average as the actual clearance.

6. If the clearance is out of tolerance, remove the splined washer and measure its thickness.
7. Select and install a new splined washer then recheck.

SPLINED WASHER

No.	Part Number	Thickness
1	$90406-$ PX4-700	$4.05 \mathrm{~mm}(0.159 \mathrm{in})$
2	$90407-\mathrm{PX} 4-700$	$4.10 \mathrm{~mm}(0.161 \mathrm{in})$
3	$90408-\mathrm{PX} 4-700$	$4.15 \mathrm{~mm}(0.163 \mathrm{in})$
4	$90409-\mathrm{PX} 4-700$	$4.20 \mathrm{~mm}(0.165 \mathrm{in})$
5	$90410-\mathrm{PX} 4-700$	$4.25 \mathrm{~mm}(0.167 \mathrm{in})$
6	$90411-\mathrm{PX} 4-700$	$4.30 \mathrm{~mm}(0.169 \mathrm{in})$
7	$90412-\mathrm{PX} 4-700$	$4.35 \mathrm{~mm}(0.171 \mathrm{in})$
8	$90413-\mathrm{PX} 4-700$	$4.40 \mathrm{~mm}(0.173 \mathrm{in})$
9	$90414-\mathrm{PX} 4-700$	$4.45 \mathrm{~mm}(0.175 \mathrm{in})$

8. After replacing the splined washer, make sure that the clearance is within tolerance.

Illustrated Index

(cont'd)

Clutch

Illustrated Index (cont'd)

3RD/4TH CLUTCH ASSEMBLY

1ST-HOLD CLUTCH ASSEMBLY

Clutch

Disassembly

1. Remove the snap ring, then remove the clutch end plate, clutch discs and plates.

2. Remove the disc spring.

3. Install the special tools as shown.

NOTE: For 1st-hold clutch

NOTE: For 1st, 2nd, 3rd and 4th clutches.

CAUTION: If either end of the compressor attachment is set over an area of the spring retainer which is unsupported by the return spring, the retainer may be damaged.

4. Compress the return spring.

5. Remove the snap ring. Then remove the special tools, spring retainer and return spring.

6. Wrap a shop rag around the clutch drum, and apply air pressure to the oil passage to remove the piston. Place a finger tip on the other end while applying air pressure.

Clutch

Reassembly

NOTE:

- Clean all parts thoroughly in solvent or carburetor cleaner, and dry them with compressed air.
- Blow out all passages.
- Lubricate all parts with ATF before assembly.

1. Inspect the check valve; if it's loose, replace the piston.

2. Install new O-rings on the piston.

3. Install the piston in the clutch drum. Apply pressure and rotate to ensure proper seating.

NOTE: Lubricate the piston O-ring with ATF before installing.

CAUTION: Do not pinch the O-ring by installing the piston with too much force.

4. Install the return spring and spring retainer, and position the snap ring on the retainer.

NOTE: In this figure, the return spring is for 1 st, $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th clutches. The 1 st-hold clutch return spring is a disc spring, see page 14-137 to install it.

5. Install the special tools as shown.

NOTE: For 1st-hold clutch

NOTE: For 1st, 2nd, 3rd and 4th clutches

CAUTION: If either end of the compressor attachment is set over an area of the spring retainer which is unsupported by the return spring, the retainer may be damaged.

6. Compress the return spring.

Clutch

Reassembly (cont'd)

7. Install the snap ring.

8. Remove the special tools.
9. Install the disc spring.

NOTE: Install the disc spring in the direction shown.

10. Soak the clutch discs thoroughly in ATF for a minimum of 30 minutes.
11. Starting with a clutch plate, alternately install the clutch plates and discs. Install the clutch end plate with flat side toward the disc.

NOTE: Before installing the plates and discs, make sure the inside of the clutch drum is free of dirt or other foreign matter.

12. Install the snap ring.

13. Measure the clearance between the clutch end plate and top disc with a dial indicator.
Zero the dial indicator with the clutch end plate lowered, and lift it up to the snap ring. The distance that the clutch end plate moves is the clearance between the clutch end plate and top disc.

NOTE: Measure at three locations.
Clutch End Plate-to-Top Disc Clearance:

Clutch	Service Limit
1st	$0.65-0.85 \mathrm{~mm}(0.026-0.033 \mathrm{in})$
2nd	$0.65-0.85 \mathrm{~mm}(0.026-0.033 \mathrm{in})$
3rd	$0.40-0.60 \mathrm{~mm}(0.016-0.024 \mathrm{in})$
4th	$0.40-0.60 \mathrm{~mm}(0.016-0.024 \mathrm{in})$
1st-Hold	$0.80-1.00 \mathrm{~mm}(0.031-0.039 \mathrm{in})$

14. If the clearance is not within the service limits, select a new clutch end plate from the following table.

NOTE: If the thickest clutch end plate is installed, but the clearance is still over the standard, replace the clutch discs and clutch plates.

CLUTCH END PLATE

Plate No.	Part Number	Thickness mm (in)
1	$22551-\mathrm{PX} 4-003$	$2.10(0.083)$
2	$22552-\mathrm{PX} 4-003$	$2.20(0.087)$
3	$22553-\mathrm{PX} 4-003$	$2.30(0.091)$
4	$22554-$ PX4-003	$2.40(0.094)$
5	$22555-\mathrm{PX} 4-003$	$2.50(0.098)$
6	$22556-\mathrm{PX} 4-003$	$2.60(0.102)$
7	$22557-\mathrm{PX} 4-003$	$2.70(0.106)$
8	$22558-\mathrm{PX} 4-003$	$2.80(0.110)$
9	$22559-\mathrm{PX} 4-003$	$2.90(0.114)$

Torque Converter Housing Bearings

Mainshaft Bearing/Oil Seal Replacement

1. Remove the mainshaft bearing and oil seal using the special tools as shown.

ADJUSTABLE
BEARING
REMOVER SET

2. Drive in the new mainshaft bearing until it bottoms in the housing using the special tools as shown.

HANDLE DRIVER

07749-0010000

DRIVER ATTACHMENT,
$62 \times 68 \mathrm{~mm}$
07746-0010500
3. Install the new oil seal flush with the housing using the special tools as shown.

HANDLE DRIVER

DRIVER ATTACHMENT,
$72 \times 75 \mathrm{~mm}$
07746-0010600

Countershaft Bearing Replacement

1. Remove the countershaft bearing using the special tool as shown.

ADJUSTABLE BEARING REMOVER SET

2. Install the oil guide plate.
3. Install the new bearing into the housing using the special tools as shown.

TORQUE CONVERTER HOUSING

Secondary Sahft Bearing Replacement

1. Remove the secondary shaft bearing using the special tool as shown.

2. Install the oil guide plate.
3. Install the new bearing into the housing using the special tools as shown.
 HOUSING

Transmission Housing Bearings

Removal/Installation

NOTE:

Lubricate all parts with ATF before assembly.

1. To remove the mainshaft, countershaft and secondary shaft bearings from the transmission housing, expand each snap ring with snap ring pliers, then push the bearing out using the special tool and a press as shown.

NOTE:
Do not remove the snap rings unless it's necessary to clean the grooves in the housing.

SNAP RING PLIERS

PRESS

TRANSMISSION HOUSING

- Mainshaft and Secondary Shaft Removal Use:

- Countershaft Removal Use:

2. Expand each snap ring with snap ring pliers, and insert the new bearing part-way into the housing, using the special tool and a press as shown. Install with groove side of the bearing facing inside the housing.
3. Release the pliers, then push the bearing down into the housing until the snap ring snaps in place around it.

- Mainshaft and Secondary Shaft Installation Use:

- Countershaft Installation Use:

4. After installing the ball bearing verify the following:

- The snap ring is seated in the bearing and housing grooves.
- The snap ring operates properly.
- The ring end gap is correct.

Right Side Cover

Feed Pipe Installation

1. Install the feed pipes in the right side cover with new O -rings, aligning the lugs with the grooves in the right side over.
2. Install the snap rings.

Parking Brake Stopper

Inspection/Adjustment

1. Set the parking brake lever in the P position.
2. Measure the distance between the parking brake pawl shaft and the parking brake lever roller pin as shown.

STANDARD: 64.5-65.5 mm (2.54-2.58 in)

3. If the measurement is out of tolerance, select and install the appropriate parking brake stopper from the table below.

PARKING BRAKE STOPPER
PARKING BRAKE STOPPER

Mark	Part Number	L_{1}	$\mathrm{~L}_{2}$
1	$24537-$ PA9-003	11.00 mm	11.00 mm $(0.433 \mathrm{in})$
			$0.433 \mathrm{in})$
2	$24538-P A 9-003$	10.80 mm	10.65 mm
		$10.425 \mathrm{in})$	$(0.419 \mathrm{in})$
3	$24539-P A 9-003$	10.60 mm	10.30 mm
		$(0.417 \mathrm{in})$	$(0.406 \mathrm{in})$

4. After replacing the parking brake stopper, make sure the distance is within tolerance.

Transmission

Reassembly

NOTE:

- Coat all parts with ATF.
- Replace the following parts:
- O-rings
- Lock washers
- Gaskets
- Locknuts and conical spring washers
- Sealing washer
- Torque the $6 \times 1.0 \mathrm{~mm}$ Bolts:
$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

1. Install the main separator plate and the three dowel pins on the torque converter housing. Then install the oil pump gears and oil pump driven gear shaft.

NOTE: Install the oil pump driven gear with its grooved and chamfered side facing down.

2. Install the main valve body with four bolts. Make sure the oil pump drive gear rotates smoothly in the normal operating direction, and the oil pump driven gear shaft moves smoothly in the axial and normal operating directions.
3. If the oil pump drive gear and oil pump driven gear shaft do not move freely, loosen the main valve body bolts; realign the oil pump driven gear shaft, and then retighten to the specified torque

CAUTION: Failure to align the oil pump driven gear shaft correctly will result in a seized oil pump drive gear or oil pump driven gear shaft.

4. Install the stator shaft and stopper shaft.
5. Install the two dowel pins, torque converter check valve and torque converter check valve spring in the main valve body.
6. Install the regulator valve body with the bolt on the main valve body.
7. Install the two dowel pins and separator plate on the regulator valve body, then install the throttle valve body (seven bolts).
8. Install the secondary separator plate with two dowel pins on the main valve body.
9. Install the control shaft in the housing with the control shaft and manual valve together.
10. Install the detent arm and arm shaft in the main valve body, then hook the detent spring to the detent arm.

11. Install the secondary valve body, servo separator plate and servo body (six bolts).
12. Install the oil feed pipe in the servo body, then install the 4th accumulator cover (three bolts).
13. Install the ATF strainer (two bolts).
14. Install the servo detent base (two bolts).
15. Install the 1 st/2nd accumulator body (six bolts).
16. Install two oil feed pipes in the main valve body and the oil feed pipe in the servo body.
(cont'd)

Transmission

Reassembly (cont'd)

17. Install the differential assembly, countershaft subassembly, mainshaft sub-assembly, and secondary shaft sub-assembly in the torque converter housing.

18. Install the splined washer, thrust needle bearing and needle bearings on the secondary shaft.
19. Install the needle bearings, countershaft 4th gear, reverse selector hub, and reverse selector with the shift fork on the countershaft.

SECONDARY SHAFT

20. Turn the shift fork shaft so the large chamfered hole is facing the fork bolt hole. Then install the shift fork and the lock bolt with a new lock washer, and torque. Bend the lock tab against the bolt head.

21. Install the secondary shaft 2nd gear, thrust needle bearing and thrust washer on the secondary shaft. Install the countershaft reverse gear and 2nd gear on the countershaft as shown.

22. Install the reverse idler gear into the transmission housing, then slip it the direction as shown.

23. Align the spring pin of the control shaft with the transmission housing groove by turning the control shaft.
24. Install three dowel pins and a new gasket on the torque converter housing.
25. Place the transmission housing on the torque converter housing.

26. Install the transmission housing bolts along with the transmission hanger, throttle control cable stay/ transmission hanger and harness stay. Torque the bolts in two or more steps in the sequence shown.

TORQUE: $54 \mathbf{N} \cdot \mathrm{~m}(5.5 \mathrm{kgf} \cdot \mathrm{m}, 40 \mathrm{lbf} \cdot \mathrm{ft})$

27. Coat the reverse idler gear shaft, needle bearing and new O-rings with lithium grease lightly.
Assemble new O-rings and needle bearing on the reverse idler gear shaft, then install the reverse idler gear shaft in the reverse idler gear shaft holder, aligning the D-shaped cut out of the shaft with the Dshaped area of the holder.

Transmission

Reassembly (cont'd)
28. Engage the reverse idier gear to the countershaft and mainshaft reverse gears, then install the reverse idler gear shaft/holder assembly on the transmission housing.

29. Install the parking brake lever on the control shaft, then install the lock bolt loosely with a new lock washer.

NOTE: Do not tighten the lock bolt to the specified torque and bend the lock tab in this step.

30. Slip the special tool onto the mainshaft.

31. Lubricate the following parts with ATF:

- Splines and threads of each shaft.
- Threads of the old locknuts.
- Splines of the mainshaft and countershaft idler gears.
- Splines of the parking gear.

32. Install the mainshaft idler gear.
33. Install the old locknut on the mainshaft to seat the idler gear

NOTE:

- The mainshaft locknut has left-hand threads.
- Do not drive the idler gear on with a hammer.
- Do not use a impact wrench, always use a torque wrench to tighten the locknut.

TORQUE: $226 \mathrm{~N} \cdot \mathrm{~m}(23.0 \mathrm{kgf} \cdot \mathrm{m} .166 \mathrm{lbf} \cdot \mathrm{ft})$

34. Install the secondary shaft idier gear on the secondary shaft.
35. Install the thrust washer, thrust needle bearing, needle bearing, countershaft idler gear and parking gear on the countershaft.

36. Install the old locknut on the secondary shaft. Tighten the old locknut to seat the secondary shaft idler gear while holding the countershaft idler gear.

NOTE:

- Do not drive the idler gear on with a hammer.
- Do not use a impact wrench, always use a torque wrench to tighten the locknut.

TORQUE: $226 \mathrm{~N} \cdot \mathrm{~m}(23.0 \mathrm{kgf} \cdot \mathrm{m}, 166 \mathrm{lbf} \cdot \mathrm{ft})$

37. Install the parking brake pawl shaft and spring in the transmission housing, then install the parking brake pawl.

(cont'd)

Transmission

Reassembly (cont'd)

38. Install the special tool on the parking gear, and engage the parking brake pawl with the parking gear by moving up the parking brake pawl.

CAUTION: Keep all of the particles of the transmission when installing the special tool.
39. Tighten the special tool and lightly seat the parking gear.

NOTE: Do not drive the parking gear on with a hammer.

40. Remove the special tool.
41. Use the old locknut to tighten the press fit parking gear to the specified torque, then loosen it.

NOTE: Do not use a impact wrench, always use a torque wrench to tighten the locknut.

TORQUE: 226 N•m (23.0 kgf•m, 166 lbffft)
42. Remove the old locknut, then install new conical spring washers and new locknuts on each shaft.

CAUTION: Install the conical spring washers in the direction shown.

43. Tighten the locknuts to specified torque using a torque wrench.

NOTE: Do not use a impact wrench, always use a torque wrench to tighten the locknuts.

TORQUE: $167 \mathrm{~N} \cdot \mathrm{~m}(17.0 \mathrm{kgf} \cdot \mathrm{m}, 123 \mathrm{lbf} \cdot \mathrm{ft})$
NOTE: The mainshaft locknut has left-hand threads.

44. Stake each locknut into its shaft using a 3.5 mm punch.

45. Set the parking brake lever in the P position, then verify that the parking brake pawl engages the parking gear.
46. If the pawl does not engage fully, check the parking brake pawl stopper clearance as described on page 14-147.
47. Tighten the bolt, and bend the lock tab against the bolt head.

48. Install the right side cover.

TORQUE: $12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

49. Install the throttle control lever and spring on the throttle control shaft.

50. Install the ATF cooler pipes with new sealing washers.

TORQUE: $28 \mathrm{~N} \cdot \mathrm{~m}(2.9 \mathrm{kgf} \cdot \mathrm{m}, 21 \mathrm{lbf} \cdot \mathrm{ft})$
51. Install the ATF level gauge.

Torque Converter

Disassembly

Installation

1. Install the starter motor on the torque converter housing, and install the two $14 \times 20 \mathrm{~mm}$ dowel pins in the torque converter housing.

2. Place the transmission on a jack, and raise to the engine assembly level.
3. Attach the transmission on the engine, then install the transmission housing mounting bolts, rear engine mounting bolts and intake manifold bracket bolts.

INTAKE MANIFOLD
BRACKET BOLTS
$8 \times 1.25 \mathrm{~mm}$

4. Install the transmission housing mounting bolts.

$12 \times 1.25 \mathrm{~mm}$
$64 \mathrm{~N} \cdot \mathrm{~m}(6.5 \mathrm{kgf} \cdot \mathrm{m}, 47 \mathrm{lbf} \cdot \mathrm{ft})$
5. Tighten the front engine mount bracket bolts to specified torque.

Transmission

Installation (cont'd)

6. Install the transmission mount. Tighten the bolt, then tighten the nuts to specified torque, and retighten the bolt to specified torque.

7. Remove the transmission jack.
8. Attach the torque converter to the drive plate with eight bolts and torque:
Rotate the crankshaft as necessary to tighten the bolts to $1 / 2$ of the specified torque, then to the final torque, in a crisscross pattern.
After tightening the last bolt, check that the crankshaft rotates freely.

TORQUE: $12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$

9. Install the control lever with the shift cable on the control shaft.

CAUTION: Take care not to bend the shift cable.
10. Install the lock bolt with a new lock washer, then bend the lock tab.
11. Install the torque converter cover and shift cable cover.

12. Install the right radius rod and damper fork.

NOTE: Check radius rod rubber bushings for deterioration and damage.

SELF-LOCKING NUT
$12 \times 1.25 \mathrm{~mm}$
DAMPER PINCH BOLT
$10 \times 1.25 \mathrm{~mm}$ $43 \mathrm{~N} \cdot \mathrm{~m}(4.4 \mathrm{~kg} \cdot \mathrm{~m}, 32 \mathrm{lbf} \cdot \mathrm{ft})$

$12 \times 1.25 \mathrm{~mm}$
$103 \mathrm{~N} \cdot \mathrm{~m}(10.5 \mathrm{kgf} \cdot \mathrm{m}, 75.9 \mathrm{lbf} \cdot \mathrm{ft})$
13. Install new set rings on the end of the driveshafts.
14. Install the right and left driveshafts.

NOTE: Turn the right and left steering knuckles fully outward, and slide the inner CV joints into the differential until you feel the set ring engage the side gear.
15. Install the damper fork to the lower arm. Then install the ball joint to the lower arm. Use the castle nuts with new cotter pins.

16. Install the center beam.

17. Install the splash shield.

18. Connect the vehicle speed sensor connector.

Transmission

Installation (cont'd)

19. Connect the ATF cooler hoses to the joint pipes (see page 14-165).
20. Connect the lock-up control solenoid and shift control solenoid valve connectors, and the throttle control cable.
21. Connect the mainshaft speed sensor connector.

Install the ground
cable in step 25.
22. Connect the countershaft speed sensor connector.
23. Connect the starter motor cables.

NOTE: When installing the starter cable, make sure that the crimped side of the ring terminal is facing out (see section 23).

24. Install the battery base and base stay, then install the cable stay on the battery base.

25. Install the intake air resonator, then connect the vacuum hoses and the intake air resonator control solenoid valve connector (F22B1 and F22B5 engines).

26. Install the intake air duct/air cleaner housing assembly and intake air duct B.

27. Refill the transmission with ATF (see page 14-95).
28. Connect the battery positive (+) and negative (-) cables to the battery.
29. Start the engine. Set the parking brake, and shift the transmission through all gears three times.
30. Check the throttle control cable adjustment as described on page 14-164.
31. Check and adjust the front wheel alignment (see section 18).
32. Let the engine reach operating temperature (the radiator fan comes on) with the transmission in N or P position, then turn it off and check fluid level.
33. Road test as described on pages 14-90 thru 14-92.
34. Loosen the front engine mount bracket bolts after the road test, and retighten them to specified torque.

Shift Cable

Removal/Installation

A. WARNING

- Make sure lifts, jacks and safety stands are placed properly, and hoist brackets are attached to the correct position on the engine (see section 1).
- Apply parking brake and block rear wheels so car will not roll off stands and fall on you while working under it.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the front console (see section 20).
2. Shift to N position, then remove the lock pin from the cable adjuster.
3. Remove the bolts securing the bracket.

NOTE: LHD is shown; RHD is similar.

4. Remove the shift cable cover.
5. Remove the lock bolt securing the control lever, then remove the control lever with the shift cable.

$8 \times 1.25 \mathrm{~mm}$
$18 \mathrm{~N} \cdot \mathrm{~m}(1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft})$
6. Remove the exhaust pipe B and heat shield.

SELF-LOCKING NUT
$54 \mathrm{~N} \cdot \mathrm{~m}(5.5 \mathrm{~kg} \cdot \mathrm{~m}, 40 \mathrm{lbf} \cdot \mathrm{ft})$ Replace.

7. Remove the cable guide and grommet.

$6 \times 1.0 \mathrm{~mm}$
$12 \mathrm{~N} \cdot \mathrm{~m}(1.2 \mathrm{kgf} \cdot \mathrm{m}, 8.7 \mathrm{lbf} \cdot \mathrm{ft})$
8. Remove the cotter pin and lock pin, then separate the control lever from the shift cable.

9. Install the shift cable in the reverse order of removal.
10. Check the cable adjustment after installing the shift cable (see page 14-164).

Shift Cable

Adjustment

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Start the engine. Shift to reverse to see if the reverse gear engages. If not, refer to Troubleshooting on page 14-86 thru 89.
2. With the engine off, remove the front console (see section 20).
3. Shift to N position, then remove the lock pin from the cable adjuster.

NOTE: LHD is shown; RHD is similar.

4. Check that the hole in the adjuster is perfectly aligned with the hole in the shift cable.

NOTE:
There are two holes in the end of the shift cable. They are positioned 90° apart to allow cable adjustments in $1 / 4$ turn increments.
5. If not perfectly aligned, loosen the locknut on the shift cable, and adjust as required.
6. Tighten the locknut.
7. Install the lock pin on the adjuster. If you feel the lock pin binding as you reinstall it, the cable is still out of adjustment and must be readjusted.
8. Move the shift lever to each gear, and verify that the A / T gear position indicator follows the A / T gear position switch.
9. Start the engine and check the select lever in all gears. If any gear does not work properly, refer to troubleshooting on page 14-86 thru 89.
10. Insert the ignition key into the key cylinder on the A / T gear position indicator panel, and verify that the shift lock lever is released.

ATF Cooler Hoses

Connection

1. Connect the ATF cooler hoses to the joint pipes and ATF cooler, and secure them with the clips as shown.
2. Install the clamp on the yellow mark on the ATF cooler hose, then clamp the other hose as shown.

Gearshift Selector (KG model)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assesmbly if it has an open circuit or damaged wiring.

Gearshift Selector (KH model)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

A/T Gear Position Indicator Panel

Adjustment

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. With the transmission in N position, check that the index mark on the indicator aligns with the N mark on the A/T gear position indicator panel when the transmission is in N position.
2. If not aligned, remove the front console (see section 20).
3. Remove the A / T gear position indicator panel mounting screws, and adjust by moving the panel.

NOTE: Whenever the A/T gear position indicator panel is removed, check the panel adjustment as described above.

NOTE: LHD is shown; RHD is similar.

Throttle Control Cable

- Inspection

NOTE: Before inspecting the throttle control cable, make sure that:

- Throttle cable free play is correct (see section 11).
- Idle speed is correct (see section 11).
- You warm up the engine to normal operating temperature (the radiator fan comes on).

1. Verify that the throttle control cable is clamped correctly in three positions.

(cont'd)

Throttle Control Cable

Inspection (cont'd)

2. Verify that the throttle control lever is synchronized with the throttle linkage while depressing and releasing the accelerator pedal.
3. If the throttle control lever is not synchronized with the throttle linkage, adjust the throttle control cable.

4. Check that there is play in the throttle control lever while depressing the accelerator pedal to the fullthrottle position.

5. Remove the cable end of the throttle control cable from the throttle control lever.
6. Check that the throttle control lever moves smoothly.

THROTTLE CONTROL LEVER

Adjustment

NOTE: Before adjusting the throttle control cable, make sure that

- Throttle cable free play is correct (see section 11).
- Idle speed is correct (see section 11).
- You warm up the engine to normal operating temperature (the radiator fan comes on).

1. Verify that the throttle control cable is clamped correctly in three positions.

INTAKE AIR DUCT
 LEVER
2. Verify that the throttle linkage is in the fully-closed position.

3. Loosen the locknut on the throttle control cable at the throttle control lever.
4. Remove the free play in the throttle control cable with the locknut, while pushing the throttle control lever to the fully-closed position as shown.

5. Tighten the locknuts.

6. After tightening the locknuts, inspect the synchronization and throttle control lever movement.

NOTE: To tailor the shift/lock-up characteristics to a particular customer's driving expectations, you can adjust the throttle control cable up to $2 \mathrm{~mm}(0.078 \mathrm{in})$ shorter than the "synchronized" point.

Differential

Manual Transmission 15-1
Automatic Transmission 15-11
Differential (Manual Transmission)
Special Tools 15-2
Differential
Illustrated Index 15-3
Backlash Inspection 15-4
Final Driven Gear Replacement 15-4
Tapered Roller Bearing
Replacement 15-5
Oil Seal Removal 15-5
Bearing Outer Race Replacement 15-6
Tapered Roller Bearing Preload Adjustment 15-7
Oil Seal Installation 15-9

Special Tools

NOTE: If the * mark parts were replaced, the tapered roller bearing preload must be adjusted (see page 15-7).

OIL SEAL
Removal, page 15-5 Installation, page 15-9

$10 \times 1.0 \mathrm{~mm}$
$101 \mathrm{~N} \cdot \mathrm{~m}$ ($10.3 \mathrm{kgf} \cdot \mathrm{m}, 74.5 \mathrm{lbf} \cdot \mathrm{ft}$) Left-hand threads
*BEARING OUTER RACE
Replacement, page 15-6
Inspect for wear and damage.
*TAPERED ROLLER BEARING
Replacement, page 15-5
Inspect for wear and damage.
*TAPERED ROLLER BEARING
Replacement, page 15-5 Inspect for wear and damage.

FINAL DRIVEN GEAR
Replacement, page 15-4 Inspect for wear and damage.
*BEARING OUTER RACE
Replacement, page 15-6
Replacement, page 15-6 Inspect for wear and damage.

*DIFFERENTIAL
CARRIER
Backlash inspection, page 15-4 Inspect for cracks.
*THRUST SHIM
Adjustment, page 15-7

Removal, page 15-5
Installation, page 15-9

Differential (Manual Transmission)

Backlash Inspection

1. Place the differential assembly on V-blocks and install both axles.
2. Measure the backlash of both pinion gears.

Standard (New): $0.05 \mathbf{- 0 . 1 5 ~ m m}$ (0.002-0.006 in)

- If the backlash is not within the standard, replace the differential carrier.

Final Driven Gear Replacement

1. Remove the bolts in a crisscross pattern in several steps, and remove the final driven gear from the differential carrier.

NOTE: The final driven gear bolts have left-hand threads.

FINAL DRIVEN GEAR
Chamfer on inside diameter of final driven gear faces carrier. DIFFERENTIAL CARRIER
2. Install the final driven gear by tightening the bolts in a crisscross pattern in several steps.

Tapered Roller Bearing Replacement

NOTE:

- The tapered roller bearing and bearing outer race should be replaced as a set.
- Inspect and adjust the tapered roller bearing preload whenever the tapered roller bearing is replaced.
- Check the tapered roller bearings for wear and rough rotation. If the tapered roller bearings are OK, removal is not necessary.

1. Remove the tapered roller bearings using a bearing puller and a bearing separator as shown.

2. Install new tapered roller bearings using the special tool as shown.

NOTE: Drive the tapered roller bearings on until they bottom against the differential carrier.

Oil Seal Removal

1. Remove the differential assembiy.
2. Remove the oil seal from the transmission housing.

3. Remove the oil seal from the clutch housing.

Differential (Manual Transmission)

Bearing Outer Race Replacement

NOTE:

- The bearing outer race and tapered roller bearing should be replaced as a set.
- Inspect and adjust the tapered roller bearing preload whenever the tapered roller bearing is replaced.

1. Remove the oil seals from the transmission housing and clutch housing (see page 15-5).
2. Drive the bearing outer race and thrust shim out of the transmission housing, or remove the bearing outer race and 75 mm shim from the clutch housing by heating the clutch housing to about $212^{\circ} \mathrm{F}$ $\left(100^{\circ} \mathrm{C}\right)$ with a heat gun.

CAUTION: Do not reuse the thrust shim if the outer race was driven out.

NOTE: Do not heat the clutch housing in excess of $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$.

CLUTCH

 HOUSING: OUTER RACE
3. Install the thrust shim or 75 mm shim and the bearing outer race in the transmission housing and clutch housing using the special tools as shown.

NOTE:

- Install the bearing outer race squarely.
- Check that there is no clearance between the bearing outer race, thrust shim or 75 mm shim, and housing.

TRANSMISSION
HOUSING:

4. Install the oil seal (see page 15-9).

Tapered Roller Bearing Preload Adjustment

NOTE: If any of the items listed below were replaced, the tapered roller bearing preload must be adjusted.

- Transmission housing
- Clutch housing
- Differential carrier
- Tapered roller bearing and bearing outer race
- Thrust shim
- 75 mm shim

1. Remove the bearing outer race and thrust shim from the transmission housing (see page 15-6).

NOTE: Install the thrust shim only on the transmission housing side.

CAUTION: Do not reuse the thrust shim if the bearing outer race was driven out.

NOTE: Before adjusting the tapered roller bearing preload, let the transmission cool to room temperature if the bearing outer race was removed by heating the clutch housing.
2. First try the same size thrust shim that was removed.

CAUTION: Use only one thrust shim.

3. After installing the thrust shim, install the bearing outer race in the transmission housing (see page 15-6).

NOTE:

- Install the bearing outer race squarely.
- Check that there is no clearance between the bearing outer race, thrust shim and transmission housing.

4. With the mainshaft and countershaft removed, install the differential assembly, and torque the clutch housing and transmission housing.

NOTE: It is not necessary to use sealing agent between the housings.

TORQUE: $10 \times 1.25 \mathrm{~mm}: 44 \mathrm{~N} \cdot \mathrm{~m}$
(4.5 kgf•m, $33 \mathrm{lbf} \cdot \mathrm{ft}$)
$8 \times 1.25 \mathrm{~mm}$: $27 \mathrm{~N} \cdot \mathrm{~m}$
($\mathbf{2 . 8} \mathbf{~ k g f} \cdot \mathrm{m}, 20 \mathrm{lbf} \cdot \mathrm{ft}$)
5. Rotate the differential assembly in both directions to seat the tapered roller bearings.
6. Measure the starting torque of the differential assembly with the special tool and a torque wrench.

STANDARD: 1.4-2.5 N•m (14-26 kgf.cm, 12 - $23 \mathrm{lbf} \cdot \mathrm{in}$)

NOTE:

- Measure the tapered roller bearing preload at normal room temperature.
- Measure the tapered roller bearing preload in both directions.

PRELOAD INSPECTION TOOL 07HAJ - PK40201

Differential (Manual Transmission)

Tapered Roller Bearing Preload Adjustment (cont'd)

7. If the tapered roller bearing preload is not within the standard, select the thrust shim which will give the correct tapered roller bearing preload from the following table.

NOTE: Changing the thrust shim to the next size will increase or decrease tapered roller bearing preload about $0.3-0.4 \mathrm{~N} \cdot \mathrm{~m}$ ($3-4 \mathrm{kgf} \cdot \mathrm{cm}, 2.6-$ $3.5 \mathrm{lbf} \cdot \mathrm{in})$.

THRUST SHIM

	Part Number	Thickness
A	41381 - PX5-000	1.90 mm (0.0748 in)
B	41382 - PX5-000	1.93 mm (0.0760 in)
C	41383 - PX5-000	1.96 mm (0.0772 in)
D	41384-PX5-000	$1.99 \mathrm{~mm}(0.0783 \mathrm{in})$
E	41385-PX5-000	2.02 mm (0.0795 in)
F	41386 - PX5-000	2.05 mm (0.0807 in)
G	41387 - PX5-000	2.08 mm (0.0819 in)
H	41388-PX5-000	2.11 mm (0.0831 in)
1	41389 - PX5-000	2.14 mm (0.0843 in)
J	41390-PX5-000	2.17 mm (0.0854 in)
K	41391 - PX5-000	2.20 mm (0.0866 in)
L	41392-PX5-000	2.23 mm (0.0878 in)
M	41393-PX5-000	2.26 mm (0.0890 in)
N	41394 - PX5-000	2.29 mm (0.0902 in)
0	41395-PX5-000	2.32 mm (0.0913 in)
P	41396-PX5-000	2.35 mm (0.0925 in)
Q	41397 - PX5-000	2.38 mm (0.0937 in)
R	41398-PX5-000	2.41 mm (0.0949 in)
S	41399-PX5-000	2.44 mm (0.0961 in)
T	41400-PX5-000	2.47 mm (0.0972 in)

8. Recheck the tapered roller bearing preload.
9. How to select the correct thrust shim:
-1) Compare the tapered roller bearing preload you get with the thrust shim that was removed, with the specified preload of $1.4-2.5 \mathrm{~N} \cdot \mathrm{~m}$ ($14-26 \mathrm{kgf} \cdot \mathrm{cm}, 12-23 \mathrm{lbf} \cdot \mathrm{in}$).
-2) If your measured tapered roller bearing preload is less than specified, subtract yours from the specified.
If yours is more than specified, subtract the specified from your measurement.

For example with a $2.17 \mathrm{~mm}(0.0854 \mathrm{in})$ thrust shim:

$$
\begin{array}{ll}
\begin{array}{l}
\text { (A) specified } \\
- \text { you measure }
\end{array} & 2.5 \mathrm{~N} \cdot \mathrm{~m}(26 \mathrm{kgf} \cdot \mathrm{~cm}, 23 \mathrm{lbf} \cdot \mathrm{in}) \\
& 1.9 \mathrm{~N} \cdot \mathrm{~m}(6 \mathrm{kgf}(20 \mathrm{kgf} \cdot \mathrm{~cm}, 5 \mathrm{lbf} \cdot \mathrm{in})
\end{array}
$$

(B) you measure $3.3 \mathrm{~N} \cdot \mathrm{~m}$ ($34 \mathrm{kgf} \cdot \mathrm{cm}, 30 \mathrm{lbf} \cdot \mathrm{in}$) - specified $\quad 2.5 \mathrm{~N} \cdot \mathrm{~m}(26 \mathrm{kgf} \cdot \mathrm{cm}, 23 \mathrm{lbf} \cdot \mathrm{in})$ $0.8 \mathrm{~N} \cdot \mathrm{~m}(8 \mathrm{kgf} \cdot \mathrm{cm}, 7 \mathrm{lbf} \cdot \mathrm{in})$ more
-3) Each shim size up or down from standard makes about $0.3-0.4 \mathrm{~N} \cdot \mathrm{~m}(3-4 \mathrm{kgf} \cdot \mathrm{cm}$, 2.6-3.5 (bf-in) difference in tapered roller bearing preload.

In example (A), your measured tapered roller bearing preload was $1.9 \mathrm{~N} \cdot \mathrm{~m}$ ($20 \mathrm{kgf} \cdot \mathrm{cm}$, 18 (bf-in) less than standard so you need a thrust shim five sizes thicker than standard (try the $2.32 \mathrm{~mm}(0.0913 \mathrm{in})$ thrust shim, and recheck).
In example (B), your measurement was $0.8 \mathrm{~N} \cdot \mathrm{~m}$ ($8 \mathrm{kgf} \cdot \mathrm{cm}, 7 \mathrm{lbf} \cdot \mathrm{in}$) more than standard, so you need a thrust shim two sizes thinner (try the 2.11 mm (0.0831 in) thrust shim, and recheck).
10. After adjusting the tapered roller bearing preload, assemble the transmission and install the transmission housing (see section 13).

TORQUE:
$10 \times 1.25 \mathrm{~mm}: 44 \mathrm{~N} \cdot \mathrm{~m}(4.5 \mathrm{kgf} \cdot \mathrm{m}, 33 \mathrm{lbf} \cdot \mathrm{ft})$
$8 \times 1.25 \mathrm{~mm}: 27 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{2 . 8} \mathbf{~ k g f} \cdot \mathrm{~m}, 20 \mathrm{lbf} \cdot \mathrm{ft})$
11. Rotate the differential assembly in both directions to seat the tapered roller bearings.

Oil Seal Installation

1. Install the new oil seal into the transmission housing using the special tools as shown.

2. Install the new oil seal into the clutch housing using the special tools as shown.

Differential (Automatic Transmission)

Special Tools 15-12
Differential (Automatic Transmission) Illustrated Index 15-13
Backlash Inspection 15-14
Bearing Replacement 15-14
Differential Carrier Replacement 15-15
Oil Seal Removal 15-15
Tapered Roller Bearing Preload Adjustment 15-16
Bearing Outer Race Replacement 15-18
Oil Seal Installation 15-18

Special Tools

Illustrated Index

Differential (Automatic Transmission)

Backlash Inspection

1. Place the differential assembly on V-blocks and install both axles.
2. Check backlash of both side gears.

Standard (New): $0.08 \mathbf{- 0 . 1 5 ~ m m}$ (0.003-0.006 in.)

3. If backlash is out of tolerance, replace the differential carrier.

Bearing Replacement

NOTE: Check the bearings for wear and rough rotation. If the bearings are OK, removal is not necessary.

1. Remove the tapered roller bearings using a bearing puller.

2. Install the new tapered roller bearings, using the special tool and a press as shown.

NOTE:

- Press the bearings on until they bottom.
- Use the large end of the special tool for torque converter housing side bearing.
- Use the small end of the special tool for transmission housing side bearing.

NOTE:

- The bearing and outer race should be replaced as a set.
- Inspect and adjust the bearing preload whenever a bearing is replaced.
- Drive in the bearings securely so that there is no clearance between the bearings and differential carrier.

Differential Carrier Replacement

1. Remove the final driven gear from the differential carrier.

NOTE: The final driven gear bolts have left-hand threads.
2. Install the final driven gear with its chamfered side on inner bore facing the differential carrier.
3. Torque the bolts to the specified torque in a crisscross pattern.

TORQUE: $101 \mathbf{N} \cdot \mathrm{~m}(\mathbf{1 0 . 3} \mathbf{k g f} \cdot \mathrm{~m}, 74.5 \mathrm{lbf} \cdot \mathrm{ft})$

Oil Seal Removal

1. Remove the differential assembly.
2. Remove the oil seal from the transmission housing.

3. Remove the oil seal from the torque converter housing.

Differential (Automatic Transmission)

Tapered Roller Bearing Preload Adjustment

NOTE: If the transmission housing, torque converter housing, differential carrier, tapered roller bearing, outer race or thrust shim were replaced, the bearing preload must be adjusted.

1. Remove the bearing outer race and thrust shim from the transmission housing by heating the housing to about $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ with a heat gun.

CAUTION:

- Do not heat the housing in excess of $212^{\circ} \mathrm{F}$ $\left(100^{\circ} \mathrm{C}\right)$.
- Replace the tapered roller bearing when the outer race is to be replaced.
- Do not use a shim on the torque converter housing side.

NOTE: Let the transmission housing cool to the room temperature before adjusting the bearing preload.

2. Select the $2.60 \mathrm{~mm}(0.102 \mathrm{in})$ thrust shim from the middle of the table below.

THRUST SHIM

No.	Part Number	Thickness
A	41441 - PK4-000	2.20 mm (0.087 in)
B	41442 - PK4-000	2.25 mm (0.089 in)
C	41443 - PK4-000	2.30 mm (0.091 in)
D	41444 - PK4 - 000	$2.35 \mathrm{~mm}(0.093 \mathrm{in})$
E	41445 - PK4 - 000	$2.40 \mathrm{~mm}(0.094 \mathrm{in})$
F	41446-PK4-000	$2.45 \mathrm{~mm}(0.096 \mathrm{in})$
G	41447 - PK4 - 000	2.50 mm (0.098 in)
H	41448-PK4-000	$2.55 \mathrm{~mm}(0.100 \mathrm{in})$
*	41449 - PK4 - 000	2.60 mm (0.102 in)
J	41450 - PK4 - 000	2.65 mm (0.104 in)
K	41451 - PK4-000	2.70 mm (0.106 in)
L	41452-PK4-000	$2.75 \mathrm{~mm}(0.108 \mathrm{in})$
M	41453-PK4-000	$2.80 \mathrm{~mm}(0.110 \mathrm{in})$
N	41454 - PK4-000	2.85 mm (0.112 in)
0	41455-PK4-000	$2.90 \mathrm{~mm}(0.114 \mathrm{in})$
P	41456 - PK4 - 000	2.95 mm (0.116 in)
Q	41457 - PK4-000	3.00 mm (0.118 in)
R	41458 - PK4-000	3.05 mm (0.120 in)

* Standard shim

3. After installing the thrust shim, install the outer race in the transmission housing, using the special tools as shown.

NOTE:

- Install the outer race squarely in the transmission housing.
- Check that there is no clearance between the outer race, shim and transmission housing.

4. With the mainshaft, countershaft and secondary shaft removed, install the differential assembly and torque the transmission housing.

NOTE: Install the gasket when checking starting torque.

TORQUE: $54 \mathrm{~N} \cdot \mathrm{~m}$ ($5.5 \mathrm{kgf} \cdot \mathrm{m}, 40 \mathrm{lbf} \cdot \mathrm{ft})$
5. Rotate the differential assembly in both directions to seat the bearings.
6. Measure the starting torque of the differential assembly with the special tool and a torque wrench.

STANDARD:
New bearings: $\quad 2.7-3.9 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { (28-40 kgf.cm, } 24-35 \mathrm{lbf} \cdot \mathrm{in})
$$

Reused bearings: $2.5-3.6 \mathrm{~N} \cdot \mathrm{~m}$
(25-37 kgf.cm, 22 - $\mathbf{3 2}$ lbffin)

NOTE:

- Measure the starting torque at normal room temperature in both directions.
- Changing one of the shims to the next size will increase or decrease starting torque about 0.3 $0.4 \mathrm{~N} \cdot \mathrm{~m}$ ($3-4 \mathrm{kgf} \cdot \mathrm{cm}, 3-3 \mathrm{lbf} \cdot \mathrm{in}$).
- To increase the starting torque, increase the thickness of shims. To decrease the starting torque, decrease the thickness of shims.

Differential (Automatic Transmission)

Bearing Outer Race Replacement

1. Remove the bearing outer race from the torque converter housing by heating the housing to about $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ with a heat gun.

CAUTION: Do not heat the housing in excess of $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$.

NOTE:

- Replace the bearing with a new one whenever the outer race is to be replaced.
- Do not use shims on the torque converter housing side.
- Adjust preload after replacing the bearing outer race and bearing.

2. Install the new bearing outer race flush with the housing using the special tools.

Oil Seal Installation

1. Install the oil seal in the transmission housing, using the special tools as shown.

2. Drive the oil seal into the torque converter housing, using the special tools as shown.

Driveshafts

Special Tools 16-2
Driveshafts
Inspection 16-3
Removal 16-3
Disassembly 16-5
Reassembly 16-7
Installation 16-10
Intermediate Shaft
Removal 16-12
Disassembly 16-12
Reassembly 16-14
Installation 16-16

Special Tools

	Tool Number	Description	Oty	Page Reference
Number	(1)	07GAD - PG40100	Oil Seal Driver	1
(2)	O7LAF - SM40300	Support Base Attachment	$16-15$	
(3)	$07 \mathrm{MAC}-$ SL00100	Ball Joint Remover, 32 mm	1	$16-13,15$
(4)	$07746-0010300$	Attachment, $42 \times 47 \mathrm{~mm}$	1	$16-4$
(5)	$07746-0030100$	Driver, 40 mm I.D.	1	$16-13$
(6)	$07749-0010000$	Driver	1	$16-15$
(7)	$07947-$ SD90101	Seal Driver Attachment	1	$16-13,15$
(8)	$07947-6110501$	Driver Attachment	1	$16-15$
(9)	$07965-$ SD90100	Support Base	1	$16-15$

(1)

(4)

(2)

(3)

(7) (8)

(9)

Inspection

Driveshaft Boot

Check the boots on the driveshaft for cracks, damage, leaking grease or loose boot bands.
If any damage is found, replace the boot and boot bands.

Loose Splines

Turn the driveshaft by hand, and make sure the splines and joint are not excessively loose.
If damage is found, replace the inboard joint.
Twisted or Cracked
Make sure the driveshaft is not twisted or cracked. Replace it if necessary.

Removal

1. Loosen the wheel nuts slightly.
2. Raise the front of car, and support it with safety stands in the proper locations (see section 1).
3. Remove the wheel nuts and front wheels.
4. Drain the transmission oil or fluid (see section 13 or 14).

NOTE: It is not necessary to drain the differential oil when the left driveshaft is removed.
5. Raise the locking tab on the spindle nut, then remove the nut.

6. Remove the self-locking nut and FLANGE bolt.
7. Remove the damper fork.

DAMPER FORK
Check for damage.

Driveshafts

Removal (cont'd)

8. Remove the cotter pin from the lower arm ball joint castle nut, and remove the nut.
9. Install a 12 mm hex nut on the ball joint. Be sure that the hex nut is flush with the ball joint pin end, or the threaded section of the ball joint pin might be damaged by the ball joint remover.
10. Use the ball joint remover, 32 mm , as shown on page 18-10, to separate the ball joint and lower arm.

CAUTION: Be careful not to damage the ball joint boot.

NOTE: If necessary, apply penetrating type lubricant to loosen the ball joint.

11. Pry the driveshaft assembly with a screwdriver, as shown, to force the set ring at the driveshaft end past the groove.

12. Pull on the inboard joint, and remove the driveshaft from the differential case or bearing support as an assembly.

CAUTION:

- Do not pull on the driveshaft, as the inboard joint may come apart.
- Use care when prying out the assembly, and pull it straight to avoid damaging the differential oil seal or the intermediate shaft outer seal.

〈Left driveshaft with intermediate shaft: >

Disassembly

13. Pull the knuckle outward, and remove the driveshaft outboard joint from the front wheel hub using a plastic hammer.

14. Remove the set ring from the inboard joint.
15. To remove the boot band, pry up the locking tabs with a screwdriver and raise the end of the band.

CAUTION: Take care not to damage the boot.
NOTE: Carefully clamp the driveshaft in a vise with soft jaws.

- If the boot band is the welded type, cut it off as shown.

(cont'd)

Driveshafts

Disassembly (cont'd)

3. Mark each roller and inboard joint to identify the locations of rollers and grooves in the inboard joint. Then remove the inboard joint on the shop towel.

NOTE: Be careful not to drop the rollers when separating them from the inboard joint.

INBOARD JOINT
Check splines for wear or damage.
Check inside bore for wear.

4. Mark the rollers and spider to identify the locations of rollers on the spider. Then remove the rollers.
5. Remove the circlip.
6. Mark the spider and driveshaft to identify the position of the spider on the shaft.
7. Remove the spider using a commercially available bearing remover.
8. Remove the stopper ring.

9. Wrap the splines on the driveshaft with vinyl tape to prevent damage to the boots and dynamic damper.
10. Remove the boot band and inboad boot.

CAUTION: Take care not to damage the boot.
11. Remove the dynamic damper band and dynamic damper if equipped.

CAUTION: Take care not to damage the dynamic damper.
12. Remove the boot bands and outboard boot, then remove the vinyl tape.

CAUTION: Take care not to damage the boot.

13. Inspect the outboard joint for faulty movement and wear. If any roughness or excess play is felt, replace the outboard joint.

Reassembly

NOTE:

- Clean the disassembled parts with solvent, and dry them throughly with compressed air. Do not wash the rubber parts with solvent.
- GGEASEH : Thoroughly pack the inboard joint and both joint boots with the joint grease included in the new driveshaft set.

Grease quantity:

Inboard Joint	$120-130 \mathrm{~g}(4.2-4.6 \mathrm{oz})$
Outboard Joint	$130-140 \mathrm{~g}(4.6-4.9 \mathrm{oz})$

(cont'd)

Driveshafts

Reassembly (cont'd)

1. Wrap the splines with vinyl tape to prevent damage to the boots and dynamic damper.
2. Install the outboard boot, dynamic damper and inboard boot to the driveshaft, then remove the vinyl tape.

CAUTION: Take care not to damage the boots and dynamic damper.

3. Install the stopper ring into the driveshaft groove.

NOTE: Always rotate the stoper ring in its groove to be sure it is fully seated.
4. Install the spider on the driveshaft by aligning the marks on the spider and end of the driveshaft.
5. Fit the circlip into the driveshaft groove.

NOTE: Always rotate the circlip in its groove to be sure it is fully seated.

6. Pack the outboard joint with the joint grease included in the new driveshaft set.

Grease quantity: 130-140 g (4.6-4.9 oz)

7. Fit the rollers to the spider with their high shoulders facing outward.

NOTE:

- Reinstall the rollers in their original positions on the spider by aligning the marks.
- Hold the driveshaft pointed up to prevent the rollers from falling off.

ROLLER

8. Pack the inboard joint with the joint grease included in the new driveshaft set.

Grease quantity: $120-130 \mathrm{~g}(4.2 \mathbf{- 4 . 6} \mathrm{oz})$

9. Fit the inboard joint onto the driveshaft.

NOTE:

- Reinstall the inboard joint onto the driveshaft by aligning the marks on the inboard joint and the rollers.
- Hold the driveshaft so the inboard joint points up to prevent it from falling off.

M/T models:
Align the roller holders with the inboard joint as shown below.

10. Adjust the length of the driveshafts to the figure below, then adjust the boots to halfway between full compression and full extension.

NOTE: The ends of boots seat in the groove of the driveshaft and joint.

M/T model:
Left/Right: 486-491 mm (19.1-19.3 in)

A/T model:

Left: 845 - $850 \mathrm{~mm}(33.3-33.5 \mathrm{in})$
Right: 486-491 mm (19.1-19.3 in)

11. Install new boot bands on the boots, and bend both sets of locking tabs.
12. Lightly tap on the doubled-over portions to reduce their height.

(cont'd)

Driveshafts

Reassembly (cont'd)

13. Position the dynamic damper as shown below.

- Install a new dynamic damper band, and bend down both sets of locking tabs.
- Lightly tap on the doubled-over portion of the band to reduce its height.

DYNAMIC DAMPER

Installation

1. Install the outboard joint into the knuckle.

2. Apply $0.3-1.0 \mathrm{~g}(0.01-0.04 \mathrm{oz})$ of specified grease to the whole splined surface of the left driveshaft (for cars with intermediate shaft).
3. Install the new set ring onto the driveshaft groove.

CAUTION: Always use a new set ring whenever the driveshaft is being installed.
4. Insert the inboard end of the driveshaft into the differential or intermediate shaft until the set ring locks in the groove.

5. Install the knuckle on the lower arm, then tighten the castle nut and install a new cotter pin.

NOTE: Wipe off the grease before tightening the nut at the ball joint.

CAUTION:

- Be careful not to damage the ball joint boot.
- Torque the castle nut to the lower torque specification, then tighten it only far enough to align the slot with the pin hole. Do not align the nut by loosening.

6. Install the damper fork over the driveshaft and onto the lower arm. Install the damper in the damper fork so the aligning tab is aligned with the slot in the damper fork.
7. Loosely install the FLANGE bolt and the new selflocking nut.

NOTE: The bolts and nut should be tightened with the vehicle's weight on the damper.

8. Install a new spindle nut, then tighten and stake the nut.
9. Install the front wheel with the wheel nuts.

NOTE: Before installing the wheel, clean the mating surfaces of the brake disc and wheel.

SPINDLE NUT

$24 \times 1.5 \mathrm{~mm}$
$245 \mathrm{~N} \cdot \mathrm{~m}$ (25 kgf•m, $181 \mathrm{lbf} \cdot \mathrm{ft}$)
NOTE: After tightening, use a drift to
stake the spindle nut shoulder against the driveshaft.
10. Tighten the FLANGE bolt and the new self-locking nut with the vehicle's weight on the damper.
11. Refill the transmission with recommended oil or fluid (see section 13 or 14).
12. Check the front wheel alignment, and adjust if necessary (see page 18-4).

Intermediate shaft

Removal

1. Drain the transmission oil or fluid (see section 13 or 14).
2. Remove the left driveshaft (see page 16-3).
3. Remove the three flange bolts.

4. Remove the intermediate shaft from the differential.

CAUTION: Hold the intermediate shaft horizontal until it is clear of the differential to prevent damage to the differential oil seal.

Disassembly

NOTE: Be careful not to damage the metal rings on the intermediate shaft during disassembly.

1. Remove the intermediate shaft outer seal from the bearing support.
2. Remove the extenal circlip.

3. Press the intermediate shaft out of the intermediate shaft bearing using a commercially available bearing remover as shown.

4. Remove the intermediate shaft inner seal.
5. Remove the internal circlip.

6. Press the intermediate shaft bearing out of the bearing support using the special tools and a press as shown.

Intermediate Shaft

Reassembly

NOTE:

- Clean the disassembled parts with solvent, and dry them thoroughly with compressed air. Do not wash the rubber parts with solvent.
- Be careful not to damage the metal rings on the intermediate shaft during reassembly.

Reassembly

1. Press the intermediate shaft bearing into the bearing support using the special tools and a press as shown.

2. Seat the 58 mm internal circlip in the groove of the bearing support.

CAUTION: Install the circlip with the tapered end facing out.
3. Press the intermediate shaft inner seal into the bearing support using the special tools and a press as shown.

4. Press the intermediate shaft into the shaft bearing using the special tool and a press as shown.

5. Seat the 38 mm external circlip in the groove of the intermediate shaft.

CAUTION: Install the circlip with the tapered end facing out.
6. Press the outer seal into the bearing support using the special tools and a press as shown.

Intermediate Shaft

Installation

1. Insert the intermediate shaft assembly into the differential.

CAUTION: Hold the intermediate shaft horizontal to prevent damage to the differential oil seal.

2. Install the three flange bolts, then tighten them.

Steering

Special Tools 17-2
Component Location
Index 17-3
System Description
Fluid Flow Diagram 17-4
Steering Pump $17-5$
Steering Gearbox 17-8
Troubleshooting
General Troubleshooting 17-10
Noise and Vibration 17-14
Fluid Leaks 17-16
Inspection and Adjustment
Steering Operation 17-18
Power Assist Check with Car Parked 17-18
Steering Linkage and Gearbox 17-19
Pump Belt 17-20
Rack Guide Adjustment 17-21
Fluid Replacement 17-21
Pump Pressure Check 17-22
Fluid Leakage Inspection 17-23

* Steering Wheel (With SRS)
Removal 17-24
Disassembly/Reassembly 17-25
Installation 17-26
Steering Wheel (Without SRS)Removal17-28
Disassembly/Reassembly 17-28
Installation 17-29
* Steering Column
Removal 17-30
Inspection 17-32
Installation 17-33
Power Steering Hoses, Pipes Replacement 17-35
Power Steering Pump
Removal 17-36
Disassembly 17-36
Reassembly 17-41
Installation 17-45
Steering Gearbox
Removal 17-46
Disassembly 17-48
Reassembly 17-54
Installation 17-64
Ball Joint Boot Replacement 17-66

SUPPLEMENTAL RESTRAINT SYSTEM (SRS)

Some model versions of the Accord Coupe include a driver's airbag, located in the steering wheel hub, and a front passenger's airbag, located in the dashboard above the glove box. Information necessary to safely service the SRS is included in this Shop Manual. Items marked with an asterisk (*) on the contents page include, or are located near, SRS components. Servicing, disassembling or replacing these items will require special precautions and tools, and should therefore be done by an authorized Honda dealer.

A warning

- To avoid rendering the SRS inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all SRS service work must be performed by an authorized Honda dealer.
- Improper service procedures, including incorrect removal and installation of the SRS, could lead to personal injury caused by unintentional activation of the airbags.
- All SRS electrical wiring harnesses are covered with yellow insulation. Related components are located in the steering column, front console, dashboard, dashboard lower panel, and in the dashboard above the glove box. Do not use electrical test equipment on these circuits.

Index

Power Steering:

NOTE:

- If an intact airbag assembly has been removed from a scrapped car or has been found defective or damaged during transit, storage or service, it should be deployed (see section 23).
- Before removing the gearbox, remove the ignition key to keep the steering shaft from turning.
- After installing the gearbox, check the wheel alignment and adjust if necessary.
- LHD type is shown, RHD type is symmetrical.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

STEERING WHEEL (With SRS)

Removal, page 17-24
Disassembly/Reassembly, page 17-25
Installation, page 17-26
STEERING WHEEL (Without SRS)
Removal, page 17-28
Disassembly/Reassembly, page 17-28
Installation, page 17-29

STEERING GEARBOX

Rack Guide Adjustment, page 17-21
Removal, page 17-46
Disassembly, page 17-48
Reassembly, page 17-54
Installation, page 17-64
Installation, page 17-64

POWER STEERING PUMP
Pump Belt Inspection, page 17-20
Pump Belt Adjustment, page 17-20
Pump Pressure Check, page 17-22
Removal, page 17-36
Disassembly, page 17-36
Reassembly, page 17-41
Installation, page 17-45
TIE-ROD END BALL JOINT
Ball Joint Boot Replacement, page 17-66

System Description

Fluid Flow Diagram

The system is a compact rotary-valve-type power steering, connected to the steering gearbox. The fluid pressure is provided by a vane-type pump which is driven by the engine crank pulley. The amount of fluid and pressure is regulated by the flow control valve built into the pump. The fluid pressure from the pump is delivered to the valve unit around the pinion of the steering gearbox. The valve inside the valve unit controls the hydraulic pressure and changes the direction of the flow. The fluid then flows to the power cylinder, where rack thrust is generated. Fluid returning from the power cylinder flows back to the reservoir, where the fluid is "filtered" and supplied to the pump again.

Steering Pump

Construction

The pump is a vane-type incorporating a flow control valve (with an integrated relief valve) and is driven by a V-belt from the crank pulley. The pump features 10 vanes. Each vane performs two intake/discharge operations for every rotation of the rotor. This means that the hydraulic fluid pressure pulse becomes extremely small during discharge.

Operation

The belt-driven pulley rotates the rotor through the drive shaft. As the rotor rotates, the hydraulic pressure is applied to the vane chamber of the rotor and the vanes will rotate while being pushed onto the inner circumference of the cam ring. The inner circumference of the cam ring has an extended portion with respect to the center of the shaft, so the rollers move downward in the axial direction as the carrier rotates. As a result of this roller movement, the internal volume of the vane chamber will change, resulting in fluid intake and discharge.

FLUID INTAKE:

The vanes are pushed onto the inner circumference of the cam ring.
 sucked in.

The volume of the vane chamber increases so that fluid is

FLUID MOVEMENT:

The sucked-in fluid moves toward the discharge port.

FLUID DISCHARGE:

System Description

Steering Pump (cont'd)

The flow control valve and sub-valve in the pump performs the following steps (1) through (4) to control the flow of fluid, that is to increase the discharge volume when engine speed is low and to decrease it when the engine speed increases. The assistance thrust of the steering gearbox changes in compliance with the change in the discharge volume.
(1) When the engine starts, fluid discharged from the discharge port starts to flow through oil passage A, the fixed orifice and the variable orifice to the steering gearbox.
When the engine speed is extremely low, the return port is closed by the flow control valve.
Fluid pressure discharged from the discharge port is applied to the top of the sub-valve, and the fluid pressure that passed through oil passage A is applied to the bottom of the sub-valve. Therefore, the pressure difference between the ends of oil passage A, which is caused by the resistance oil passage A when the fluid flows through the passage, is applied to the sub-valve. However, the pressure difference applied to the sub-valve, that is, the force that pushes the sub-valve down, is too small to overcome the spring force, and the variable orifice is fully open when the engine speed is extremely low.
(2) Because the fluid volume flowing through the fixed orifice and variable orifice increases, a pressure difference is created between the ends of these orifices, and it increases in proportion to the engine speed.
As the fluid pressure that passed the fixed orifice and variable orifice is directed to the bottom of the flow control valve, a pressure difference is created between the top and bottom of the valve, which pushes down the flow control valve and opens the return port. As a result, part of the fluid discharged from the discharge port returns to the pump suction port, keeping the discharge volume constant.
In this condition, the sub-valve does not move, and the variable orifice stays fully open.

To STEERING GEARBOX

To STEERING GEARBOX

(3) The fluid volume that flows through oil passage A and the pressure difference applied to the sub-valve increase in proportion to the engine speed. The sub-valve lowers overcoming the spring force, and it starts to close the variable orifice to regulate the discharge volume. Therefore, the fluid volume flowing to the steering gearbox decreases as the engine speed increases.
At the same time, the flow control valve continues to control the fluid volume to the return port.
(4) As the engine speed increases further, the pressure difference at the sub-valve increases further, too. The sub-valve then closes the variable orifice completely, regulating the discharge volume further. Therefore, the fluid volume discharged from the pump to the steering gearbox is regulated and maintained at a given level until the engine speed reaches the high speed range.
The flow control valve functions continues to control the fluid volume to the return port.

Pressure Relief

Pressure at the discharge side of the fixed orifice is directed to the bottom of the flow control valve. When the pressure builds up, the relief valve in the flow control valve opens to release the pressure at the bottom of the valve. This allows the flow control valve to be pushed back by the pressure difference, and the fluid volume to the pump return port increases.
As explained above, the system keeps the pump discharge pressure (relief pressure) from exceeding the given level by controlling the volume of the fluid to the pump return port.

To StEERING GEARBOX

System Description

Steering Gearbox

The rack-and-pinion type steering gearbox has a valve unit incorporated with the pinion to control the steering fluid pressure. Steering fluid from the pump is regulated by a rotary valve in the valve unit and is sent through the cylinder pipe to the power cylinder, where hydraulic pressure is applied. The steering fluid in the other side of the power cylinder returns through the cylinder pipe and valve unit to the reservoir.

Valve Unit

Inside the valve unit is the valve, which is coaxial with the pinion shaft, and controls the steering fluid pressure. The valve housing is connected with the fluid pipe from the pump, the return pipe to the pump, and the two cylinder pipes from the respective power cylinder.
The pinion shaft is double - structured with the input shaft connected to the pinion gear, both of which are interconnected with the torsion bar.
The pin inserted in the valve and the pinion shaft groove engage; this allows the pinion shaft to rotate together with the valve.
Because of this construction, the difference in angle in the circumferential direction between the input shaft and the valve becomes larger according to the torsional strength of the pinion or steering resistance. However, maximum torsion between the shafts is regulated by the engaged splines of the shafts at the pin engagement section to hold the torsion bar within the set value.
This allows the steering system to function as an ordinary rack-and-pinion type steering if the steering fluid is not pressurized because of a faulty pump.

Pressure Control

Low assist at higher speeds:
When steering resistance is low, such as when driving at high speeds, or when driving straight ahead, the input shaft is near or in the neutral position, so there is little or no flow to any of the power cylinder orifices. Most of the feed pressure from the pump is bypassed to the reservoir. Because of this, the pressure stays the same in both sides of the power cylinder, resulting in low or no assist.

High assist at lower speeds:
When steering resistance is high, such as when driving at low speeds, or when turning the wheel with the car stopped, the difference in angle created between the input shaft and the valve opens the fluid passage on one side, and closes the fluid passage on the other side, at each pair of orifices. The fluid pressure increases in the side of the power cylinder fed by the larger fluid passage. This increased pressure pushes on the rack piston, allowing the steering wheel to be turned with light effort. On the other side of the power cylinder, the return passage opens allowing the steering fluid to return through the input shaft to the reservoir. The fluid passages to the power cylinder automatically change in size, increasing as the steering resistance increases. In other words, the passages become larger and power assist increases when the steering effort would normally be high, (for example, when parking or making low speed turns), and the passages become smaller and power assist decreases when the steering effort would normally be low, (for example, when driving at high speeds or straight ahead).

Troubleshooting

General Troubleshooting

Check the following before you begin:

- Has the suspension been modified in a way that would affect steering?
- Are tire sizes, tire variety and air pressure correct?
- Is the steering wheel original equipment or equivalent?
- is the power steering pump belt properly adjusted?
- Is steering fluid reservoir filled to proper level?
- Is the engine idle speed correct and steady?

Check force required to turn the wheel (see page 17-18).
Start the engine and measure force required to turn the wheel to the right and left. Difference of the force required to turn the wheel to the right and to the left should be $2.9 \mathrm{~N}(0.3 \mathrm{kgf}, 0.7 \mathrm{lbf})$ or below.

Check pump fluid pressure (see page 17-22).
Turn the steering wheel fully to the right and left while idling with the shut-off valve fully open, and measure the fluid pressure. It should be 6,400-7,400 kPa (65 $\left.75 \mathrm{kgf} / \mathrm{cm}^{2}, 924-1,067 \mathrm{psi}\right)$.

Check the gearbox.
Remove the gearbox and measure the pinion torque.
The torque should be:

* 0.7-1.2 N.m (7-12 kgf.cm, 6$10 \mathrm{lbf} \cdot \mathrm{in}$) with the steering rack in the straight driving position.
* $1.3 \mathrm{~N} \cdot \mathrm{~m}$ ($13 \mathrm{kgf} \cdot \mathrm{cm}, 11.3 \mathrm{lbf} \cdot \mathrm{in}$) with the steering rack in any other position.

Troubleshooting

General Troubleshooting (cont'd)

Assist (excessively light steering) at

high speed. \quad\begin{tabular}{l}
Check the rack guide proper ad-

justment (see page 17-21).

\quad

If the problem is not corrected by

adjusting the rack guide, adjust

the front wheel alignment (see

section 18).
\end{tabular}

Shock or vibration when wheel is turned to full lock.	Check the rack guide for proper adjustment (see page 17-21).	Rack guide was backed off excessively.
		Adjust.
	Rack guide is adjusted properly.	
	Check the belt for slip and adjust as necessary (see page 17-20).	If the problem is not corrected by adjusting the rack guide, replace the gearbox.

Wheel will not return smoothly. \quad\begin{tabular}{l}
Check cylinder pipes A and B for

deformation.

\quad

If either A or B cylinder pipe is

deformed, replace it.
\end{tabular}

If cylinder pipe A and B are normal, remove the gearbox from the frame and measure the pinion torque on the gearbox.

* It should be $0.7-1.2 \mathrm{~N} \cdot \mathrm{~m}$ (7$12 \mathrm{kgf} \cdot \mathrm{cm}, 6-10(\mathrm{bf} \cdot \mathrm{in})$ or below with the steering rack in the straight ahead driving position.
* $1.3 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{1 3 \mathrm { kgf } \cdot \mathrm { cm } , \mathbf { 1 1 . 3 } \mathrm { lbf } \cdot \mathrm { in } \text {) }) ~ (~}$ with the steering rack in-any other position.

If the measurements are out of specifications, adjust the rack guide.

If the problem is not corrected by adjusting the rack guide, replace the gearbox.

Steering kicks back during wide turns.

Pump belt slipping on pulley (pump stops momentarily).

Set the power steering pressure gauge. Close the shut-off valve fully and measure the pump pressure (see page 17-22).

Adjust belt tension (see page 1720) or replace belt.

Check if pump pressure is within the range $6,400-7,400 \mathrm{kPa}(65-75$ $\mathrm{kgf} / \mathrm{cm}^{2}, 924-1,067 \mathrm{psi}$) and the gauge needle travel is $500 \mathrm{kPa}(5$ $\mathrm{kgf} / \mathrm{cm}^{2}, 71 \mathrm{psi}$) or less. Check the flow control valve if the needle travel exceeds $500 \mathrm{kPa}\left(5 \mathrm{~kg} / \mathrm{cm}^{2}\right.$, 71 psil. If the flow control valve is normal, replace the pump as an assembly.

Troubleshooting

Noise and Vibration

NOTE: Pump noise in first $2-3$ minutes after starting in cold weather is normal.

CAUTION: When inspecting, do not holding the steering wheel all the way to right or left.

Troubleshooting

Fluid Leaks

- Check the gearbox assembly for oil leaks carefully. Oil can leak out of various points, depending on location of the faulty oil seals/seal rings. Check the following before removing the gearbox from the frame.

Air leak in suction side of system (reservoir, inlet hose, front pump seal).

Inspection and Adjustment

Steering Operation

Place the front wheels in the straight ahead position, and measure the distance the steering wheel can be turned without moving the front wheels.

ROTATIONAL PLAY: 0-10 mm (0-0.39 in)

If the play exceeds the service limit, perform rack guide adjustment (see page 17-21).
If the play is still excessive after rack guide adjustment, inspect the steering linkage and gearbox as described on the next page.

ROTATIONAL PLAY

Power Assist Check with Car Parked

1. Check the power steering fluid level (see page 1721) and pump belt tension (see page 17-20).
2. Start the engine, allow it to idle, and turn the steering wheel from lock-to-lock several times to warm up the fluid.
3. Attach a spring scale to the steering wheel. With the engine idling and the car on a clean, dry floor, pull the scale as shown and read it as soon as the tires begin to turn.

4. The scale should read no more than $29 \mathrm{~N}(3.0 \mathrm{kgf}$, $6.6 \mathrm{lbf})$. If it reads more, check the gearbox and pump.

Steering Linkage and Gearbox

NOTE: LHD type is shown, RHD type is symmetrical.

Inspection and Adjustment

Pump Belt

NOTE: When using a new belt, first adjust the deflection or tension to the values for the new belt, then readjust the deflection or tension to the values for the used belt after running engine for five minutes.

Inspection

Attach the belt tension gauge to the belt and measure the tension of the belt.

Tension:

Used Belt: 390-540 N (40-55 kgf, 88-120 lbf)
New Belt: 740-880 N (75-90 kgf, 170-200 lbf)
NOTE:

- If there are cracks or any damage evident on the belt, replace it with a new one.
- Follow the manufacturer's instructions for the tension gauge.

Inspect the pump belt for cracks or any damage.
Replace the belt with a new one if necessary.

Measurement without Belt Tension Gauge:

Apply a force of $98 \mathrm{~N}(10 \mathrm{kgf}, 22 \mathrm{lbf})$ and measure the deflection between the power steering pump and the crankshaft pulleys.

Deflection:

Used Belt: 13.0-16.0 mm (0.51-0.63 in)
New Belt: 11.0 - $12.5 \mathrm{~mm}(0.43-0.49 \mathrm{in})$

Adjustment

1. Loosen the power steering pump mounting nuts.
2. Turn the adjusting bolt to get the proper belt tension, then retighten the nuts.
3. Start the engine and turn the steering wheel from lock-to-lock several times, then stop the engine and recheck the deflection of the belt.
 $24 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{2 . 4} \mathbf{k g f} \cdot \mathrm{~m}, 17 \mathrm{lbf} \cdot \mathrm{ft})$

Rack Guide Adjustment

NOTE: Perform rack guide adjustment with the wheels in the straight ahead position.

1. Loosen the rack guide screw locknut with the special tool, then loosen the rack guide screw.
2. Tighten the rack guide screw to $25 \mathrm{~N} \cdot \mathrm{~m}$ ($2.5 \mathrm{kgf} \cdot \mathrm{m}$, $18 \mathrm{lbf} f \mathrm{ft}$), then loosen it.
3. Retighten the rack guide screw to $3.9 \mathrm{~N} \cdot \mathrm{~m}$ (0.4 $\mathrm{kgf} \cdot \mathrm{m}, 2.9 \mathrm{lbf} \cdot \mathrm{ft})$, then back it off to specified angle.

Specified Return Angle: $20 \pm \mathbf{5}^{\circ}$
4. Tighten the locknut while holding the rack guide screw.

NOTE: LHD type is shown, RHD type is symmetrical.

5. Check for tight or loose steering through the complete turning travel.
6. Perform following inspections:

- Steering operation (see page 17-18).
- Power assist with car parked.

Fluid Replacement

Check the reservoir at regular intervals, and add fluid as necessary.
CAUTION: Use only Genuine Honda Power Steering Fluid-V. Using other fluids such as ATF or other manufacturer's power steering fluid will damage the system.

SYSTEM CAPACITY:

1.1 liter (1.16 US. qt, 0.97 Imp.qt)
at disassembly
RESERVOIR CAPACITY:
0.4 liter (0.42 US. qt, 0.35 Imp.qt)

1. Raise the reservoir, then disconnect the return hose that goes to the oil cooler.
2. Connect a hose of suitable diameter to the disconnected return hose, and put the hose end in a suitable container.

CAUTION: Take care not to spill the fluid on the body and parts. Wipe off the spilled fluid at once.
3. Start the engine, let it run at idle, and turn the steering wheel from lock-to-lock several times. When fluid stops running out of the hose, shut off the engine. Discard the fluid.

4. Refit the return hose on the reservoir.
5. Fill the reservoir to the upper level line.
6. Start the engine and run it at fast idle, then turn the steering from lock-to-lock several times to bleed air from the system.
7. Recheck the fluid level and add some if necessary::

CAUTION: Do not fill the reservoir beyond the upper level line.

Inspection and Adjustment

Pump Pressure Check

Check the fluid pressure as follows to determine whether the trouble is in the pump or gearbox.

NOTE: First check the power steering fluid level and pump belt tension.

CAUTION: Disconnect the high pressure hose with care so as not to spill the power steering fluid on the frame and other parts.

1. Disconnect the outlet hose from the pump outlet fitting, and install the pump joint adapter on the pump outlet.
2. Connect the hose joint adapter to the power steering pressure gauge, then connect the outlet hose to the adaptor.
3. Install the power steering pressure gauge to the pump joint adaptor as shown.

HOSE ATTACHING BOLT $11 \mathrm{~N} \cdot \mathrm{~m}(1.1 \mathrm{kgf} \cdot \mathrm{m} 8 \mathrm{lbf} \cdot \mathrm{ft})$

11 N.m
(1.1 kgf.m, $8 \mathrm{lbf} \cdot \mathrm{ft}$)
4. Open the shut-off valve fully.
5. Open the pressure control valve fully.
6. Start the engine and let it idle.
7. Turn the steering wheel from lock-to-lock several times to warm the fluid to operating temperature.
8. Measure steady-state fluid pressure while idling with the shut-off valve fully open. If the pump is in good condition, the gauge should read less than 1500 kpa ($15 \mathrm{kgf} / \mathrm{cm}^{2}, 213 \mathrm{psi}$).
If it reads high, check the feed line or valve body unit (see General Troubleshooting 17-10).
9. Close the shut-off valve, then close the pressure control valve gradually until the pressure gauge needle is stable. Read the pressure.
10. Immediately open the shut-off valve fully.

CAUTION: Do not keep the shut-off valve closed more then 5 seconds or the pump could be damaged by over-heating.

If the pump is in good condition, the gauge should read at least $6,400-7,400 \mathrm{kpa}\left(65-75 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 924 $-1,067$ psi). A low reading means pump output is too low for full assist. Repair or replace the pump.

Fluid Leakage Inspection

NOTE: LHD type is shown, RHD type is symmetrical.

GEARBOX and VALVE BODY UNIT
Check for leaks at the mating surface and flare nut connections.

HOSES and PIPES
Inspect hoses for damage, leaks, interference or twisting.
inspect fluid lines for damage,
rusting or leakage.
Inspect for leaks at hose and
line joints or connections.

Steering Wheel (With SRS)

Removal

Airbag Removal

NOTE: LHD type is shown, RHD type is symmetrical.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

(Covered with yellow insulation)

1. Disconnect the negative cable first, then positive cable from the battery.
2. Remove the access panel from the steering wheel lower cover, then remove the short connector.
3. Disconnect the connector between the airbag and cable reel.
4. Connect the short connector to the airbag side of the connector.

5. Remove the covers.
6. Remove the TORX ${ }^{\circledR}$ T30 bit bolts, then remove the airbag assembly.

7. Disconnect the connectors from the horn and cruise control switches.
8. Remove the steering wheel nut or bolt.

Removal
9. Remove the steering wheel.

NOTE: If equipped with the front passenger's airbag, install a commercially available steering wheel puller to the steering wheel to remove it.

CAUTION: Do not tap on the steering wheel or the steering column shaft when removing the steering wheet.

STEERING WHEEL PULLER
Commercially Available. (Front passenger's airbag type only)

Disassembly/Reassembly

A WARNING Store a removed airbag assembly with the pad surface up. If the airbag is improperly stored face down, accidental deployment could propel the unit with enough force to cause serious injury.

NOTE: If an intact airbag assembly has been removed from a scrapped car, or has been found defective or damaged during transit, storage or service, it should be deplcyed (see section 23).

CAUTION:

- Carefully inspect the airbag assembly before installing. Do not install an airbag assembly that shows signs of being dropped or improperly handled, such as dents, cracks or deformation.
- Always keep the short connector on the airbag connector when the harness is disconnected.
- Do not disassemble or tamper with the airbag assembly.

Steering Wheel

Installation

Airbag installation

CAUTION:

- Before installing the steering wheel, align the front wheels straight ahead.
- Be sure to install the harness wires so that they are not pinched or interfering with other car parts.
- Do not replace the original steering wheel with any other design, since it will make it impossible to properly install the airbag. (Only use genuine Honda replacement parts)
- After reassembly, confirm that the wheels are still straight ahead and that steering wheel spoke angle is correct. If minor spoke angle adjustment is necessary, do so only by adjustment of the tie-rods, not by removing and repositioning the steering wheel.

A warning Confirm that the airbag assembly is securely attached to the steering wheel; otherwise, severe personal injury could result during airbag deployment.

1. Before installing the steering wheel; center the cable reel.
Do this by first rotating the cable reel clockwise until it stops.
Then rotate it counterclockwise (approximately two turns) until:

- The yellow gear tooth lines up with the mark on the cover.
- The arrow on the cable reel label points straight up.

2. Install the steering wheel with the steering wheel nut or bolt.

NOTE: Be sure the steering wheel shaft engages the cable reel and canceling sleeve.

CAUTION: Do not tap on the steering wheel or steering column shaft when installing the steering

3. Attach the cruise control switches connector to the steering wheel clip.
4. Connect the horn connector.

5. Install the airbag assembly with new TORX^{\oplus} bolts.

6. Disconnect the short connector from the airbag connector.
7. Connect the airbag 3-P connector and cable reel 3-P connector.
8. Attach the short connector on the access panel, and install the access panel on the steering lower cover.

9. Connect the positive cable first, then the negative cable to the battery.
10. After installing the airbag assembly, confirm proper system operation:

- Turn the ignition to II: the instrument panel SRS indicator light should come on for about 6 seconds and then go off.
- Confirm operation of horn buttons.
- Confirm operation of cruise control set/resume switches.
- Turn the steering wheel counterclockwise and make sure the yellow gear tooth still lines up with the alignment mark.

ALIGNMENT MARK

Steering Wheel (Without SRS)

Removal

NOTE: LHD type is shown, RHD type is symmetrical.

1. Remove the emblem with small screw driver.

NOTE: Be careful not to damage the emblem and steering wheel.
2. Remove the steering wheel nut.
3. Remove the steering wheel by rocking it slightly from side-to-side as you pull steadily with both hands.

NOTE: Remove the steering wheel with the front wheels in the straight ahead position.

Disassembly/Reassembly

Installation

1. Install the steering wheel with the front wheels straight in the ahead position.

NOTE: Align the slots on steering wheel and tabs on the turn signal canceling sleeve.
2. Make sure that steering wheel is positioned correctly. Reposition the steering wheel if necessary.

NOTE: If you can not obtained straight ahead position completely, turn the tie-rods equally to adjust the front wheel direction with the steering wheel straight ahead position. Refer to page 18-6 for front toe adjustment.
3. Tighten the new steering wheel nut and install the emblem.

4. After installing the steering wheel, check the horn buttons for proper operation.

Steering Column

Removal

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

1. Remove the airbag assembly and steering wheel (see page 17-24).
2. Remove the lower cover.
3. Remove the driver's knee bolster.

4. Remove the column covers by removing the screws.

5. Remove the connector holder, then disconnect the SRS main harness from the cable reel wire harness at the under side of the column bracket.

6. Remove the cable reel and turn signal canceling sleeve.
7. Remove the combination switch from the steering column by disconnecting the connectors.

8. Remove the steering joint cover.

9. Remove the steering joint bolts, then disconnect the steering joint by moving the joint toward the column.

10. Disconnect the ignition switch connectors.
11. Remove the steering column by removing the attaching nuts and bolts.

Steering Column
 Inspection

- Check the steering column ball bearing and steering joint bearings for play and proper movement. If there is noise or excessive play, replace the joint or column assembly.
- Check the retaining collar for damage.

If it is damaged, replace the retaining collar.

- Check the absorbing plates, absorbing plate guides and sliding capsules (cars with SRS) for distortion or breakage.
Replace them as an assembly if they are distorted or broken.

CAUTION: Do not apply an impact load to the column shaft in the axial direction.

- Check the tilt mechanism for proper movement and damage.
- Attach a spring scale to the knob of the tilt lever. Measure the preload required to move the lever.

Preload: 70-90 N (7-9 kgf, 15-20 lbf)

- If the preload measured is not within the specification, remove the 6 mm bolt and stopper. Adjust the preload by retightening the tilt lock bolt until the correct force can be obtained.
- Reinstall the stopper and 6 mm bolt, and recheck the preload.

CAUTION: Do not loosen the tilt lever when setting the stopper and when tightening the $\mathbf{6 ~ m m}$ bolt.

SLIDING CAPSULE
(Car's with SRS)
This part is attached to the column bracket with the plastic injections.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damage wiring.

1. Slip the upper end of the steering joint onto the column shaft (line up the bolt hole with the flat on the shaft), and loosely install the upper steering joint bolt.

2. Slip the lower end of the steering joint onto the pinion shaft. Line up the bolt hole with the groove around the shaft, and loosely install the lower bolt.

NOTE:

- Do not forget the toothed lock washers.
- Be sure that the lower steering joint bolt is securely in the groove in the steering gearbox pinion.
- Before tightening the steering joint bolts, pull on the steering joint to make sure that the steering joint is fully seated.

3. Install the steering column with the flange nuts, then install the column holder and flange bolts.
4. Connect the ignition switch connector.
5. Tighten the upper and lower steering joint bolts loosely installed in step 2.

6. Install the steering joint cover with the clamps and clips.

Steering Column

Installation (cont'd)

7. Install the combination switch and turn signal canceling sleeve onto the steering column.

NOTE: Be sure the wires are not caught or pinched by any parts when installing the combination switch.
8. Install the cable reel on the combination switch.

NOTE: Align the slot in the cable reel with the projection on the canceling sleeve.

TURN SIGNAL CANCELING

PROJECTIONS
9. Connect the SRS main harness and cable reel wire harness and install the connector holder.

10. Install the column covers.

11. Install the driver's knee bolster.
12. Install the lower cover.
13. Install the steering wheel (see page 17-26).

Replacement

NOTE：
－LHD type is shown，RHD type is symmetrical．
－Connect each hose to the corresponding pipe secure－ ly until it stops at the stopper on the pipe．
Install the clamp or adjustable clamp at the specified distance from the hose end as shown in the drawing．
－Add the power steering fluid to the specified level on the reservoir and check for leaks（see page 17－23）．

〈ADJUSTABLE HOSE CLAMP：〉

Put over the pipe until the hose stops at the stopper．

CAUTION：Check all clamps for deterioration and defor－ mation；replace with new ones if necessary．

Power Steering Pump

Removal

NOTE: Before disconnecting the hoses from the pump, place a suitable container under the car.

1. Drain the power steering fluid from the reservoir.
2. Remove the belt by loosening the pump adjusting bolt and mounting bolts and nuts.
3. Disconnect the inlet and outlet hoses from the pump and plug the hoses.

NOTE: Take care not to spill the fluid on the body or parts. Wipe off spilled fluid at once.
4. Remove the pump mounting bolt, then remove the pump.

NOTE: Do not turn the steering wheel with the pump removed
5. Wrap the opening of the pump with a piece of tape to prevent foreign material from entering the pump. See page 17-45 for pump installation.

PUMP MOUNTING BOLT

Disassembly

Pulley Removal

1. Drain the fluid from the pump.
2. Hold the steering pump in a vise with soft jaws.

CAUTION: Be careful not to damage the pump housing with the jaws of the vise.
3. Hold the steering pump pulley with a extension bar and remove the pulley nut.
4. Remove the pulley.

NOTE: Pulley nut has left hand thread.

Flow Control Valve Removal/Inspection

1. Remove the control valve cover by removing the three flange bolts.
2. Remove the spring, flow control valve and O-rings.

3. Check the flow control valve for wear, burrs, and other damage to the edges of the grooves in the valve.

4. Inspect the bore for the flow control valve for scratches or wear.
5. Slip the valve back in the pump and check that it moves in and out smoothly.

- If OK, go on step 6; if not, replace the valve and recheck the valve movement.

NOTE: The original valve was selected for a precise fit in the pump housing bore, so make sure the new one has the same identification mark.

Mark	Part Name	Outside Diameter mm (in)
	FLOW CONTROL	$17.991-17.996$ $(0.7083-0.7085)$
B	VALVE A	FLOW CONTROL
	VALVE B	$17.996-18.001$
$(0.7085-0.7087)$		

- If the valve movement still incorrect, replace the pump as an assembly.

6. Attach a hose to the end of the valve as shown.

Power Steering Pump

Disassembly (cont'd)

7. Submerge the valve in a container of power steering fluid or solvent, and blow in the hose. If air bubbles leak through the valve at less than 100 kPa $\left(1.0 \mathrm{kgf} / \mathrm{cm}^{2}, 14.2 \mathrm{psi}\right)$, replace or repair it as follows.

8. Hold the bottom end of the valve with a open end wrench.
9. Unscrew the seat in the top end of the valve, and remove any shims, the relief check ball, relief valve and relief valve spring.

10. Clean all the parts in solvent, dry them off, then reassemble and retest the valve. See page 17-44 for flow control valve installation.

NOTE: If necessary, relief pressure is adjusted at the factory by adding shims under the check ball seat. If you found shims in your valve, be sure you reinstall as many as you took out.

Pump Rotor Removal

CAUTION: The pump components are made of aluminum. Be careful not to damage them when servicing.

1. Remove the inlet joint and O-ring.

2. Remove the pump cover and O-ring.

3. Remove the pump cam ring from the pump housing.

NOTE: Replace the pump as an assembly if the cam ring must be replaced.

4. Remove the pump rotor and vanes.

NOTE: Replace the pump as an assembly if the pump rotor or vanes must be replaced.

5. Remove the two rollers from the side plate.
6. Remove the side plate and preload spring.

NOTE: Replace the pump as an assembly if the side plate must be replaced.

7. Remove the O-rings from the side plate.

(cont'd)

Power Steering Pump

Disassembly (cont'd)

8. Remove the circlip, then remove the drive shaft assembly from the pump housing using a plastic hammer.
9. Remove the seal spacer and oil seal.
10. Inspect the pump housing for damage on the sealing surfaces.

11. Inspect the bearing by rotating the outer race slowly. If any play or roughness is felt, replace the bearing.

12. Remove and discard the bearing using the special tool and a press.

13. Install the new bearing using the special tool and a press.

NOTE: Support the inner race with the tool securely.

Reassembly

CAUTION: The power steering components are made of aluminum. Avoid damaging the components during assembly.
NOTE:

- Clean the disassembled parts with a solvent, and dry them with compressed air. Do not dip the rubber parts in a solvent.
- Always replace the O-rings and rubber seals with new ones before assembly.
- Apply recommended power steering fluid or steering grease (Honda P/N: $08733-\mathrm{B070E}$) to the parts indicated in the assembly procedures.
- Do not allow dust, dirt, or other foreign materials to enter the power steering system.
- Replace the pump as an assembly if the parts indicated with asterisk (*) are worn or damaged.

FLANGE BOLT
$20 \mathrm{~N} \cdot \mathrm{~m}$
(2.0 kgf.m, 14 lbfff)

(cont'd)

Power Steering Pump

Reassembly (cont'd)

Pump Rotor Installation

1. Coat the lip of the new oil seal with steering grease (Honda P/N 08733 - B070E).
2. Install the new oil seal in the pump housing by hand, then install the pump seal spacer.

NOTE: Insert the oil seal with its grooved side facing in.
3. Install the pump drive shaft assembly with the special tool.
4. Install the 38 mm circlip with its tapered side facing out.

5. Coat the side plate grooves with the recommended power steering fluid, then position the $16.8 \times$ 1.9 mm and $54 \times 1.9 \mathrm{~mm}$ O-rings on the side plate.

6. Install the preload spring in the pump housing.
7. Set the $4.5 \times 49.8 \mathrm{~mm}$ roller in the 4.5 mm hole in the pump housing.
8. Set the side plate over the roller and install it on the pump housing.
9. Set the $5 \times 26.8 \mathrm{~mm}$ roller in the 5 mm hole in the side plate.

10. Assemble pump rotor to the drive shaft with the "O" mark on the rotor facing upward.
11. Set the 10 vanes in the grooves in the rotor.

NOTE: Be sure that the round ends of the vanes are in contact with the sliding surface of the cam ring.

12. Set the pump cam ring over the two rollers with the " " mark on the cam ring upward.
13. Apply clean power steering fluid to the vanes and cam ring.

14. Install the $68.5 \times 1.9 \mathrm{~mm}$ O-ring on the pump cover.
15. Align the roller set holes in the pump cover with the rollers.
16. Align the projection on the pump housing and the projection on the pump cover, and tighten the four bolts.

17. Set the $13 \times 1.9 \mathrm{~mm}$ O-ring on the inlet joint.
18. Install the inlet joint on the pump housing.

Power Steering Pump

Reassembly (cont'd)

Flow Control Valve Installation

1. Coat the new O-rings with clean power steering fluid, and install them in the housing grooves.
2. Coat the flow control valve with clean power steering fluid.
3. Install the flow control valve, spring and control valve cover on the pump housing.
4. Tighten the three control cover bolts.

Pulley Installation

1. Hold the steering pump in a vise with soft jaws.

CAUTION: Be careful not to damage the pump housing with the jaws of the vise.
2. Install the pump pulley as shown. Then install the pulley nut.

3. Hold the pulley with a extension bar and tighten the pulley nut.

4. Check that the pump turns smoothly by turning the pulley.

Installation

1. Connect the inlet and outlet hoses. Tighten the pump fittings securely.
2. Loosely install the pump in the pump bracket with mounting bolts.

3. Install the pump belt.

CAUTION:

- Make sure that the power steering belt is securely on the grooves of the pulleys.
- Do not get power steering fluid or grease in the power steering belt or pulley faces. Clean off any fluid or grease before installation.

POWER STEERING BELT

4. Adjust the pump belt (see page 17-20).
5. Fill the reservoir to the upper level line.

NOTE: Take care not to spill the fluid on the body and parts. Wipe off the spilled fluid at once.

CAUTION: Use only Genuine Honda Power Steering Fluid-V. Using other fluids such as ATF or other manufacturer's power steering fluid will damage the system.

SYSTEM CAPACITY:
1.1 liter (1.16 US.qt, 0.97 Imp.qt) RESERVOIR CAPACITY:
0.4 liter (0.42 US.qt, 0.35 Imp.qt)

- Start the engine, let it run at idle, then turn the steering wheel lock-to-lock several times to bleed air from the system.
- Recheck the fluid level and add some if necessary.

CAUTION: Do not fill the reservoir beyond the upper level line.

Steering Gearbox

Removal

NOTE: Using solvent and a brush, wash any oil and dirt off the valve body unit, its lines, and the end if the gearbox. Blow dry with compressed air.

1. Drain the power steering fluid as described on page 17-21.
2. Raise the front of car, and support on safety stands in the proper locations (see section 1).
3. Remove the front wheels.
4. Remove the steering joint cover.

5. Remove the steering joint lower bolt, and disconnect the steering joint by moving the joint toward the column.

NOTE: Lock the steering shaft with the ignition key to retain the steering shaft position.

6. Remove the cotter pin from the castle nut and remove the nut.
7. Install the 10 mm hex nut on the ball joint.

Be sure that the 10 mm hex nut is flush with the ball joint pin end, or the threaded section of the ball joint pin might be damaged by the ball joint remover.

NOTE: Remove the ball joint using the Ball Joint Remover, 28 mm (07MAC - SL00200). Refer to page 18-11 for how to use the ball joint remover.
8. Separate the tie-rod ball joint and knuckle using the special tool.

CAUTION: Avoid damaging the ball joint boot.

9. Remove the left tie-rod end, then slide the rack all the way to the right.

10. Disconnect the heated oxygen sensor (H02S) connector.
11. Separate the three way catalytic converter by removing the self-locking nuts.

NOTE: Always replace the gaskets with new ones.

12. Disconnect the shift linkage (M / T model: see section $13, A / T$ model: see section 14).
13. Disconnect the two lines from the valve body unit on the steering gearbox.

CAUTION: After disconnecting the pipes, plug or seal the pipes with a piece of tape or equivalent to prevent foreign materials from entering the valve body unit.

NOTE:

- Place the pipes disconnected in the previous step at the rear side of the gearbox so that they do not hinder in the gearbox removal.
- Do not loosen the cylinder pipes A and B between the valve body unit and cylinder.

RETURN PIPE
To reservoir:

14. Remove the stiffener plate first, then remove the right mounting brackets.

RIGHT MOUNTING

 BRACKETS
15. Pull the steering gearbox all the way down to clear the pinion shaft from the bulkhead.
16. Move the steering gearbox to the right so the left rack end clears the rear beam.
17. Hold the steering gearbox and slide the rack all the way to the left, then place the left rack end below the rear beam.
18. Move the steering gearbox to the left, and tilt the left side down to remove it from the car.

CAUTION: Be careful not to bend or damage the two power steering lines and cylinder pipes when removing the gearbox.

Steering Gearbox

Disassembly

Steering Rack Disassembly

NOTE:

- Before disassembling the gearbox, wash it off with solvent and a brush.
- Do not dip seals and O-rings in solvent.

1. Remove the steering gearbox (see page 17-46).
2. Remove the air hose and clips.
3. Remove the tie-rod end and locknut.

4. Remove the boot bands and tube clamps. Pull the boots away from the ends of the gearbox.

5. Unbend the lock washer.

6. Hold the steering rack with a wrench, and unscrew the rack end with a wrench.

CAUTION: Be careful not to damage the rack surface with the wrench.

7. Loosen the locknut and remove the rack guide screw.
8. Remove the spring and rack guide from the gear housing.

9. Remove the cylinder pipes A and B from the gearbox.
10. Drain the fluid from the cylinder fittings by slowly moving the steering rack back and forth.

NOTE: RHD only: When disconnecting the cylinder pipe B, loosen the flare nut by holding the joint fitting with a 17 mm wrench as shown.

11. Remove the two flange bolts, then remove the valve body unit from the gearbox. (See page 17-51 for valve body unit disassembly.)

12. Drill a $3 \mathrm{~mm}(0.12 \mathrm{in})$ diameter hole approximately $2.5-3.0 \mathrm{~mm}(0.10-0.12 \mathrm{in}) \mathrm{in}$ depth in the stakedpoint on the cylinder.

NOTE:

- Do not allow metal shavings to enter the cylinder housing.
- After removing the cylinder end, remove burrs at the staked point.

(cont'd)

Steering Gearbox

Disassembly (cont'd)

13. Install a puller yoke to the steering gearbox. Clamp the puller yoke in a vise with soft jaws as shown, then loosen and remove the cylinder end.

CAUTION: Do not clamp the cylinder housing.
PULLER YOKE:
Commercially Available
Snap-On* T/N CJ123-1
OTC ${ }^{\text {T/N }} 7372$
CYLINDER END

14. Set the gearbox in a press so the gear housing points upward.
15. Install the special tool into the end of the steering rack.
16. Drive out the cylinder end seal and steering rack using a press.

NOTE: Hold onto the steering rack to keep it from falling when pressed clear.

CAUTION: Be careful not to damage to inner surface of the cylinder housing with special tool.

17. Remove the special tool from the steering rack.
18. Remove the cylinder end seal from the steering rack.

19. Insert the special tools into the cylinder from the gear housing side.

CAUTION: Be careful not to damage the inside surface of the housing with the special tool.
20. Set the gearbox in a press, then drive out the cylinder end seal and backup ring using the special tools and a press as shown.

CAUTION:

- Keep the special tool straight to avoid damage the cylinder wall. Check the special tool angle, and correct it, if necessary, while removing the cylinder end seal.
- Use a press to remove the cylinder end seal. Do not try to remove the seal by striking the special tool. It will break the backup ring, and the cylinder end seal will remain in the gearbox.

Replace.
21. Carefully pry the piston seal ring and O-ring off the piston of the rack.

CAUTION: Be careful not to damage the inside of seal ring groove and piston edges when removing the seal ring.

Valve Body Unit Disassembly

22. Before removing the valve housing, apply vinyl tape to splines of the pinion shaft.
23. Separate the valve housing from the pinion shaft/ valve using a press.
24. Remove the vinyl tape.

25. Check the inner wall of the valve housing where the seal ring slides with your finger. If there is a step in the wall, the valve housing is worn. Replace the valve housing.

NOTE:

- There may be the sliding marks from the seal ring on the wall of the valve housing. Replace the valve housing only the wall is stepped.
- When the valve housing is replaced, install new $32 \mathrm{~mm} \operatorname{shim}(\mathrm{~s})$ on the bearing surface of the housing to adjust the thickness.

Steering Gearbox

Disassembly (cont'd)

26. Check for wear, burrs and other damage to the edges of the grooves in the sleeve.

NOTE: The pinion shaft and sleeve are a precision matched set. If either the pinion shaft or sleeve must be replaced, replace both parts as a set.

27. Remove the circlip and pinion shaft sleeve from the pinion shaft.

28. Using a cutter or an equivalent tool, cut and remove the four seal rings from the sleeve.

CAUTION: Be careful not to damage the edges of the sleeve grooves and outer surface when removing the seal rings.

29. Using a cutter or an equivalent tool, cut the valve seal ring and O-ring at the groove the pinion shaft. Remove the valve seal ring and O-ring.

CAUTION: Be careful not to damage the edges of the pinion shaft groove and outer surface when removing the valve seal ring and O-ring.

VALVE SEAL RING
Replace.
30. Remove the valve oil seal and backup ring from the pinion shaft.

NOTE:

- Inspect the ball bearing by rotating the outer race slowly. If there is any excessive play, replace the pinion shaft and sleeve as an assembly.
- The pinion shaft and sleeve are a precise fit; do not intermix old and new pinion shafts and sleeves.

31. Press the valve oil seal and roller bearing out of the valve housing using a hydraulic press and special tool shown below.

Steering Gearbox

Reassembly

NOTE:

- LHD type is shown, RHD type is symmetrical.
- Clean the disassembled parts with a solvent, and dry them with compressed air. Do not dip the rubber parts in a solvent.
- Always replace the O-rings and rubber seals with new ones before assembly.
- Apply power steering fluid or steering grease (HONDA P/N: 08733 - B070E) to the parts indicated in the assembly procedures.
- Do not allow dust, dirt, or other foreign materials to enter the power steering system.
- Use the appropriate special tools where necessary.

Valve Body Unit Reassembly

1. Apply vinyl tape to the stepped portion of the pinion shaft, and coat the surface of the vinyl tape with the power steering fluid.
2. Install the backup ring with its tapered side as shown below.
3. Coat the inside surface of the new valve oil seal with power steering fluid.
4. Slide the valve oil seal over the pinion shaft, being careful not to damage the sealing lip.

CAUTION: Install the valve oil seal with its grooved side facing opposite the bearing.

5. Apply vinyl tape to the splines and stepped portion of the shaft, and coat the surface of the vinyl tape with the power steering fluid.
6. Fit the new O-ring in the groove of the pinion shaft. Then slide the new valve seal ring over the shaft and the groove in on the pinion shaft.
7. Remove the vinyl tape from the pinion shaft.

8. Apply power steering fluid to the surface of the valve seal ring that was installed on the pinion shaft.
9. Apply power steering fluid to the inside of the special tool. Set the larger diameter end of the special tool over the valve seal ring.
10. Move the special tool up and down several times to make the valve seal ring fit in the pinion shaft.
11. Remove the special tool.
12. Turn the special tool over, and set the smaller diameter end of the special tool over the valve seal ring. Move the special tool up and down several times to make the valve seal ring fit snugly in the pinion shaft.

Use the larger diameter end of the special tool first to make the valve seal ring fit in the pinion shaft.

Make the valve seal ring snugly fit in the pinion shaft using the other end (smaller diameter end) of the special tool.
(cont'd)

Steering Gearbox

Reassembly (cont'd)

13. Apply power steering fluid to the surface of the special tool. Set the new seal rings over the special tool from the smaller diameter end of the tool, and expand the seal rings. Do two rings at a time from each end of the sleeve.

NOTE:

- Do not over-expand the seal ring. Install the resin seal rings with care so as not to damage them. After installation, be sure to contract the seal rings using the special tool (sizing tool).
- There are two types of sleeve seal rings: black and brown. Do not mix the different types of sleeve seal rings as they are not compatible.

14. Set the special tool in the grooves in the sleeve, and set each ring in each groove securely.

NOTE: After installation, compress the seal rings with your fingers temporarily.

15. Apply power steering fluid to the seal rings on the sleeve, and to the entire inside surface of the special tool.
16. Insert the sleeve into the special tool slowly.
17. Move the sleeve each direction several times to make the seal rings snugly fit in the sleeve.

NOTE: Be sure that the seal rings are not turned up.

18. Apply power steering fluid to the surface of the pinion shaft. Assemble the sleeve over the pinion shaft by aligning the locating pin on the inside of the sleeve with the cutout in the shaft. Then install the new circlip securely in the pinion shaft groove.

NOTE:

- Be careful not to damage the valve seal ring when inserting the sleeve.
- Install the circlip with its tapered side facing out.

19. Apply power steering fluid to the seal ring lip of the valve oil seal, then install the seal in the valve housing using a hydraulic press and special tools as shown.

CAUTION: Install the valve oil seal with its grooved side facing the tool.

20. Press the new roller bearing into the valve housing using a hydraulic press and special tool as shown.

NOTE: Place the roller bearing on the valve housing with the stamped letter facing up towards the valve side.

21. Apply vinyl tape to the pinion shaft, then coat the vinyl tape with power steering fluid.
22. Insert the pinion shaft into the valve housing.

CAUTION: Be careful not to damage the valve seal rings.
23. Remove the vinyl tape from the pinion shaft.

PSF
Sealing lip face.

SLEEVE SEAL RINGS
Be sure that the seal rings are not turned up, then install.
24. Press the pinion shaft/sleeve using a hydraulic press as shown.

CAUTION: Before inserting the pinion shaft, be sure that the backup ring is centered with the pinion shaft bearing.

NOTE: Check that the pinion shaft/sleeve turns smoothly by turning the pinion shaft.

Steering Gearbox

Reassembly (cont'd)

Steering Rack Reassembly

25. Coat the piston seal ring guide with power steering fluid, and slide it onto the rack, big end first.
26. Position the new O-ring and new piston seal ring on the special tool, then slide them down toward the big end of the tool.

NOTE:

- Do not over expand the resin seal rings. Install the resin seal rings with care so as not to damage them. After installation, be sure to contract the seal ring using the special tool (sizing tool).
- Replace piston's O-ring and seal ring as a set.

27. Pull the O-ring off into the piston groove, then pull the piston seal ring off into the piston groove on top of the O-ring.

28. Coat the piston seal ring and the inside of the special tool with power steering fluid.
29. Carefully slide the tool onto the rack and over the piston seal ring.
30. Move the special tool back and forth several times to make the piston seal ring fit snugly in the piston.
 07HAG - SF10200
31. Coat the sliding surface of the special tool and new cylinder end seal with power steering fluid.
32. Place the seal on the special tool with its grooved side facing opposite the special tool.

33. Apply a thin coat of grease to the inside of the special tool, and install it on the steering rack.

34. Separate the cylinder end seal from the special tool, then remove the tool from the steering rack.

35. Install the new backup ring on the steering rack, then place the cylinder end seal to piston.

36. Grease the steering rack teeth, then insert the steering rack into the gear housing.

CAUTION: Be careful not to damage to inner surface of the cylinder housing with the rack edges.

37. Then set the gearbox in a press with the tool side upward.
Install the special tool it into the end of the steering rack.
38. Install the cylinder end seal into the bottom of the cylinder by pressing on the special tool with the hydraulic press as shown.
CAUTION: Do not push on the special tool with excessive force as it may damage the cylinder end seal.

39. Remove the flange bolt, and center the steering rack.
40. Install the special tool onto the end of the steering rack, then coat the special tool with power steering fluid.
41. Coat the inside surface of the new cylinder end seal with power steering fluid.
42. Install the cylinder end seal onto the steering rack with its grooved side toward the piston.
43. Remove the special tool. Push in the cylinder end seal with your finger.
NOTE: Take care not to damage the cylinder end seal with the threads and burrs at the staked position of the gearbox.

Steering Gearbox

Reassembly (cont'd)

44. Install a puller yoke to the steering gearbox, then clamp the puller yoke in a vise with soft jaws as shown.

CAUTION: Do not clamp the cylinder housing.

PULLER YOKE:
Commercially Available
Snap-On ${ }^{\text {T }}$ T/N CJ123-1
OTC® T/N 7372

45. Grease the inside surface of the cylinder end, then install the cylinder end by screwing it into the cylinder housing.
46. Remove the puller yoke from the steering gearbox.
47. After tightening the cylinder end, stake the point of the cylinder housing shown below.

NOTE: Stake the cylinder in the position opposite from where the stake was removed during disassembly.

Stake point. Depth: 1.0 mm (0.04 in)

48. Select the 32 mm shim(s).

NOTE: Only reinstall the original 32 mm shim(s) when the steering gearbox is reassembled without replacing the pinion shaft, valve housing, and gearbox housing with new ones.
If the pinion shaft, valve housing, and gearbox housing are replaced, select the new shim(s) as follows.

Shim selection:

-1 . Set the four 32 mm shims on the bearing surface of the gearbox housing. Total thickness of the four shims should equal no more than 0.70 mm .
Shim set: four 32 mm shims (Thickness: 0.10 mm , $0.15 \mathrm{~mm}, 0.20 \mathrm{~mm}, 0.25 \mathrm{~mm}$ respectively)

CAUTION: The four 32 mm shims do not have thickness identification marks. Measure the thickness of each shim using a micrometer, and mark the shim for identification.
-2. Install the valve body unit on the gearbox, and tighten the flange bolts to the specified torque.

-3. Measure the clearance between the gearbox and valve body unit using a feeler gauge as shown.

NOTE: Measure the clearance at the point midway between the two mounting bolts.

-4. Determine the required thickness of the 32 mm shims by subtracting the clearance obtained in the step-3 from the total thickness of the four shims.
(Total thickness of the 4 shims) - (Clearance) $=$ Required thickness of the shims

NOTE: Select the shims so that the total thickness is close to, but less than the required thickness.

Example:

Measurement is 0.28 mm (0.011 in):
$0.70-0.28=0.42 \mathrm{~mm}(0.028-0.011=0.017 \mathrm{in})$
The selected shims should be $0.25 \mathrm{~mm}(0.010 \mathrm{in})$ and 0.15 mm (0.006 in) in thickness.

If the required shim thickness is 0.10 mm or less, no shims are necessary.
49. Set the selected 32 mm shims on the bearing surface of the gearbox housing.
50. Coat the new O-ring with grease, and carefully fit it on the valve housing.
51. Apply grease to the needle bearing in the gearbox housing.
52. Install the valve body unit on the gearbox housing by engaging the gears.

NOTE: Note the valve body unit installation position (direction of pipe connection).
53. Tighten the flange bolts to the specified torque.

FLANGE BOLT
$20 \mathrm{~N} \cdot \mathrm{~m}$ (2.0 kgf•m, $14 \mathrm{lbf} \cdot \mathrm{ft}$)

GREASEH
54. Install the cylinder pipes A and B.

NOTE:

- Clean the joints of the cylinder pipes A and B thoroughly. The joints must be free of foreign material.
- Install the cylinder pipes A and B by tighting the flare nuts by hand first, then tighten the flare nuts to the specified torque starting with the cylinder side nuts.

$29 \mathrm{~N} \cdot \mathrm{~m}(3.0 \mathrm{kgf} \cdot \mathrm{m}, 20 \mathrm{lbf} \cdot \mathrm{ft})$

55. Grease the sliding surface of the rack guide, and install it onto the gear housing.
56. Apply a thin coat of grease to the new O-ring, and install it on the rack guide screw.
57. Install the spring, rack guide screw and locknut on the gear housing.
58. Adjust the rack guide screw (see page 17-21).

NOTE: After adjusting, check that the rack moves smoothly by sliding the rack right and left.

(cont'd)

Steering Gearbox

Reassembly (cont'd)

59. Install the stopper washer with the chamfered side facing out.
60. Screw each rack end into the rack while holding the new lock washer so its tabs are in the slots in the end of the rack.
61. Tighten the rack end securely.

62. Bend the lock washer back against the flat stops on the flange as shown.

63. Apply steering grease in to the rack end joint housing.
64. Coat the rack end groove and inside of the boot with silicone grease.

65. Install the boots in the rack end with the tube clamps.

NOTE: Install the boots with the rack in the straight ahead position (i.e., right and left tie-rods are equal in length).

66. Adjust the air hose fitting position of the boots by turning it as shown below.

67. Connect the air hose between the right and left boot, then install the clips on the cylinder pipe B as shown.

68. Install new boot bands on the boot and bend both sets of locking tabs.
69. Lightly tap on the doubled-over portions to reduce their height.

CAUTION: Stake the band locking tabs firmly.

70. Slide the rack right and left to be certain that the boots are not deformed or twisted.

Steering Gearbox

Installation

CAUTION: Be careful not to bend or damage the piping when installing the gearbox.

1. Before installing the gearbox, slide the rack all the way to right.
2. Install the pinion shaft grommet.

NOTE: Align the lug portion on the pinion shaft grommet with the slot in the valve body.
3. Pass the right side of the steering gearbox above and through the right side of the rear beam.
4. Raise the left side of the steering gearbox above and through the left side of the rear beam.
5. Install the pinion shaft grommet and insert the pinion shaft up through the bulkhead.

6. Loosely install the mount cushion and right mounting brackets.
7. Tighten the four mounting bolts on the stiffener plate first, then tighten the two mounting bolts on the right mounting brackets.

NOTE: After installing the steering gearbox, make sure that there is no interference between the cylinder pipes and rearbeam.

$38 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{3 . 9} \mathbf{~ k g f} \cdot \mathrm{~m}, 28 \mathrm{lbf} \cdot \mathrm{ft}) \quad 43 \mathrm{~N} \cdot \mathrm{~m}(4.4 \mathrm{kgf} \cdot \mathrm{m}, 32 \mathrm{lbf} \cdot \mathrm{ft})$
8. Center the steering rack within its stroke.
9. Make sure that the cable reel of the SRS is centered as follows:

- Turn the steering wheel left approx. 150 degrees, to check the cable reel position with indicator.
- If the cable reel is centered, the yellow gear tooth lines up with the alignment mark on the cover.
- Return the steering wheel right approx. 150 degrees to position the steering wheel in the straight ahead position.

[^7]10．Slip the lower end of the steering joint onto the pin－ ion shaft（line up the bolt hole with the groove around the shaft），and tighten the lower bolt．

NOTE：
－Do not forget the toothed lock washer of the lower bolt．
－Connect the steering shaft and pinion with the cable reel and steering rack centered．
－Be sure that the lower steering joint bolt is se－ curely in the groove in the steering gearbox pin－ ion．
－If the steering wheel and rack are not centered， reposition the serrations at lower end of the steering joint．

11．Install the steering joint cover with the clamps and clips．

12．Connect the fluid lines to the valve body unit．
NOTE：After connecting the fluid lines，make sure that there is no interference between the pipes and other parts．

RETURN PIPE $28 \mathrm{~N} \cdot \mathrm{~m}$（2．9 kgf•m， $21 \mathrm{lbf} \cdot \mathrm{ft})$
〈RHD：〉
〈LHD：〉

13．Connect the shift linkage（ M / T model：see section $13, A / T$ model：see section 14 ）．

14．Install the three way catalytic converter with the new gaskets and new self－locking nuts，and connect the heated oxygen sensor（HO2S）connector．

HEATED OXYGEN SENSOR CONNECTOR

Steering Gearbox

- Installation (cont'd)

16. Thread the right and left tie-rod ends onto the rack an equal number of turns.

NOTE: Before connecting the tie-rod ends, check the ball joint pin tapered section and threads section for grease contamination, and wipe it if necessary.
17. Reconnect the tie-rod ends to the steering knuckles, tighten the castle nut to the specified torque, and install new cotter pins.

CAUTION: Torque the castle nut to the lower torque specification, then tighten it only far enough to align the slot with the pin hole. Do not align the nut by loosening.

COTTER PIN
CASTLE NUT
On reassembly, bend the cotter pin as shown.

18. Install the front wheels.
19. Fill the system with power steering fluid and bleed air from the system (see page 17-21).
20. After installation, perform the following checks.

- Start the engine, allow it to idle, and turn the steering wheel from lock-to-lock several times to warm up the fluid. Check the gearbox for leaks (see page 17-23).
- Adjust the front toe (see section 18).
- Check the steering wheel spoke angle. Adjust by turning the right and left tie-rods, if necessary.

NOTE: Turn the right and left tie-rods equally.

Ball Joint Boot Replacement

1. Remove the boot set ring and the boot.

CAUTION: Do not contaminate the boot installation section with grease.
2. Pack the interior of the boot and lip with grease.
3. Wipe the grease off the sliding surface of the ball pin, then pack the lower area with fresh grease.

CAUTION:

- Keep grease off the boot installation section and the tapered section of the ball pin.
- Do not allow dust, dirt, or other foreign materials to enter the boot.

4. Install the boot in the groove of the boot installation section securely, then bleed air.

5. Adjust the special tool with the adjusting bolt until the end of the tool aligns with the groove on the boot. Slide the set ring over the tool and into position.

CAUTION: After installing the boot, check the ball pin tapered section for grease contamination and wipe it if necessary.

Suspension

Special Tools 18-2
Component Location
Index 18-3
Wheel Alignment
Service Information 18-4
Camber 18-5
Caster 18-5
Front Toe Inspection/ Adjustment 18-6
Rear Toe Inspection/ Adjustment 18-7
Turning Angle Inspection 18-7
Wheel/Hub Inspection
Bearing End Play 18-8
Wheel Runout 18-8
Front Suspension
Torque Specifications 18-9
Knuckle/Hub
Illustrated Index 18-10
Knuckle Removal 18-11
Hub Unit Removal and Wheel Bearing Replacement 18-13
Knuckle Installation 18-16
Lower Ball Joint Replacement 18-17
Ball Joint Boot Replacement 18-18
Suspension Arms
Removal/Inspection 18-19
Installation 18-20
Lower Arm Bushing Replacement 18-21
Front Damper
Removal 18-22
Disassembly 18-23
Inspection 18-24
Reassembly 18-25
Installation 18-26
Rear Suspension
Torque Specifications 18-27
Hub Bearing Unit
Illustrated Index 18-28
Removal 18-29
Installation 18-30
Suspension Arms
Removal/Inspection 18-32
Installation 18-33
Damper Lower Bushing Replacement 18-34
Rear Damper
Removal 18-35
Disassembly 18-36
Inspection 18-37
Reassembly 18-38
Installation 18-39

Special Tools

Index

Whow Alipnmant pran 10-4

- Intportion, pige 18-37

LTHER PAM

LFTH

Wheel Alignment

Service Information

NOTE: For proper inspection/adjustment of the wheel alignment, check and adjust the following before checking the alignment.

- Check that the suspension is not modified.
- Check the tire size and tire pressure.
- Check the runout of the wheels and tires.
- Check the suspension ball joints. (Hold a wheel with your hands and move it up and down and right and left to check for wobbling.)

Wheel alignment adjustment procedure

Each of the wheel alignment elements relates to the other. Therefore, the total adjustment of the front/fear wheel alignment is required whenever either one of elements (that is, camber caster, toe, and/or turning angle) is adjusted.

Special Tool Information

Wheel alignment gauge attachment:
NOTE:

- As the wheel alignment gauge attachment can be installed by magnetic force of camber/caster gauge, make sure the wheel hubs are clean and rust-free before installing the wheel alignment gauge attachment.
- When installing the special tool, align the special tool groove and mating surface groove of the camber/ caster gauge, to make the most of the magnetic force of the camber/caster gauge.
- For accurate readings, measure the wheel alignment at the car must be level.

WHEEL ALIGNMENT
GAUGE ATTACHMENT 07MGK - 0010100

Camber

Inspection

1. Remove the wheel cap.
2. Remove the hub cap from the rear wheel hub isee page 18-29).
3. Install the wheel alignment gauge attachment and cambericaster gauge on the wheel hub.
4. Turn the front wheels to the straight ahead position.
5. Read the camber on the gauge with the bubble at the center of the gauge.
```
Camber angle:
    Front: 0000' }\mp@subsup{0}{}{\circ}\mp@subsup{1}{}{\circ
    Rear: - 0'25' }\pm3\mp@subsup{0}{}{\circ
```

6. If out of specification, check for bent or damaed suspension components.

Caster

Inspection

1. Remove the wheel cap.
2. Raise the car and set the turning radius gauges beneath the front wheels, and place boads under the rear wheels the same thickness as one of the turning radius gauges, then lower the car.

NOTE: Be sure that the car is parallel to the ground with the wheels on the turning radius gauges and boards.
3. Install the wheel alignment gauge attachment and camber/caster gauge on the wheel hub, and apply the front brake.
4. Turn the front wheel 20° outward, then turn the adjust screw so that the bubble in the camber/caster gauge is at 0°.
5. Turn the wheel 20° inward and read the caster on the gauge with the bubble at the center of the gauge.

Caster angle: $3^{\circ} 00^{\circ} \pm 1^{\circ}$
6. If out of specification, record the caster reading. then adjust the caster.

$\left(\operatorname{cont}^{\prime} d\right)$

Wheel Alignment

Caster (cont'd)

Adjustment

NOTE: Caster angle can be adjusted by increasing/decreasing the number of the adjusting shims. Remove and install the radius rod each time the caster angle is adjusted.

1. Raise the front of the car, and support it with safety stands in the proper locations (see section 1).
2. Remove the self-locking nut on the end of the radius rod
3. Remove the FLANGE bolts at the radius rod on the lower arm, and remove the radius rod isee page 18-191.
4. Adjust the caster angle by increasing/decreasing the adjusting shims.

NOTE:

- Do not use more than two adjusting shims.
- One adjusting shim changes the caster angly by 35^{\prime} and the caster angle can be adjusted by $1^{\circ} 10^{\prime}$ maximum.
- One adjusting shim is $3.2 \mathrm{~mm}(0.13 \mathrm{in})$ in thickness.

SELF-LDCKING NUT
$12 \times 1.25 \mathrm{~mm}$
$43 \mathrm{~N} \cdot \mathrm{~m}$ (4.4 kgf+m, $32 \mathrm{lbf} \cdot \mathrm{ft}$)
feplace
5. After the adjustment, install the radius rod onto the lower arm, and tighten the FLANGE bolts isee page 18-20.
B. Tighten the new self-locking nut to specified torque.

Front Toe Inspection/Adjustment

Inspection

1. Center steering wheel spokes.

NOTE; Measure difference in toe measurements with the wheels pointed straight ahead
2. Check the front toe.

Front toe: $0 \pm 3 \mathrm{~mm}(0 \pm 0.12 \mathrm{in})$

- If adjustment is required, go on to step 3.
- If no adjustment is required, remove alignment equipment.

Adjustment

3. Loosen the tie-rod locknuts and turn both tie-rods in the same direction until the front wheels are in straight ahead position.
4. Turn both tie-rods equally until the toe reading on the turning radius gauge is correct.
5. After adjusting, tighten the tie-rod locknuts

NOTE: Reposition the tie-rod boot if it is twisted or displaced.

TIE-ROD LOCKNUT

$14 \times 1.5 \mathrm{~mm}$
$44 \mathrm{~N} \cdot \mathrm{~m}$ (4.5 kgi*m, $33 \mathrm{Jbf}+\mathrm{ft})$

Rear Toe Inspection/Adjustment

Inspection

1. Release parking brake.

NOTE: If the parking brake is engaged, you may get an incorrect reading.
2. Check the rear toe.

Rear toe-in: $2 \pm 2 \mathrm{~mm}(0.08 \pm 0.08 \mathrm{in})$

- If adjustment is required, go on to step 3.
- If no adjustment is required, remove alignment equipment.

Adjustment

3. Hold the adjusting bolt on the rear lower arm A and loosen the flange nut.
4. Adjust the rear toe by turning the adjusting bolt until toe is correct.
5. Install the flange nut and tighten while holding the adjusting bolt.

Wheel／Hub Inspection

Bearing End Play

1．Raise the car off the ground，and support it with safety stands in the proper locations（see section 1）．

2．Remove the wheels，then reinstall the wheel nuts．

3．Attach the dial gauge as shown．
4．Measure the bearing end play by moving the disc in or outward．

Front／Rear：

Standard：0－0．05 mm（0－0．002 in）

〈Front：〉

〈Rear：〉

5．If the bearing end play measurement is more than the standard，replace the wheel bearing．

Wheel Runout

1．Raise the car off the ground，and support it with safety stands in the proper locations（see section 1）．

2．Check for bent or deformed wheels．
3．Attach the dial gauge as shown．
4．Measure the wheel runout by turning the wheel．
Front and Rear Wheel Axial Runout：
Standard：

\quad| Steel Wheel： | $0-1.0 \mathrm{~mm}(0-0.04 \mathrm{in})$ |
| :--- | :--- |
| \quad Aluminum Wheel： | $0-0.7 \mathrm{~mm}(0-0.03 \mathrm{in})$ |
| Service Limit： | $2.0 \mathrm{~mm}(0.08 \mathrm{in})$ |

Front and Rear Wheel Radial Runout： Standard：

Steel Wheel：$\quad 0-1.0 \mathrm{~mm}(0-0.04 \mathrm{in})$
Aluminum Wheel： $0-0.7 \mathrm{~mm}(0-0.03 \mathrm{in})$ Service Limit：$\quad 1.5 \mathrm{~mm}(0.06 \mathrm{in})$

5．If the wheel runout is more than the service limit， replace the wheel．

Front Suspension

Torque Specifications

CAUTION:

- Replace the self-locking nuts after removal.
- The vehicle should be on the ground before any bolts or nuts connected to rubber mounts or bushings are tightened.
- Torque the castle nut to the lower torque specification, then tighten it only far enough to align the slot with the pin hole. Do not align the nut by loosening.

NOTE: Wipe off the grease before tightening the nut at the ball joint.

Front Suspension

Knuckle/Hub

Illustrated Index

NOTE:

- Use only genuine Honda wheel weights for aluminum wheels. Non-genuine wheel weights may corrode and damage the aluminum wheels.
- For aluminum wheels, remove the center cap by prying it out with a flat screwdriver. Use a rag at the point you are going to pry because aluminum alloy wheels can be easily damaged. Avoid damage to the cap by not allowing it to fall during removal.
- Before installing the brake disc, clean the mating surfaces of the front hub and brake disc.
- Before installing the wheel, clean the mating surfaces of the brake disc and wheel.

Knuckle/Hub

Knuckle Removal

1. Loosen the wheel nuts slightly.
2. Raise the front of car, and support it with safety stands in the proper locations (see section 1).
3. Remove the wheel nuts and front wheel.
4. Raise the locking tab on the spindle nut, then remove the nut.

5. Remove the brake hose mounting bolts.
6. Remove the caliper bracket mounting bolts, and hang the caliper to one side.

CAUTION: To prevent accidental damage to the caliper or brake hose, use a short piece of wire to hang the caliper from the undercarriage.

CALIPER BRACKET MOUNTING BOLTS
$12 \times 1.25 \mathrm{~mm}$
7. Remove the wheel sensor wire bracket, then remove the wheel sensor from the knuckle (for cars with ABS).

NOTE: Do not disconnect the wheel sensor connector.

NOTE: Use ball joint removers to separate the ball joints from the suspension or tie-rod end.

CAUTION: Be careful not to damage the ball joint boot.

8. Clean any dirt or grease off the ball joint.
9. Remove the cotter pin from the tie-rod end ball joint castle nut, and remove the nut.
10. Apply grease to the special tool on the areas shown. This will ease installation of the tool and prevent damage to the pressure bolt threads.

(cont'd)

Front Suspension

Knuckle/Hub (cont'd)

11. Install a 10 mm hex nut on the ball joint. Be sure that the hex nut is flush with the ball joint pin end to prevent damage to the threaded end of the ball joint.
12. Use the ball joint remover, 28 mm , as shown. Insert the jaws carefully, making sure you do not damage the ball joint boot.
13. Adjust the jaw spacing by turning the pressure bolt.

NOTE: If necessary, apply penetrating type lubricant to loosen the ball joint.

14. Once the tool is in place, turn the adjusting bolt as necessary to make the jaws parallel. Then handtighten the pressure bolt, and recheck the jaws to make sure they are still parallel.

15. With a wrench, tighten the pressure bolt until the ball joint shaft pops loose from the steering arm.

A warning Wear eye protection. The ball joint can break loose suddenly and scatter dirt or other debris in your eyes.
16. Remove the tool, then remove the nut from the end of the ball joint and pull the ball joint out of the steering/suspension arm. Inspect the ball joint boot and replace it if damaged.
17. Remove the cotter pin from the lower arm ball joint castle nut, and remove the nut.
18. Install a 12 mm hex nut on the ball joint. Be sure that the hex nut is flush with the ball joint pin end, or the threaded section of the ball joint pin might be damaged by the ball joint remover.
19. Use the ball joint remover, 32 mm , as shown on step 10 to separate the lower ball joint and lower arm.

NOTE: If necessary, apply penetrating type lubricant to loosen the ball joint.

20. Remove the cotter pin from the upper ball joint castle nut, and remove the nut.
21. Install a 10 mm hex nut on the ball joint. Be sure that the hex nut is flush with the ball joint pin end, or the threaded section of the ball joint pin might be damaged by the ball joint remover.
22. Use the ball joint remover as shown on step 10 to separate the upper ball joint and knuckle.

NOTE: If necessary, apply penetrating type lubricant to loosen the ball joint.

23. Pull the knuckle outward and remove the driveshaft outboard joint from the knuckle by tapping the driveshaft end using a plastic hammer, then remove the knuckle.

Hub Unit Removal and Wheel Bearing

 Replacement1. Remove the knuckle from the hub unit.

2. Remove the splash guard from the knuckle.

SPLASH GUARD
Check for damage.
(cont'd)

Front Suspension

Knuckle/Hub (cont'd)

3. Remove the four flange bolts, then separate the hub unit from the brake disc.

4. Separate the wheel bearing from the front hub using the special tools and a press as shown.

CAUTION: Hold onto the hub to keep it from falling when pressed clear.

NOTE: Wash the knuckle and hub thoroughly in high flash point solvent before reassembly.
7. Press a new wheel bearing into the hub using the special tools and a press as shown.

8. Install the hub unit on the brake disc and tighten the flange bolts.

NOTE: Before installing the hub unit, clean the mating surfaces of the hub unit and brake disc.

9. Install the splash guard and tighten the screws.

NOTE: Align the projection in the splash guard with the hole on the knuckle.

10. Install the knuckle on the hub unit and tighten the FLANGE bolts.

Front Suspension

Knuckle/Hub (cont'd)

Knuckle Installation

1. Install the knuckle on the driveshaft outboard joint.
2. Install the knuckle on the tie-rod end, upper arm and lower arm, then tighten the castle nuts and install the new cotter pins.

CAUTION: Torque the castle nut to the lower torque specification, then tighten it only far enough to align the slot with the pin hole. Do not align the nut by loosening.

3. Install the wheel sensor with the sensor mounting bolts (for cars with ABS).
4. Install the wheel sensor wire bracket with the two flange bolts (for cars with ABS).

NOTE: Be careful when installing the sensors to avoid twisting wires.

WHEEL SENSOR WIRE BRACKET
5. Install the caliper with the caliper bracket mounting bolts.
6. Install the brake hose bracket with the brake hose mounting bolts.

CAUTION: Be careful not to twist the hose more than necessary.

CALIPER BRACKET MOUNTING BOLTS $12 \times 1.25 \mathrm{~mm}$ $108 \mathrm{~N} \cdot \mathrm{~m}$ (11 kgf.m, $\mathbf{8 0} \mathbf{l b f} \cdot \mathrm{ft})$
7. Install the new spindle nut, then tighten and stake the nut.
8. Install the front wheel with the wheel nuts.

NOTE: Before installing the wheel, clean the mating surfaces of the brake disc and wheel.

($25 \mathrm{kgf} \cdot \mathrm{m}, 181 \mathrm{lbf} \cdot \mathrm{ft}$)

NOTE: After tightening, use a drift to stake the spindle nut
shoulder against the driveshaft.
9. Check the front wheel alignment, and adjust if necessary (see page 18-4).

Lower Ball Joint Replacement

1. Remove the knuckle (see page 18-11), then remove the hub unit from the knuckle (see page 18-13).
2. Remove the boot by prying the set ring off.
3. Check the boot for deterioration and damage, and replace it if necessary.
4. Install the special tools on the ball joint, and tighten the castle nut.
5. Position the special tools over the ball joint as shown, then set the assembly in a vise. Press the ball joint out of the knuckle.

6. Place the ball joint in position by hand.
7. Install the special tools over the ball joint as shown, then press the ball joint in.

BALL JOINT REMOVER/INSTALLER 07PAF - 0030100 (in the ball

BALL JOINT INSTALLER BASE 07PAF - 0030200 (in the ball joint remover/installer set, 07PAF - 0030000)

BALL JOINT HOUSING SURFACE
8. Install the ball joint boot and set ring using the special tool (see page 18-18).

9. Install the hub unit onto the knuckle (see page 18-15).
10. Install the knuckle (see page 18-16).
11. Check the front wheel alignment, and adjust if necessary (see page 18-4).

Front Suspension

Ball Joint Boot Replacement

1. Remove the set ring and the boot.

CAUTION: Do not contaminate the boot installation section with grease.
2. Pack the interior of the boot and lip with grease.

3. Wipe the grease off the sliding surface of the ball pin and pack with fresh grease.

CAUTION:

- Keep grease off the boot installation section and the tapered section of the ball pin.
- Do not allow dust, dirt, or other foreign materials to enter the boot.

4. Install the boot in the groove of the boot installation section securely, then bleed air.
5. Install the upper and lower ball joint boot set rings using the special tools as follows:

Lower ball joint: Adjust the special tool with the adjusting bolt until the end of the tool aligns with the groove on the boot. Slide the set ring over the tool and into position.

Upper ball joint: Hold the tool over the ball joint, then slide the set ring over the tool and into position.

CAUTION: After installing the boot, check the ball pin tapered section for grease contamination and wipe it if necessary.

Suspension Arms

Removal/Inspection

CAUTION: Replace the self-locking nuts after removal.

(cont'd)

Front Suspension

Suspension Arms (cont'd)

Installation

CAUTION: The vehicle should be on the ground before any bolts or nuts connected to rubber mounts or bushings are tightened

NOTE:

- Wipe off the dirt, oil or grease on the threads before tightening the fasteners.
- The right and left damper forks are not interchangeable. The left damper fork is marked with "V4L" while the right damper fork is marked with "V4R".
- The right and left upper arms are not interchangeable. The left upper arm is marked with "VL" or "VLG" while the right arm is marked with "VR" or "VRG".
- The stabilizer bar is symmetrical. Install with the paint mark facing rear of the car.
- After installing the suspension arm, check the front wheel alignment, and adjust if necessary (see page 18-4).

CAUTION: Do not interchange the radius rod rubber bushings.

Lower Arm Bushing Replacement

1. Position the lower arm on the press with the machined surface facing down.
2. Adjust the bushing driver so that it matches the inner diameter of the bushing hole, then tighten the socket bolt securely.
3. Position the bushing driver on the bushing.
4. Remove the bushing by pressing on the bushing driver with a press as shown.

CAUTION:

- Support the lower arm at machined surface as shown.
- Be careful not to damage the inside of the bushing hole while pressing on the bushing.

5. Position the lower arm on the press with the machined surface facing up.
6. Adjust the bushing driver so that it matches with the outer diameter of the bushing.
7. Position the bushing driver on the outer sleeve of the bushing.
8. Press the bushing into the lower arm using the bushing driver and a press until the edge of the bushing aligns with machined surface on the lower arm as shown.

LOWER ARM BUSHING

Front Damper

Removal

1. Remove the front wheels (see page 18-11).
2. Remove the brake hose mounting bolts from the damper.
3. Remove the FLANGE bolt.
4. Remove the flange bolt and self-locking nut, then remove the damper fork.

5. Remove the damper by removing the three flange nuts.

Disassembly

1. Install the damper on the spring compressor by holding the bottom of the damper, and loosely install the holder and bolts.
2. Install the suspension mount plate on the spring compressor.
3. Support the spring compressor with damper on the vise, then tighten the damper holder bolts securely.

CAUTION: Do not over tighten the bolts.
4. Mark the damper case and the spring compressor holder with paint as shown.
5. Mark the mount plate and the spring compressor, and mount plate and damper mounting base with paint as shown.

6. Compress the damper to $2-3 \mathrm{~cm}(0.8-1.2 \mathrm{in})$ by tightening the compressor nuts.

NOTE: Turn each compressor nut gradually and equally.
7. Hold the damper shaft with a hex wrench and remove the self-locking nut.
8. Loosen the compressor nuts, then remove the suspension mount plate.
9. Disassemble the damper on the next page.

Front Damper

Inspection

Reassembly

1. Install the damper unit on the spring compressor by aligning the marks on the damper case and the spring compressor holder.

NOTE: If a new damper is to be installed, mark it on the same position as on the old damper.
2. Reassemble the damper in reverse order of disassembly except the damper mounting washer and selflocking nut.

NOTE: Align the bottom of damper spring and spring lower seat as shown.
3. Install the suspension mount plate on the damper with the mark on the plate facing painted threads.
4. Position the damper mounting base by aligning the marks on the damper mounting base and mount plate.
5. Apply oil to the seating surfaces of the compressor nuts and threads of the spring compressor, then loosely install the nuts.

DAMPER MOUNTING BASE

6. Compress the damper spring by turning the compressor nuts.

NOTE: Turn each compressor nut gradually and equally.
7. Install the damper mounting washer, then loosely install the new self-locking nut.
8. Hold the damper shaft with a hex wrench and tighten the self-locking nut.

9. Remove the damper from the spring compressor.

Front Damper

Installation

1. Loosely install the damper on the frame with the aligning tab facing inside, then loosely install the two flange nuts.

FLANGE NUTS

$10 \times 1.25 \mathrm{~mm}$
$38 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{3 . 9} \mathbf{~ k g f} \cdot \mathrm{m}, 28 \mathrm{lbf} \cdot \mathrm{ft}$)
Tighten to this torque in step 8.

2. Install the damper fork over the driveshaft and onto the lower arm. Install the front damper in the damper fork so the aligning tab is aligned with the slot in the damper fork.
3. Loosely install the FLANGE bolt into the damper fork.
4. Loosely install a new self-locking nut with the flange bolt.
5. Raise the knuckle with a floor jack until the car just lifts off the safety stand.

A WARNING The floor jack must be securely positioned or personal injury may result.
6. Tighten the FLANGE bolt.
7. Tighten the self-locking nut.
8. Tighten the flange nuts on the top of the damper to the specified torque.
9. Install the brake hose mounts with the brake hose mounting bolts.

BRAKE HOSE MOUNTING BOLT
($8 \times 20 \mathrm{~mm}$)
$22 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{2 . 2} \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$

10. Install the front wheel (see page 18-16).

Torque Specifications

CAUTION:

- Replace the self-locking nuts after removal.
- The vehicle should be on the ground before any bolts or nuts connected to rubber mounts or bushings are tightened.
- Torque the castle nut to the lower torque specification, then tighten it only far enough to align the slot with the pin hole. Do not align the nut by loosening.

NOTE: Wipe off the grease before tightening the nut at the ball joint.

Rear Suspension

Hub Bearing Unit

Illustrated Index

NOTE:

- Use only genuine Honda wheel weights for aluminum wheels. Non-genuine wheel weights may corrode and damage the aluminum wheels.
- For aluminum wheels, remove the center cap by prying it out with a flat screwdriver. Use a rag at the point you are going to pry because aluminum alloy wheels can be easily damaged. Avoid damage to the cap by not allowing it to fall during removal.
- Before installing the brake disc, clean the mating surfaces of the rear hub and brake disc.
- Before installing the wheel, clean the mating surfaces of the brake disc and wheel.

*: For cars with drum brake

Hub Bearing Unit

Removal

1. Loosen the wheel nuts slightly.
2. Raise the rear of car, and support it with safety stands in the proper locations (see section 1).
3. Remove the wheel nuts and rear wheel.
4. Pull the parking brake lever up.
5. Remove the hub cap.
6. Raise the locking tab on the spindle nut, then remove the nut.

hub cap
Replace.
NOTE: Take care not to damage the hub unit on disassembly.
 $24 \times 1.5 \mathrm{~mm}$

REAR WHEEL Replace.
7. Release the parking brake lever.
8. Remove the brake drum, hub unit and spindle washer (for cars with drum brake).

9. Remove the brake hose mounting bolts.
10. Remove the caliper bracket mounting bolts and hang the caliper to one side.

CAUTION: To prevent accidental damage to the caliper or brake hose, use a short piece of wire to hang the caliper from the undercarriage.

BRAKE HOSE MOUNTING BOLTS

11. Remove the 6 mm brake disc retaining screws.
12. Screw two $8 \times 1.25 \mathrm{~mm}$ bolts into the disc to push it away from the hub.

NOTE: Turn each bolt two turns at a time to prevent cocking the disc excessively.

(cont'd)

Rear Suspension

Hub Bearing Unit (cont'd)

13. Remove the brake disc.
14. Remove the hub unit from the knuckie.

Installation

1. Install the hub unit, spindle washer and brake disc (or brake drum).

NOTE:

- Wash the bearing and spindle thoroughly in high flash point solvent before reassembly.
- Before installing the brake disc (or brake drum), clean the mating surfaces of the rear hub and brake disc (or brake drum).

〈For cars with drum brake:〉

2. Install the brake caliper with the caliper bracket mounting bolts.
3. Install the brake hose with the brake hose mounting bolts.

CAUTION: Be careful not to twist the hose more than necessary.

4. Tighten the 6 mm brake disc retaining screws.

6 mm BRAKE DISC RETAINING SCREWS $10 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7 \mathrm{lbf} \cdot \mathrm{ft})$
5. Install a new spindle nut, then tighten and stake the nut.
6. Install a new hub cap.
7. Install the rear wheel with the wheel nuts.

NOTE: Before installing the wheel, clean the mating surfaces of the brake disc (or brake drum) and wheel.

Rear Suspension

Suspension Arms

Removal/Inspection

CAUTION:

- Replace the self-locking nuts after removal.
- Be careful not to damage the ball joint boot.

Installation

CAUTION: The vehicle should on the ground before any bolts or nuts connected to rubber mounts or bushings are tightened.

NOTE:

- Wipe off the oil, dirt or grease on the threads before tightening the fasteners.
- Make sure the toe adjuster cams on lower arm A are installed in the same direction.
- The right and left lower arm A are symmetrical. Install so the paint mark of "SV4tR UPt" and "SV4tL UPt" point to the front.
- "SV4tL UPt" is stamped on the left lower arm B and "SV4tR UPt" on the right lower arm B.
- The left upper arm is stamped with "AL" while the right upper arm is stamped with "AR".
- After installing the suspension arm, check the rear wheel alignment, and adjust if necessary (see page 18-4).

12×1.25 BLT $12 \times 1.25 \mathrm{~mm}$ $64 \mathrm{~N} \cdot \mathrm{~m}(6.5 \mathrm{kgf} \cdot \mathrm{m}$, $47 \mathrm{lbf} \cdot \mathrm{ft})$

Rear Suspension

Damper Lower Bushing Replacement

1. Remove the two studs from the knuckle.
2. Position the knuckle on the press.
3. Adjust the bushing driver so that it matches the inner diameter of the bushing hole, then tighten the socket bolt securely.
4. Position the bushing driver on the bushing.
5. Remove the bushing by pressing on the bushing driver with a press as shown.

CAUTION: Be careful not to damage the inside of the bushing hole while pressing on the bushing.

6. Position the knuckle on the press.
7. Adjust the bushing driver so that it matches with the outer diameter of the bushing.
8. Position the bushing driver on the outer sleeve of the bushing.
9. Press the bushing into the knuckle using the bushing driver and a press as shown. The edge of the bushing should align with machined surface on the knuckle as shown.

10. Install the two studs to the knuckle.

Rear Damper

Removal

1. Remove the rear wheels (see page 18-29).
2. Remove the rear seat cushion and the rear bulkhead cover and right gusset cover.
3. Pull back the from of the quarter trim panel, and remove the two flange nuts.

4. Remove the FLANGE bolt.

5. Lower the rear suspension and remove the damper.

Rear Damper

Disassembly

1. Install the damper on the spring compressor by holding the bottom of the damper, and loosely install the holder and bolts.
2. Install the suspension mount plate on the spring compressor.
3. Support the spring compressor with damper on the vise, then tighten the damper holder bolts securely.

CAUTION: Do not over tighten the bolts.
4. Mark the damper case and the spring compressor holder with paint as shown.
5. Mark the mount plate and the spring compressor, and mount plate and damper mounting base with paint as shown.

6. Compress the damper to $2-3 \mathrm{~cm}(0.8-1.2 \mathrm{in})$ by tightening the compressor nuts.

NOTE: Turn each compressor nut gradually and equally.
7. Hold the damper shaft with a hex wrench and remove the self-locking nut.
8. Loosen the compressor nuts, then remove the suspension mount plate.
9. Disassemble the damper on the next page.

Inspection

Rear Damper

Reassembly

1. Install the damper unit on the spring compressor by aligning the marks on the damper case and the spring compressor holder.

NOTE: If a new damper is to be installed, mark it on the same position as on the old damper.
2. Reassemble the damper in reverse order of disassembly except the damper mounting washer and selflocking nut.

NOTE: Align the bottom of damper spring and spring lower seat as shown.
3. Install the mount plate on the damper with the mark on the plate facing painted threads.
4. Position the damper mounting base by aligning the marks on the damper mounting base and mount plate.
5. Apply oil to the seating surfaces of the compressor nuts and threads of the spring compressor, then loosely install the nuts.

6. Compress the damper spring by turning the compressor nuts.

NOTE: Turn each compressor nut gradually and equally.
7. Install the damper mounting washer, then loosely install the new self-locking nut.
8. Hold the damper shaft with a hex wrench and tighten the self-locking nut.

SELF-LOCKING NUT
$10 \times 1.25 \mathrm{~mm}$
$30 \mathrm{~N} \cdot \mathrm{~m}(3.0 \mathrm{kgf} \cdot \mathrm{m}, 22 \mathrm{lbf} \cdot \mathrm{ft})$

9. Remove the damper from the spring compressor.

Installation

1. Lower the rear suspension, and position the damper with the welded nut pointed toward the front of the car.

2. Loosely install the two flange nuts.

FLANGE NUTS
$10 \times 1.25 \mathrm{~mm}$
$38 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{3 . 9} \mathbf{~ k g f} \cdot \mathrm{m}, 28 \mathrm{lbf} \cdot \mathrm{ft})$
Tighten these nuts in step 6

3. Loosely install the FLANGE bolt.
4. Raise the rear suspension with a floor jack until the car just lifts off the safety stand.

A warning The floor jack must be securely positioned or personal injury may result.
5. Tighten the FLANGE bolt.
6. Tighten the two flange nuts on top of the damper to the specified torque.

7. Install the rear seat bolsters and the rear bulkhead cover and right gusset cover.
8. Install the rear wheels (see page 18-31).

Brakes

Conventional Brakes 19-1
Anti-lock Brake System (ABS) 19-43

Conventional Brakes

Special Tools 19-2
Component Location
Index 19-3
Inspection and Adjustment
Brake Pedal 19-4
Parking Brake 19-5
Bleeding 19-6
Front Brake Pads
Inspection and Replacement 19-7
Front Brake Disc
Disc Runout Inspection 19-9
Disc Thickness and Parallelism Inspection 19-9
Front Brake Caliper
Disassembly 19-10
Reassembly 19-11
Master Cylinder
Removal 19-13
Disassembly 19-13
Reassembly 19-15
Pushrod Clearance Adjustment 19-18
Installation 19-19
Brake Booster
Inspection 19-19
Replacement 19-21
Rear Brake Pads
Inspection and Replacement 19-22
Rear Brake Disc
Disc Runout Inspection 19-24
Disc Thickness and Parallelism Inspection 19-24
Rear Brake Caliper
Disassembly 19-25
Reassembly 19-29
Rear Drum Brake
Index/Inspection 19-33
Inspection 19-34
Rear Brake Shoes
Disassembly 19-35
Reassembly 19-36
Wheel Cylinder
Disassembly/Inspection 19-38
Brake Hoses/Pipes
Inspection 19-39
Hose Replacement 19-40
Parking Brake
Inspection and Replacement 19-41

Inspection and Adjustment

Brake Pedal

Pedal Height

1. Disconnect the brake switch connector, loosen the brake switch locknut, and back off the brake switch until it is no longer touching the brake pedal.
2. Turn up the floor mat, and measure the pedal height from the left side center of the pedal pad.

Standard Pedal Height (with floor mat removed):
LHD:
M/T: 192 mm (7.56 in)
A/T: 193 mm (7.60 in)
RHD:
M/T: 167 mm (6.57 in)
A/T: $168 \mathrm{~mm}(6.61 \mathrm{in})$
3. Loosen the pushrod locknut, and screw the pushrod in or out with pliers until the standard pedal height from the floor is reached. After adjustment, tighten the locknut firmly.

NOTE: Do not adjust the pedal height with the pushrod depressed.

4. Screw in the brake switch until its plunger is fully depressed (threaded end touching the pad on the pedal arm). Then back off the switch $1 / 4$ turn to make $0.3 \mathrm{~mm}(0.01 \mathrm{in}$) of clearance between the threaded end and pad. Tighten the locknut firmly. Connect the brake switch connector.

CAUTION: Make sure that the brake lights go off when the pedal is released.

5. Check the brake pedal free play as described below.

Pedal Free Play

1. With the engine off, inspect the play on the pedal pad by pushing the pedal by hand.

Free Play: 1 - 5 mm (1/16-13/64 in)
2. If the pedal free play is out of specification, adjust the brake switch.

CAUTION: If the pedal free play is insufficient, it may result in brake drag.

Parking Brake

Inspection

1. Pull the parking brake lever with $200 \mathrm{~N}(20 \mathrm{kgf}, 44$ lbt) force to fully apply the parking brake. The parking brake lever should be locked within the specified notches.

Lever Locked Notches:

Cars With Rear Disc Brake: 7-11
Cars With Rear Drum Brake: 4-8
Pulled up with $200 \mathrm{~N}(20 \mathrm{kgf}, 44 \mathrm{lbf})$

2. Adjust the parking brake if the lever notches are out of specification.

Adjustment

NOTE: After rear brake caliper servicing, loosen the parking brake adjusting nut, start the engine and depress the brake pedal several times to set the selfadjusting brake before adjusting the parking brake.

1. Raise the rear wheels off the ground and support on safety stands.

A WARNING Block the front wheels before jacking up the rear of the car.
2. Make sure the parking brake arm on the rear brake caliper contacts the brake caliper pin.

3. Pull the parking brake lever up one notch.

4. Remove the rear console (see section 20).
5. Tighten the adjusting nut until the rear wheels drag slightly when turned.

6. Release the parking brake lever fully, and check that the rear wheels do not drag when turned. Readjust if necessary.
7. Make sure that the parking brakes are fully applied with the parking brake lever is pulled up fully.
8. Install the cap onto the parking brake cable end, and reinstall the rear console.

Inspection and Adjustment

Bleeding

CAUTION：

－Use only clean DOT 3 or 4 brake fluid．
－Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid．
－Do not spill brake fluid on the car，it may damage the paint；if brake fluid does contact the paint，wash it off immediately with water．

NOTE：The reservoir on the master cylinder must be at the MAX（upper）level mark at the start of bleeding pro－ cedure，and checked after bleeding each brake caliper． Add fluid as required．Use only clean DOT 3 or 4 brake fluid．

1．Make sure the brake fluid level in the reservoir is at the MAX（upper）level line．

2．Have someone slowly pump the brake pedal several times，then apply steady pressure．

3．Loosen the brake bleed screw to allow air to escape from the system．Then tighten the bleed screw securely．

4．Repeat the procedure for each wheel in the se－ quence shown below，until air bubbles no longer appear in the fluid．

5．Refill the reservoir of master cylinder to the MAX （upper）level line．

〈BLEEDING SEQUENCE：〉

〈FRONT：

〈REAR：〉
DISC BRAKE

$9 \mathrm{~N} \cdot \mathrm{~m}(0.9 \mathrm{kgf} \cdot \mathrm{m}, 6.5 \mathrm{lbf} \cdot \mathrm{ft})$
DRUM BRAKE

Inspection and Replacement

A warning

- Never use and air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.

1. Loosen the front wheel nuts slightly, then raise the car and support on safety stands.
2. Remove the caliper bolt (pin A), and pivot the caliper up out of the way.

NOTE: Check the hoses and pin boots for damage and deterioration.
3. Remove the pad shims, pad retainers and pads.

4. Using vernier calipers, measure the thickness of each brake pad lining.

Brake Pad Thickness:

Standard:
10.5-11.5 mm (0.41-0.45 in)

KH model only (F22B1 and F22B2 engines):
12.0 - 13.0 mm (0.47 - 0.51 in)

Service Limit: 1.6 mm (0.06 in)

NOTE: Measurement does not include pad backing plate thickness.
5. If the brake pad thickness is less than service limit, replace the front pads as a set.
6. Clean the caliper thoroughly; remove any rust, and check for grooves or cracks.
7. Check the brake disc for damage or cracks.
8. Install the pad retainers.

Front Brake Pads

Inspection and Replacement (cont'd)

9. Apply Molykote ${ }^{*}$ M77 grease to the inner side of the pad shims and the back of the pads. Wipe excess grease off the shim.
10. Install the brake pads and pad shims correctly.

A warning

- When reusing the pads, always reinstall the brake pads in their original positions to prevent loss of braking efficiency.
- Contaminated brake discs or pads reduce stopping ability. Keep grease off the discs and pads.

NOTE: Install the pad with the wear indicator on the inside.

Apply Molykote ${ }^{\text {c }}$ M77 to both sides of shim.
11. Push in the piston so that the caliper will fit over the pads. Make sure that the piston boot is in position to prevent damaging it when pivoting the caliper down.
12. Pivot the caliper down into position, then install caliper bolt ($\mathrm{pin} A$) and tighten it.

CAUTION: Be careful not damage the pin boot when pivoting the caliper down.

CALIPER BOLT

(PIN A)

$74 \mathrm{~N} \cdot \mathrm{~m}$ (7.5 kgf•m, $54 \mathrm{lbf} \cdot \mathrm{ft}$)

13. Depress the brake pedal several times to make sure the brakes work, then road-test.

NOTE: Engagement of the brake may require a greater pedal stroke immediately after the brake pads have been replaced as a set. Several applications of the brake pedal will restore the normal pedal stroke.
14. After installation, check for leaks at hose and line joints or connections, and retighten if necessary.

Front Brake Disc

Disc Runout Inspection

1. Loosen the front wheel nuts slightly, then raise the car and support on safety stands. Remove the front wheels.
2. Remove the brake pads (see page 19-7).
3. Inspect the disc surface for damage or cracks. Clean the disc thoroughly and remove all rust.
4. Use wheel nuts and suitable plain washers to hold the disc securely against the hub, then mount a dial indicator as shown, and measure the runout at $10 \mathrm{~mm}(0.4 \mathrm{in})$ from the outer edge of the disc.

Brake Disc Runout:

Service Limit: $\mathbf{0 . 1 0 ~ m m (0 . 0 0 4 ~ i n) ~}$
5. If the disc is beyond the service limit, refinish the brake disc with an on-car brake lathe. The KwikLathe produced by Kwik-way manufacturing Co. and the "Front Brake Disc Lathe" offered by Snapon Tools Co. are approved for this operation.

Max. Refinish Limit:
25.0 mm (0.98 in)

KH model only (F22B1 and F22B2 engines):
21.0 mm (0.83 in)

NOTE: A new disc should be refinished if its runout is greater than 0.10 mm (0.004 in)

Disc Thickness and Parallelism Inspection

1. Loosen the front wheel nuts slightly, then raise the car and support on safety stands. Remove the front wheels.
2. Remove the brake pads (see page 19-7).
3. Using a micrometer, measure disc thickness at eight points, approximately 45° apart and 10 mm (0.4 in) in from the outer edge of the disc.

Brake Disc Thickness:

Standard:
24.9-25.1 mm (0.98-0.99 in)

Max. Refinishing Limit: $\mathbf{2 3 . 0 ~ m m ~ (0 . 9 1 ~ i n) ~}$
KH model only (F22B1 and F22B2 engines:
Standard:
22.9-23.1 mm (0.90-0.91 in)

Max. Refinishing Limit: $\mathbf{2 1 . 0 ~ m m ~ (0 . 8 3 ~ i n) ~}$
NOTE: Replace the brake disc if the smallest measurement is less than the max. refinishing limit.

Brake Disc Parallelism: $0.015 \mathrm{~mm}(0.0006 \mathrm{in})$ max.

NOTE: This is the maximum allowable difference between the thickness measurements.
4. If the disc is beyond the service limit for parallelism, refinish the brake disc with an on-car brake lathe. The Kwik-Lathe produced by Kwik-Way Manufacturing Co. and the "Front Brake Disc Lathe" offered by Snap-on Tools Co. are approved for this operation.

NOTE: See page 18-11 for brake disc replacement.

Front Brake Caliper

Disassembly

A WARNING

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- To prevent spills, cover the hose joints with rags or shop towels.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.

1. Remove the banjo bolt, and disconnect the brake hose from the caliper.
2. Remove the caliper bolts (pin A and pin B), then remove the caliper from the bracket.

3. Remove the pin boots from the caliper bracket.

4. If necessary, apply compressed air to the caliper fluid inlet to get the piston out. Place a shop rag or wooden block as shown to cushion the piston when it is expelled. Use low pressure air in short spurts.

A warning

- Do not place your fingers in front of the piston.
- Do not use high air pressure.

5. Remove the piston from the caliper, and check the piston for scoring on surface.
6. Remove the piston boot and piston seal.

CAUTION: Take care not to damage the cylinder bore.

Reassembly

A warning

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.
- Contaminated brake discs or pads reduce stopping ability.
- When reusing the pads, always reinstall the brake pads in their original positions to prevent loss of braking efficiency.

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

NOTE:

- Coat piston, piston seal, and caliper bore with clean brake fluid.
- Replace all rubber parts with new ones whenever disassembled.

GAEASEM: Use recommended rubber grease in the caliper seal set.
GREASEH: Use recommended seal grease in the caliper seal set.

(cont'd)

Front Brake Caliper

Reassembly (cont'd)

1. Clean the piston and caliper bore with brake fluid and inspect for wear or damage.
2. Coat a new piston seal with the recommended rubber grease in the caliper seal set, and install the seal in the cylinder groove.
3. Apply the recommended seal grease in the caliper seal set to the sealing lips and inside of a new piston boot, and install it in the caliper.

CAUTION: Be careful not to damage the caliper cylinder wall.

4. Lubricate the caliper cylinder and piston with brake fluid, then install the piston in the cylinder with the dished end facing in.

5. Apply the recommended seal grease in the caliper seal set to sliding surface of the pins and inside of the new pin boots.
6. Install the pin boots into the groove in the caliper

7. Install the brake pads in their original positions (see page 19-8).
8. Push in the piston so that the caliper will fit over the pads, and install the caliper.
CAUTION: Be careful not to damage the pin boots when installing the caliper.
9. Coat the caliper bolts (pin A and pin B) with the recommended seal grease in the caliper seal set, and insert them into the caliper.
10. Tighten the caliper bolts ($\mathrm{pin} A$ and B).
11. Connect the brake hose to the caliper with new sealing washers, and tighten the banjo bolt.
BANJO BOLT

CALIPER BOLT (PIN B)
12. Fill the brake reservoir and bleed the brake system (see page 19-6).
13. After installation, check for leaks at hose and line joints or connections, and retighten if necessary.

Master Cylinder

Removal

CAUTION:

- Be careful not to bend or damage the brake pipes when removing the master cylinder.
- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- To prevent spills, cover the hose joints with rags or shop towels.

1. Disconnect the brake fluid level switch connectors.
2. Remove the reservoir cap from the master cylinder.
3. The brake fluid may be sucked out through the top of the master cylinder reservoir with a syringe.
4. Disconnect the brake pipes from the master cylinder.
5. Remove the master cylinder mounting nuts and the master cylinder from the brake booster.

Disassembly

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.

1. Remove the master cylinder.
2. Remove the rod seal.
3. Remove the circlip while pushing in the secondary piston.

4. Remove the stop bolt while pushing in the secondary piston.

(cont'd)

Master Cylinder

Disassembly (cont'd)

5. Remove the piston guide, secondary cup and Oring.
6. Remove the secondary piston and primary piston from master cylinder.

NOTE: If the primary piston assembly is difficult to remove, apply compressed air from the primary piston side port.

CAUTION:

- Do not use high pressure air or bring the nozzle too close to the port.
- Place a shop rag over the master cylinder to prevent the primary piston from becoming a projectile.

7. Disassembly the secondary piston and primary piston (see next page).

8. Remove the reservoir cap, strainer and reservoir from the master cylinder.
9. Remove the reservoir seal from the reservoir cap.

RESERVOIR SEAL
Check for damage or deterioration.

STRAINER

Remove accumulated sediment.

Reassembly

CAUTION:

- If replacing the primary piston, secondary piston or master cylinder body. Check and adjust the pushrod clearance before installing the master cylinder (see page 19-18).
- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.
- Replace the master cylinder if the bore is damaged or worn. Do not hone or attempt to refinish the bore.

NOTE:

- Coat piston cups, pressure cup and master cylinder bore with clean brake fluid.
- Use recommended greases in the master cylinder seal set.

Master Cylinder

Reassembly (cont'd)

1. Assembly the primary piston and secondary piston.

NOTE: To prevent damage, liberally apply clean brake fluid to the piston cups before installation.

<SECONDARY PISTON: >

2. Apply recommended grease in the master cylinder seal set to a new O-ring and the secondary cup in a new piston guide and install the O-ring onto the piston guide.

3. Apply recommended grease in the master cylinder seal set to a secondary piston.
4. Lubricate the cups of primary and secondary pistons with clean brake fluid, and install them into the master cylinder.

5. Install the piston guide assembly into the master cylinder.

6. Install the stop bolt with a new sealing washer while pushing in the secondary piston, and tighten the stop bolt.

7. Install a new circlip while pushing in the secondary piston.
8. Apply recommended grease in the master cylinder seal set to a new rod seal and install the seal onto the master cylinder.

Master Cylinder

Pushrod Clearance Adjustment

NOTE: Master cylinder pushrod-to piston clearance must be checked and adjustments made, if necessary, before installing master cylinder.

1. Set the special tool on the master cylinder body; push in the center shaft until the top of it contacts the end of the secondary piston by turning the adjusting nut.

2. Without disturbing the center shaft's position, install the special tool upside down on the booster.
3. Install the master cylinder nuts and tighten to the specified torque.
4. Connect the booster in-line with a vacuum gauge 0 $101 \mathrm{kPa}(0-760 \mathrm{mmHg}, 30 \mathrm{in} \mathrm{Hg})$ to the booster's engine vacuum supply, and maintain an engine speed that will deliver $66 \mathrm{kPa}(500 \mathrm{mmHg}, 20$ in Hg) vacuum.
5. With a feeler gauge, measure the clearance between the gauge body and the adjusting nut as shown.

Clearance: 0 - $0.4 \mathrm{~mm}(0-0.02 \mathrm{in})$

NOTE: If the clearance between the gauge body and adjusting nut is 0.4 mm (0.02 in), the pushrod-to-piston clearance is 0 mm . However, if the clearance between the gauge body and adjusting nut is 0 mm , the pushrod-to-piston clearance is 0.4 mm $(0.02 \mathrm{in}$) or more. Therefore, it must be adjusted and rechecked.
6. If clearance is incorrect, loosen the star locknut and turn the adjuster in or out to adjust.

NOTE:

- Adjust the clearance while the specified vacuum is applied to the booster.
- Hold the clevis while adjusting.

7. Tighten the star locknut securely.
8. Remove the special tool.

0-0.4 mm ($0-0.02 \mathrm{in}$)

9. Adjust the pushrod length as shown if the booster is removed.

10. Install the master cylinder (see page 19-19).

Brake Booster

Installation

CAUTION:

- When connecting the brake pipes, make sure that there is no interference between the brake pipes and other parts.
- Be careful not to bend or damage the brake pipes when installing the master cylinder.

NOTE: If replacing the master cylinder or brake booster, check and adjust the pushrod clearance before installing the master cylinder (see page 19-18).

1. Install the master cylinder on the brake booster with the mounting nuts.
2. Connect the brake pipes to the master cylinder.
3. Fill the master cylinder reservoir and bleed the brake system (see page 19-6).
4. Install the reservoir cap, and connect the brake fluid level switch connectors.

5. After installation, perform the following inspections and adjust if necessary.

- Brake pedal height (see page 19-4)
- Brake pedal free play (see page 19-4)

Leak Test

1. Install the vacuum gauge between the brake booster and check valve.

2. Start the engine, adjust the engine speed with the accelerator pedal so that the vacuum gauge readings show $40.0-66.7 \mathrm{kPa}(300-500 \mathrm{mmHg}, 11.8-$ 19.7 in -Hg), then stop the engine.
3. Read the vacuum gauge.

If the vacuum reading decreases $2.7 \mathrm{kPa}(20 \mathrm{mmHg}$, $0.8 \mathrm{in}-\mathrm{Hg}$) or more after 30 seconds, check following parts for leaks.

- Check valve
- Vacuum hose, pipe
- Seals
- Brake booster
- Master cylinder

CAUTION: Do not try to disassemble the brake booster. Replace the brake booster as an assembly with new one.

Brake Booster

Inspection (cont'd)

Function Test

1. Install the vacuum gauge as same the leak test.
2. Connect the oil pressure gauges to the master cylinder using the attachments as shown.
3. Bleed air through the valves.

4. Start the engine.
5. Depress the brake pedal with a $200 \mathrm{~N}(20 \mathrm{kgf}, 44 \mathrm{lbf})$ of pressure. The following pressures should be observed at the pressure gauges in each vacuum.

Cars Without ABS

Vacuum mm (in) Hg	Min. Line Pressure $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$
$0(0)$	$970(9.9,140)$
$300(11.8)$	$5,530(56.4,802)$
$500(19.7)$	$8,580(87.5,1,240)$

Cars With ABS

Vacuum mm (in) Hg	Min. Line Pressure $\mathrm{kPa}\left(\mathrm{kgf} / \mathrm{cm}^{2}, \mathrm{psi}\right)$
$0(0)$	$850(8.7,120)$
$300(11.8)$	$6,120(62.4,887)$
$500(19.7)$	$8,980(91.6,1,300)$

6. Inspect the master cylinder for leaks if the readings do not fall within the limits shown above.

Check Valve Test .

1. Disconnect the brake booster vacuum hose at the booster.
2. Start the engine and let it idle. There should be vacuum available. If no vacuum is available, the check valve is not working correctly.
Replace the check valve and retest.

Replacement

1. Remove the master cylinder (see page 19-13).
2. Disconnect the vacuum hose from the brake booster, then remove the vacuum hose bracket.

LHD only:

- 1. Remove the throttle control cable bracket.
- 2. Disconnect the engine wire harness connectors, then remove the harness clamp.
-3. M / T only: Remove the clutch reservoir and reservoir bracket. Do not disconnect the clutch hose from the reservoir. VACUUM HOSE

3. Loosen the pushrod locknut, then remove the cotter pin and joint-pin.
4. Remove the clevis from the operating rod of the brake booster.
5. Remove the four booster mounting nuts.

6. Pull the brake booster forward, then turn it to the right until the operating rod is clear of the bulkhead.
7. Remove the brake booster from the engine compartment.

8. Install the brake booster in the reverse order of removal.

NOTE: Adjust the pushrod length before installing the brake booster (see page 19-18).
9. Install the master cylinder (see page 19-19).
10. After installation, perform the following inspections and adjust if necessary.

- Brake pedal height (see page 19-4).
- Brake pedal free play (see page 19-4).

Rear Brake Pads

Inspection and Replacement

A warning

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.

1. Block the front wheels, loosen the rear wheel nuts slightly, support the rear of car on safety stands, then remove the rear wheels.
2. Release the parking brake.
3. Remove the two caliper bolts and the caliper from the bracket.

CAUTION:

- Thoroughly clean the outside of the caliper to prevent dust and dirt from entering inside.
- Support the caliper with a piece of wire so that it does not hang from the brake hose.

4. Remove the pad shims and brake pads.

5. Using vernier calipers, measure the thickness of each brake pad lining.

Brake Pad Thickness:

Standard: $\quad 8.5-9.5 \mathrm{~mm}$ ($0.33-0.37 \mathrm{in}$)
Service Limit: $1.6 \mathbf{~ m m}(0.06 \mathrm{in})$

NOTE: Measurement does not include pad backing plate thickness.
6. Remove the pad retainers.
7. Clean the caliper thoroughly; remove any rust, and check for grooves or cracks.
8. Check the brake disc for damage or cracks.
9. Make sure that the pad retainers are installed in the correct positions.

10. Apply Molykote ${ }^{\text {® }}$ M77 grease to the pad side of the shims. Wipe excess grease off the shims.
11. Install the brake pads and pad shims on caliper bracket.

A warning

- When reusing the pads, always reinstall the brake pads in their original positions to prevent loss of braking efficiency.
- Contaminated brake discs or pads reduce stopping ability. Keep grease off the discs and pads.

NOTE: Install the inner pad with its wear indicator facing downward.

12. Rotate the caliper piston clockwise into place in the cylinder, then align the cutout in the piston with the tab on the inner pad by turning the piston back.

CAUTION: Lubricate the boot with rubber grease to avoid twisting the piston boot. If piston boot is twisted, back it out so it sits properly.
13. Install the brake caliper.

15. After installation, check for leaks at hose and line joints or connections, and retighten if necessary.
16. Depress the brake pedal several times to make sure the brakes work, then road-test.

NOTE: Engagement of the brake may require a greater pedal stroke immediately after the brake pads have been replaced as a set. Several applications of the brake pedal will restore the normal pedal stroke.

Rear Brake Disc

Disc Runout Inspection

1. Loosen the rear wheel nuts slightly, then raise the car and support on safety stands. Remove the rear wheels.
2. Remove the brake pads (see page 19-22).
3. Inspect the disc surface for damage or cracks. Clean the disc thoroughly and remove all rust.
4. Use wheel nuts and suitable plain washers to hold the disc securely against the hub, then mount a dial indicator as shown, and measure the runout at 10 mm (0.4 in) from the outer edge of the disc.

Brake Disc Runout:

Service Limit: 0.10 mm (0.004 in)
5. If the disc is beyond the service limit, refinish the brake disc.

Max. Refinishing Limit: $\mathbf{8 . 0} \mathbf{~ m m}(\mathbf{0 . 3 1} \mathbf{~ i n)}$

WhEEL NUT AND PLAIN WASHER

NOTE: A new disc should be refinished if its runout is greater than 0.10 mm (0.004 in).

Rear Brake Caliper

Disassembly

A warning

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.
- Contaminated brake discs or pads reduce stopping ability.

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- To prevent spills, cover the hose joints with rags or shop towels.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.

1. Remove the caliper shield.

2. Remove the lock pin and clevis pin.

Remove the cable clip, and disconnect the cable from the arm.

3. Remove the banjo bolt and two sealing washers.
4. Remove the two caliper bolts and caliper body from the bracket.

5. Remove the pins and pin boots from the caliper bracket.

(cont'd)

Rear Brake Caliper

Disassembly (cont'd)

6. Remove the pad spring from the caliper body.

7. Remove the piston by rotating the piston counterclockwise with the special tool, and remove the piston boot.

CAUTION: Avoid damaging the piston.

8. Remove the piston seal.

CAUTION: Take care not to damage the cylinder bore.

9. Install the special tool between the caliper body and spring cover.

CAUTION: Be careful not to damage the inside of the caliper cylinder during caliper disassembly.
10. Position the locknuts as shown, then turn the shaft until the plate just contacts the caliper body.

NOTE: Do not compress the spring under the spring cover

11. Turn the shaft clockwise $1 / 4-1 / 2$ turn to compress adjusting spring B in the caliper body.

CAUTION: To prevent damage to the inner components, do not turn the shaft more than $\mathbf{1 / 2}$ turn.
12. Lower the locknuts fully and tighten them securely.

NOTE: Keep the locknuts in this position until you reinstall the circlip.

13. Remove the circlip with snap ring pliers.

14. Hold the plate with your fingers and turn the shaft counterclockwise. Remove the special tool from the caliper.

15. Remove the adjusting bolt.
16. Remove the spring cover, adjusting spring B, spacer, bearing A and cup from the adjusting bolt.

ADJUSTING SPRING B

Rear Brake Caliper

Disassembly (cont'd)

17. Remove the sleeve piston, and remove the pin from the cam in the caliper body.

Check for wear and
damage.
18. Remove the return spring.
19. Remove the parking lever and cam as an assembly from the caliper body.

CAUTION: Do not loosen the parking nut with the cam installed in the caliper body. If the lever and shaft must be separated, hold the lever in a vise and loosen the parking nut.
20. Remove the cam boot.

Rear Brake Caliper

A warning

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.
- Contaminated brake discs or pads reduce stopping ability.
- When reusing the pads, install them in their original positions to prevent loss of braking efficiency.

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passage with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

NOTE:

- Coat piston, piston seal groove, and caliper bore with clean brake fluid.
- Replace all rubber parts with new ones whenever disassembled.
- GREASE: Use recommended seal greases in the caliper seal set.
- GAEASE $:$ Use recommended rubber grease in the caliper seal set.

8 mm FLANGE BOLT
$23 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{2 . 3} \mathrm{kgf} \cdot \mathrm{m}$,
$17 \mathrm{lbf} \cdot \mathrm{ft}$)

CALIPER BRACKET MOUNTING BOLTS $38 \mathrm{~N} \cdot \mathrm{~m}(3.9 \mathrm{kgr} \cdot \mathrm{m}, 28 \mathrm{lbf} \cdot \mathrm{ft})$

Rear Brake Caliper

Reassembly (cont'd)

1. Pack all cavities of the needle bearing with the recommended rubber grease in the caliper seal set.
2. Coat a new cam boot with recommended rubber grease in the caliper seal set, and install it in the caliper body.
3. Apply recommended rubber grease in the caliper seal set to the pin contacting area of the cam, and install the cam and lever assembly into the caliper body.
4. Install the return spring.

CAUTION:

- When the cam and lever were separated, be sure to assemble them before installing the cam in the caliper body. Install the lever and spring washer, apply locking agent to the threads, and tighten the parking nut while holding the lever with a vise.
- Avoid damaging the cam boot since it must be installed before the cam.
- When installing the cam, do not allow the cam boot lips to turn outside in.

5. Install the pin in the cam.
6. Install a new O-ring on the sleeve piston.
7. Install the sleeve piston so the hole in the bottom of the piston is aligned with the pin in the cam, and two pins on the piston are aligned with the holes in the caliper.

8. Coat a new cup with recommended rubber grease in the caliper seal set, and install it with its groove facing the bearing A side of the adjusting bolt.
9. Fit the bearing A, spacer, adjusting spring B and spring cover on the adjusting bolt, and install them in the caliper cylinder.

10. Install the special tool on the spring cover, and turn the shaft until the locknut contacts the plate.

11. Check that the flared end of the spring cover is below the circlip groove.
12. Install the circlip in the groove, then remove the special tool.

NOTE: Check that the circlip is seated in the groove properly.

13. Coat a new piston seal with recommended silicone grease in the caliper seal set, and install it in the caliper.
14. Apply recommended rubber grease in the caliper seal set to the sealing lips and inside of a new piston boot, and install it in the caliper.

15. Coat the outside of the piston with brake fluid, and install it on the adjusting bolt while rotating it clockwise with the special tool.

CAUTION: Avoid damaging the piston and piston boot.

EXTENSION BAR
Commercially available.

$$
\begin{aligned}
& \text { LOCKNUT' WRENCH } \\
& 07916-6390001
\end{aligned}
$$

16. Install the pad spring on the caliper.

Rear Brake Caliper

Reassembly (cont'd)

17. Apply the recommended rubber grease in the caliper seal set to the sliding surface of the pins and inside of the new pin boots.
18. Install the pin boots into the groove in the caliper bracket properly.
19. Insert the pin A and pin B into the caliper bracket.
20. Install the pin boots into the groove in the pins properly.

21. Install the brake pad retainers and brake pads (see page 19-22).
22. Align the cutout in the piston with the tab on the inner pad (see page 19-23).
23. Install the caliper on the caliper bracket, and tighten the caliper mounting bolts.
24. Connect the brake hose to the caliper with new sealing washers, and tighten the banjo bolt.

25. Insert the cable through the arm, and connect the cable to the lever with the clevis pin and lock pin. Install the cable clip securely.

26. Install the caliper shield.

27. Fill the brake reservoir up and bleed the brake system (see page 19-6).
28. Operate the brake pedal several times, then adjust the parking brake (see page 19-5).
29. After installation, perform the following checks.

- Check for leaks at hose and line joints or connections, and retighten if necessary.
- Check the parking brake lever for operation, and adjust it if necessary.

Rear Drum Brakes

Index/Inspection

A warning

- Never use an air hose or dry brush to clean brake assemblies.
- Use a vacuum cleaner to avoid breathing brake dust.
- Contaminated brake linings or drum reduce stopping ability.

1. Block the front wheels, loosen the rear wheel nuts slightly, support the rear of car on safety stands, then remove the rear wheels.
2. Loosen the parking brake and remove the rear brake drum.

BOLT
$9 \mathbf{N} \cdot \mathrm{~m}$ ($\mathbf{0 . 9} \mathbf{~ k g f} \cdot \mathrm{m}, 7 \mathrm{lbf} \cdot \mathrm{ft})$

BACKING PLATE
Marked left and right.

Rear Brake Shoes

Inspection

1. Check the wheel cylinder for leakage.
2. Check the brake linings for cracking, glazing, wear or contamination.
3. Measure the brake lining thickness.

Brake Lining Thickness:
Standard: $\quad 3.9-4.5 \mathrm{~mm}(0.15-0.18 \mathrm{in})$ Service Limit: $\mathbf{2 . 0 ~ m m ~ (0 . 0 8 ~ i n) ~}$

NOTE: Measurement does not include brake shoe thickness.
4. Check the bearings in the hub unit for smooth operation. If defective, refer to section 18.
5. Measure the inside diameter of the brake drum.

Drum Inside Diameter:

Standard: $\quad 219.9-220.0 \mathrm{~mm}(8.657-8.661 \mathrm{in})$

6. Check the brake drum for scoring, grooving and cracks.

Disassembly

1. Remove the upper return spring from the brake shoe as shown.

A warning Wear eye protection when using the brake spring tool.

BRAKE SPRING TOOL
Commercially available
2. Remove the tension pins by pushing the retainer spring and turning them.
3. Lower the brake shoe assembly and remove the lower return spring.

NOTE: Make sure not to damage the dust cover on the wheel cylinder.
4. Disconnect the parking brake cable from the parking brake lever.
5. Remove the brake shoe assembly.

6. Remove the upper return spring, adjuster lever and adjuster spring, and separate the brake shoes.

7. Remove the wave washer, parking brake lever and pivot pin from the brake shoe by removing the U clip.

Rear Brake Shoes

Reassembly

1. Apply brake cylinder grease (P / N : 08733 - B020E) or equivalent rubber grease to the sliding surface of the pivot pin, and insert the pin into the brake shoe.
2. Install the parking brake lever and wave washer on the pivot pin, and secure with the U-clip.

NOTE: Pinch the new U-clip securely to prevent the pivot pin from coming out of the brake shoe.

3. Connect the parking brake cable to the parking brake lever.
4. Apply grease on each sliding surface.

CAUTION: Contaminated brake linings or drum reduce stopping ability. Keep grease or oil off the brake linings. Wipe any excess grease off the parts.

- Apply brake cylinder grease (P/N: 08733 - B020E) or equivalent rubber grease to the sliding surfaces as shown.

- Apply Molykote 44 MA to the brake shoe ends and opposite edges of the shoes as shown.
\rightarrow Opposite edge of the shoe
\Rightarrow O Brake shoe ends

5. Clean the threaded portions of clevises A and B. Coat the threads of the clevises with grease. To shorten the clevises, turn the adjuster bolt.
6. Hook the adjuster spring to the adjuster lever first, then to the brake shoe.
7. Install the clevises and upper return spring noting the installation direction.
8. Install the lower return spring.

LOWER RETURN SPRING
9. Install the brake shoes onto the backing plate.

NOTE: Make sure not to damage the wheel cylinder dust covers.
10. Install the tension pins and the return springs.

11. Install the upper spring as shown.

A warning Wear eye protection when using the brake spring tool.

UPPER RETURN SPRING

12. Install the brake drum.
13. If the wheel cylinder has been removed, bleed the brake system (see page 19-6).
14. Depress the brake pedal several times to set the self-adjusting brake.
15. Adjust the parking brake (see page 19-5).

Wheel Cylinder

Disassembly/Inspection

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.

NOTE:

- Coat piston, piston cup, and wheel cylinder bore with clean brake fluid.
- Replace all rubber parts with new ones whenever disassembled.

Brake Hoses/Pipes

Inspection

1. Inspect the brake hoses for damage, deterioration, leaks, interference or twisting.
2. Check the brake lines for damage, rusting or leakage. Also check for bent brake lines.
3. Check for leaks at hose and line joints or connections, and retighten if necessary.

CAUTION: Replace the brake hose clip whenever the brake hose is serviced.

Brake Hoses/Pipes

Hose Replacement

CAUTION:

- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.

1. Replace the brake hose if the hose is twisted, cracked, or if it leaks.
2. Disconnect the brake hose from the brake pipe using a 10 mm flare nut wrench.

3. Remove and discard the brake hose clip from the brake hose.
4. Remove the banjo bolt, and disconnect the brake hose from the caliper.

5. Install the brake hose on the knuckle and damper first, then connect the brake hose to the caliper with the banjo bolt and new sealing washers.

6. Install a new brake hose clip on the brake hose.
7. Connect the brake pipe to the brake hose.

8. After installing the brake hose, bleed the brake system (see page 19-6).
9. Perform the following checks.

- Check the brake hose and line joint for leaks, and tighten if necessary.
- Check the brake hoses for interference or twisting.

Inspection and Replacement

CAUTION: The parking brake cables must not be bent or distorted. This will lead to stiff operation and premature cable failure.

Disconnect the parking brake cable from the lever on the caliper by removing the lock pin and clevis pin, and remove the cable from the arm by removing the clip.

Remove the parking brake cable from the backing plate using a 12 mm offset wrench as shown.

Anti-lock Brake System (ABS)

Special Tools 19-44
Illustrated Index 19-45
Anti-lock Brake System (ABS)
Features/Construction 19-46
Operation 19-52
Components Location 19-55
Circuit Diagram 19-56
ABS Control Unit Terminal Arrangement 19-58
Troubleshooting Procedure 19-60
Diagnostic Trouble Code (DTC) Indication 19-62
Diagnostic Trouble Code (DTC)
Symptom-to-System Chart 19-64
Troubleshooting
ABS Indicator Light Does Not Come On 19-68
ABS Indicator Light Does Not Go Off 19-70
ABS Pump Motor Over-run 19-73
ABS Pump Motor 19-75
High Pressure Leakage 19-81
Pressure Switch 19-83
High Pressure System 19-84
Parking Brake 19-85
Pulser/Different Diameter Tire 19-89
Right-Front Wheel Sensor 19-90
Left-Front Wheel Sensor 19-93
Right-Rear Wheel Sensor 19-96
Left-Rear Wheel Sensor 19-99
Rear Wheel Lock 19-102
Front and Rear Fail-safe Relays 19-104
Front Fail-safe Relay 19-106
Rear Fail-safe Relay 19-109
Right-Front Solenoid 19-111
Left-Front Solenoid 19-115
Rear Solenoid 19-121
ABS Function 19-129
ABS Control Unit 19-130
ABS Function Test 19-131
Modulator Function Check 19-133
Modulator Unit
Relieving System Pressure 19-134
Brake Fluid Replacement 19-134
Removal/Installation 19-136
Wire Harness Replacement 19-137
Pump Motor Replacement 19-138
Disposal 19-138
Master Cylinder
Disassembly 19-139
Reassembly 19-141
Electronic Components
ABS Control Unit Replacement 19-144
Relay Inspection 19-144
Pulsers/Wheel Sensors
Inspection 19-145
Wheel Sensor Replacement 19-146

Special Tools

Ref. No.	Tool Number	Description	Qty	Page Reference
(1)	OTHAJ - SG00602	ALB Checker	1	$19-131$
(2)	OTPAZ-0010100	SCS Short Connector	1	$19-62$

(1)

(2)

A WARNING The accumulator contains high pressure nitrogen gas; do not puncture, expose to flame, or attempt to disassemble the accumulator or it may explode; severe personal injury may result.

Anti-lock Brake System (ABS)

Features/Construction

In a conventional brake system, if the brake pedal is depressed very hard, the wheels can lock before the vehicle comes to a stop. In such a case, the stability of the vehicle is reduced if the rear wheels are locked, and maneuverability of the vehicle is reduced if the front wheels are locked, creating an extremely unstable condition.
The Anti-lock Brake System (ABS) modulates the pressure of the brake fluid applied to each front caliper or both rear calipers, thereby preventing the locking of the wheels, whenever the wheels are likely to be locked due to hard braking. It then restores normal hydraulic pressure when there is no longer any possibility of wheel locking.
The ABS equipped on this car is compact, with its hydraulic control system incorporated into one modulator unit, It is a 3 -channel anti-lock brake system that has individual control of the front wheels and common control ("select Low") for the rear wheels. "Select Low" means that the rear wheel that would lock first (the one with the lowest resistance to lock-up) determines anti-lock brake system activation for both rear wheels.

PART NAME	MAJOR FUNCTION
Gear pulser	Attached to the rotating part of the wheel and detects the wheel speed together with the wheel sensor.
Wheel sensor	Generates pulse signal corresponding to the revolution of the gear pulser. ABS control unit Controls the working of the anti-lock brake system by performing calculations based on the signals from the individual wheel sensors and the individual switches. Modulator unit * Adjusts the hydraulic pressure applied to each caliper on the basis of the signals received from the ABS control unit. * Pump, accumulator, solenoid valves, pressure switch and pistons are integrated in the mod- ulator unit. Motor RelayControls the ABS pump motor's power supply according to the signal from the ABS control unit. Fail-safe relay Cuts off the solenoid valve ground circuit when the fail-safe device is at work.

Modulator Unit:

The modulator unit consists of the following sub-units. It adjusts the hydraulic pressure applied to each caliper on the basis of the signals received from the ABS control unit.

- ABS pump and motor: Supplies high-pressure brake fluid to control the ABS operation.
- Accumulator: Stores high-pressure brake fluid in it.
- Pressure switch: Detects the pressure in the accumulator and transmits signals to the ABS control unit.
- Solenoid valves: Switches the ABS high-pressure passage according to the signals from the ABS control unit.
- Pistons and related parts: Receives the high-pressure brake fluid, and controls pressure to the calipers accordingly.

Motor and pump:

As the motor rotates, it drives the plunger-type $A B S$ pump and raises the brake fluid pressure to approximately 25 MPa $\left(250 \mathrm{kgf} / \mathrm{cm}^{2}, 3,600 \mathrm{psi}\right)$. The eccentric bearing is attached to the motor shaft end; it contacts the plunger of the pump plunger. The motor shaft's rotational motion is transmitted to the reciprocating motion of the pump plunger.
When the plunger is pushed, the brake fluid in the plunger chamber is pressurized and fed to the accumulator, solenoid, and piston, via the check valve. When the pressure in the accumulator exceeds $34 \mathrm{MPa}\left(350 \mathrm{kgf} / \mathrm{cm}^{2}, 5,000 \mathrm{psi}\right)$, the relief valve opens to release the excess brake fluid pressure to the reservoir, thereby protecting the system.

(cont'd)

Anti-lock Brake System (ABS)

Features/Construction (cont'd)

Accumulator:

The high-pressure brake fluid discharged from the pump is fed to the solenoids and pistons, but the passages to the solenoids and pistons are normally closed. Consequently, the high-pressure brake fluid accumulates in the accumulator.
The accumulator consists of two chambers separated by a free piston; that is, the fluid chamber where the brake fluid is accumulated, and the chamber filled with highpressure nitrogen gas to maintain the fluid at a given pressure.
When the ABS operates, the constant high-pressure brake fluid in the accumulator is supplied to the piston.

Pressure switch:

The pressure switch monitors the pressure accumulation in the accumulator. When the pressure in the accumulator rises, the Bourdon tube in the pressure switch deforms outward, which in turn activates the microswitch by the force of the spring attached to the sensing lever. When the pressure in the accumulator drops due to $A B S$ operation, the Bourdon tube moves in the opposite direction, and the micro-switch is eventually turned off.
The ABS control unit detects the fluid pressure in the accumulator by the ON/OFF signals from the pressure switch.

GAS CHAMBER
(FILLED WITH NITROGEN GAS)

Piston/valve:

The piston/valve assembly consists of the piston, cut valve, and sleeve. There are four piston/valve assemblies in the modulator unit to control the brake fluid pressure to each caliper. The piston/valve assemblies for the rear brakes also serve as proportioning control valves to prevent the rear wheels from locking if the ABS malfunctions or when the ABS is not activated.

Solenoid valves:

The modulator unit opens and closes the inlet and outlet solenoid valves, and shifts the ABS high-pressure passage according to the signals from the ABS control unit. There are three solenoid valve assemblies, each containing an inlet and outlet valve, in the modulator unit; one for each front wheel, and one for both rear wheels. The inlet valves are normally open (open when to the coil is not energized), while the outlet valves are normally closed.

(cont'd)

Anti-lock Brake System (ABS)

Features/Construction (cont'd)

Wheel sensor:

The wheel sensor is a contactless type that detects the rotating speed of a wheel. It consists of a permanent magnet and coil. When the gear pulsers attached to the rotating parts of each wheel turn, the magnetic flux around the coil in the wheel sensor alternates, generating voltages with frequency in proportion to wheel rotating speed. These pulses are sent to the ABS control unit, and the ABS control unit identifies the wheel speed.

ABS control unit:

The ABS control unit consists of a main function, which controls the operation of the anti-lock brake system, and sub-function, which controls the pump motor and "self-diagnosis".
For safety, the main function consists of two systems, and the ABS control unit activates the solenoid valve only when the outputs of the two systems agree with each other.

- The main function section of the ABS control unit performs calculations on the basis of the signals from each wheel sensor, and controls the operation of the anti-lock brake system by activating the solenoid valves in the modulator unit for each front brake and for the two rear brakes. The ABS has individual control of the front wheels and common control ("Select Low") for the rear wheels. "Select Low" means that the rear wheel that would lock first (the one with the lowest resistance to lock-up) determines the ABS activation for both rear wheels.
- The sub-function section has the fail-safe function that monitors the system operation by inputting the brake switch, parking brake switch and pressure switch signals, and stops the anti-lock brake system when it detects an abnormality in the system. It also has a self-diagnosis function and the pump motor control function.

Pump motor control:

The ABS control unit monitors the brake fluid pressure in the accumulator by the pressure switch ON/OFF signals. The ABS control unit turns the pump on when the pressure in the accumulator drops, and stops the pump when the pressure rises to the specified value.
If the pressure does not reach the specified value after the motor has operated continuously for a specified period, the ABS control unit stops the motor and activates the ABS indicator light.

Self-diagnosis function:

The self-diagnosis function, provided in the sub-function of the ABS control unit, monitors the main system functions by constantly transmitting the data between the two Central Processing Units (CPUs). When an abnormality is detected, the $A B S$ control unit turns the $A B S$ indicator light on and stops the $A B S$, although the basic brake system continues to operate normally.
When the ABS control unit detects an abnormality with the ABS and turns the ABS indicator light on, the diagnostic trouble code (DTC), which shows the problem part or unit, is recorded in the control unit. The DTC can be read by the blinking frequency of the ABS indicator light.

Fail-safe function:

When an abnormality is detected in the ABS control system self-diagnosis, the solenoid operations are suspended by turning off the two fail-safe relays. This disconnects the ground circuits of all the solenoid valves to prevent ABS operation. Under these conditions, the braking system functions just as an ordinary one.

Fail-safe relay:

The fail-safe relay's terminal side contact is normally open. When there is continuity at the relay coil, the failsafe relay is closed, thereby connecting the ground cir- . cuit to the solenoid valve.

ABS indicator light:

The ABS control unit turns the ABS indicator light on when one or more of the following abnormalities are detected. This is only a partial list.

- When the operating time of the motor in the power unit exceeds the specified period.
- When vehicle running time exceeds 30 seconds without releasing the parking brake.
- When absence of speed signals from any of the four wheel sensors is detected.
- When the activation time of all solenoids exceeds a given time, or an open circuit is detected in the solenoid system.
- When solenoid output is not detected in the simulated ABS operation when the engine is started or the vehicle is driven. To check the indicator light bulb, the light is activated when the ignition switch is first turned on. The light goes off after the engine is started if there is no abnormality in the system.

Anti-lock Brake System (ABS)

Operation

The following description of ABS operation is for one of the front wheels. The ABS operation for the remaining wheels is the same.

Ordinary braking function:

In ordinary brake operations when the ABS is not functioning, the solenoid outlet valve is closed and the inlet valve is open, the brake fluid pressure is transmitted to the back-pressure chamber between the sleeve and piston, and the cut valve is pushed by the piston. As the high-pressure is also transmitted to chamber A between the sleeve and cylinder, the sleeve pushes the cut valve seat toward the cut valve, too.
Under there conditions, the cut valve is kept open, and the hydraulic pressure from the master cylinder is transmitted to the caliper just like an ordinary brake system.

When $A B S$ is functioning:

- Control by reducing caliper fluid pressure:

When brake inputs (force exerted on brake pedal) are excessively large, and a possibility of wheel locking occurs, the control unit operates the solenoid valve, closing the inlet valve and opening the outlet valve. As a result, high pressure in the back-pressure chamber is released to the reservoir, and the piston is pushed by the caliper fluid pressure toward the backpressure chamber. However, the cut valve seat is kept in the pushed position because high pressure is transmitted to chamber A. As the piston moves, the cut valve moves and shuts the flow from the master cylinder to the caliper, the volume of the pressure reduction chamber connected to the caliper increases, and the fluid pressure in the caliper declines, relieving the braking force. The wheel speed is therefore restored, preventing the wheel from locking.

- Control by increasing caliper fluid pressure:

When the ABS control unit senses that the caliper fluid pressure declined, and the wheel speed is restored, it signals the solenoid inlet valve to open and the solenoid outlet valve to close.
As a result, the high pressure brake fluid is transmitted to the back-pressure chamber, and the piston is pushed toward the pressure reduction chamber, increasing the caliper fluid pressure, and thereby the braking force again.
When the master cylinder side's fluid pressure is low, the cut valve is slightly opened as the piston moves, and the caliper fluid pressure is transmitted to the master cylinder. The kickback is felt on the brake pedal this time. When the force depressing the brake pedal is relieved while the ABS is functioning, the cut valve is opened and the pressure in the pressure reduction chamber is returned to the master cylinder side. As a result, the caliper fluid pressure is relieved.

When high-pressure declines:

The ABS control unit monitors the pressure in the highpressure passage by means of the pressure switch signals. The ABS control unit turns the ABS indicator light on, and stops the ABS when it detects an excessive drop in pressure in the high-pressure passage.
When the pressure declined due to leakage from the passage, for example, the pressure in chamber A declines, too, and the cut valve seat and sleeve return toward chamber A.
As a result, the valve at the sleeve end closes, which hydraulically locks the back-pressure chamber and blocks the piston movement. Because the cut valve opens as the cut valve seat moves, this connects the brake fluid passage between the master cylinder and caliper for ordinary brake operation.

MASTER CYLINDER

HYDRAULICALLY LOCKED BACK PRESSURE CHAMBER

Anti-lock Brake System (ABS)

Operation (cont'd)

Proportioning Control Valve Function:

The modulators for the rear brakes serve as proportioning control valves to prevent the rear wheels from locking if the ABS malfunctions or when the ABS is not activated. When this function is not provided, the hydraulic pressure from the master cylinder and the hydraulic pressure to the rear brake system are equal.
If the fluid pressure is transmitted to the rear brakes at the same rate as the front brakes, the rear wheels will lock first because the rear axle load becomes lighter when the brakes are applied.
To prevent the rear wheels from locking, the proportioning control valve function changes the distribution rate of the fluid pressure to the rear wheels when the pressure in the rear brake system exceeds the given value of the fluid pressure from the master cylinder. The fluid pressure point where the distribution rate changes is

〈FUNCTION PERFORMANCE CURVE〉
 called the turning point.

The cut valve seat in the rear brake system has a shoulder between sections A and B. Section A, where pressure from the master cylinder is applied, has a smaller diameter than section B, where pressure from the rear brake caliper is applied. This design provides the proportioning control valve function as follows.

1. When the fluid pressure from the master cylinder is below the turning point, the cut valve seat is pushed by the spring force and the cut valve is open. Therefore, the fluid pressure from the master cylinder is transmitted to the rear brake caliper side. Under these conditions, fluid pressure from the master cylinder is equal to the pressure to the rear brake caliper, but because of the diameter difference between sections A and B, the force on the cut valve overcomes the spring force, moving the cut valve seat toward the cut valve slowly.
2. When the fluid pressure to the rear brake caliper reaches the turning point, the cut valve is closed by the cut valve seat, blocking the fluid passage between the master cylinder side and rear wheel cylinder side.
3. When the fluid from the master cylinder exceeds the turning point, the fluid pressure from the master cylinder rises, while the pressure to the rear brake caliper remains at the turning point value. As a result, the cut valve seat moves away from the cut valve and the cut valve opens. The passage between the master cylinder and caliper opens momentarily, but it is blocked again because the fluid pressure to the brake caliper rises, and the cut valve seat moves to close the cut valve. As described above, when the pressure in the master cylinder is above the turning point, the cut valve seat reduces the pressure in the rear brake caliper to the prescribed amount by repeating this process.

SECTION WHERE PRESSURE FROM MASTER CYLINDER IS APPLIED._ CUT VALVE SEAT

GAUGE ASSEMBLY

UNDER-DASH FUSE/RELAY BOX

BACK-UP LIGHTS/METER LIGHTS (10 A) FUSE

UNDER-HOOD FUSE/RELAY BOX

UNDER-HOOD ABS FUSE/RELAY BOX

ABS UNIT (10 A) FUSE

Circuit Diagram

19-56

ABS Control Unit Terminal Arrangement

26P CONNECTOR

Terminal number	Wire color	Terminal name	Description	Signal				
1	RED/BLU	FL-IN (Front-left inlet solenoid valve)	Drives left-front inlet solenoid valve.	$\stackrel{\text { © }}{\stackrel{\circ}{\sigma}}$	ON	$\frac{7}{0}$ 0 0 8	ON	0 V
2	RED/BLK	FR-IN (Front-right	Drives right-front inlet solenoid valve.				OFF	12 V
	RED/BLK	inlet solenoid valve)				0 V		
3	RED/WHT	R-IN (Rear inlet solenoid valve)	Drives rear inlet solenoid valve.		$\left\|\begin{array}{c}\text { Ignition } \\ \text { Switch ON }\end{array}\right\|$			
5	WHT/BLU	CHG (Charge)	Detects engine operation. (Activates ABS control unit with engine ON.)	Engine running: 12 V Engine stopped: 0 V				
10	RED	SCS (Service check signal)	Detects service check connector signal (diagnostic trouble code indication).	Connected: 0 V Disconnected: 5 V				
11	GRN/RED	PARK (Parking brake)	Detects parking brake switch signal. (ABS indicator light is turned on when driving with signal ON.)	$\begin{aligned} & \text { ON: } 0 \mathrm{~V} \\ & \text { OFF: } 12 \mathrm{~V} \end{aligned}$				
12	BLK	FR-GND (Front-right solenoid valve ground)	Ground for the right-front inlet and outlet solenoid valves.					
13	WHT/BLK	+B2 (+B2 power source)	- Power source for ABS control unit control circuit. - Power source for diagnostic trouble code memory.	12 V at all times				
14	YEL/BLU	FL-OUT (Front-left outlet solenoid)	Drives left-front outlet solenoid valve.	.	ON		ON	0 V
15	YEL/BLK	FR-OUT (Front-right outlet solenoid valve)	Drives right-front outlet solenoid valve.		OFF		OFF	12 V
16	YEL/WHT	R-OUT (Rear outlet solenoid valve)	Drives rear outlet solenoid valve.		$\binom{\text { Ignition }}{\text { Switch ON }}$	0 V		
17	GRN	MCK (Motor check)	Detects pump motor drive signal. (ABS indicator light is turned on if there is open or short circuit.)	Motor		ON: 12 V OFF: 0 V (Open): 12 V		
19	YEL	P-SW (Pressure switch)	Detects pressure switch signal. (Switch turns ON at approx. 22,000 $\mathrm{kPa}, 220 \mathrm{kgf} / \mathrm{cm}^{2}$, 3,100 psi and pump motor is stopped.)	$\begin{aligned} & \text { ON: } 0 \mathrm{~V} \\ & \text { OFF: } 12 \mathrm{~V} \end{aligned}$				
24	BLU/WHT	WARN 2 (Warning lamp)	Drives ABS indicator light. (Shuts off the indicator light ground circuit inside the ABS control unit to turn off the light when the system is normal.)	Light ON: 0 V Light OFF: 12 V				
25	BLK	FL-GND (Front-left solenoid valve ground)	Ground for the left-front inlet and outlet solenoid valves.					
26	BLK	L-GND (Logic ground)	Ground for the ABS control unit control circuits.					

22P CONNECTOR
TERMINAL SIDE OF MALE TERMINALS
NOTE: Standard voltage is 12 V .

Terminal number	Wire color	Terminal name	Description	Signal	
1	YEL/GRN	FSR (Fail-safe relay)	Drives fail-safe relay. (Fail-safe relay is turned OFF to shut off the power source to the solenoid when problem occurs.)	ON: 12 V OFF: 0 V	
2	BRN	FLW (-) (Front-left wheel sensor, negative)	Detects left-front wheel speed. (Ground level)	No. $2-3$ terminals	When the wheel is turned at 1 turn/second: 70 mV or above on digital tester (AC range) (Reference) $200 \mathrm{mVP}-\mathrm{P}$ or above on oscilloscope
3	GRN/BLU	FLW (+) (Front-left wheel sensor, positive)	Detects left-front wheel speed.		
4	GRN	FRW (-) (Front-right wheel sensor, negative)	Detects right-front wheel speed. (Ground level)	No. 4-5 terminals	
5	GRN/BLK	FRW (+) (Front-right wheel sensor, positive)	Detects right-front wheel speed.		
10	BLK	R-GND (Rear solenoid valve ground)	Ground for rear inlet and outlet solenoid valves.		
11	YEL/BLK	IG2 (IG2 power source)	Detects ignition switch IG2 signal. (When IG2 is input, + B2 power source is switched to the power source for the ABS control unit (Vcc). Also IG2 monitors P-SW and MCK lines, and drives fail-safe relay.)	ON: 12 V OFF: 0 V	
12	GRN/WHT	STOP (Foot brake)	Detects brake switch signal. (Prevents unnecessary ABS operation when the brake pedal is not depressed)	ON: 12 V OFF: 0 V	
13	LT BLU	RLW (+) (Rear-left wheel sensor, positive)	Detects left-rear wheel speed. (Ground level)	No. 13-14 terminals	When the wheel is turned at 1 turn/second: 70 mV or above on digital tester (AC range) (Reference) $200 \mathrm{mVP}-\mathrm{P}$ or above on oscilloscope
14	GRY	RLW (-) (Rear-left wheel sensor, negative)	Detects left-rear wheel speed. (Ground level)		
15	GRN/YEL	RRW (+) (Rear-right wheel sensor, positive)	Detects right-rear wheel speed.	No. 15-16 terminals	
16	BLU/YEL	RRW (-) (Rear-right wheel sensor, negative)	Detects right-rear wheel speed. (Ground level)		
18	BLK/ORN	COM (-) (Common negative)	Ground for ALB checker when it is connected.		
20	BLUNHT	WARN 1 (Warning lamp)	Drives ABS indicator light. (Shuts off the indicator light ground circuit inside the ABS control unit to turn off the light when the system is normal.)	Light ON: Light OFF:	
21	YEL/RED	PMR (Pump motor relay)	Drives pump motor relay. (Pump motor relay is turned ON to drive the pump motor when P-SW OFF signal is detected.)	ON: OV OFF: 12 V	
22	BLK	L-GND (Logic ground)	Ground for the ABS control unit control circuits.		

Troubleshooting Precautions

ABS Indicator Light:

The ABS indicator light comes on for three seconds and then goes off when the control unit detects no problem during the initial diagnosis right after the engine starts.
However, the ABS indicator light can stay on for up to 40 seconds when the control unit starts to check for pump overrun, etc. during the initial diagnosis.
The ABS indicator light comes on, and the ABS control unit memorizes the diagnostic trouble code (DTC) under certain conditions.

- The parking brake is applied for more than 30 seconds while the vehicle is being driven. (DTC 2-1)
- The transmission downshifted excessively. (DTC 4-1, 4-2)
- The vehicle loses traction, and the front wheels spin for more than one minute when starting from a stuck condition on a muddy, snowly, or sandy road. (DTC 4-8)
- The tires adhesion is lost due to excessive cornering speed. (DTC 5,5-4, 5-8)
- The vehicle is driven on an extremely rough road. (DTC 8-1)
- The vehicle is interfered by strong radio waves (noise), for example, illegal radio, etc. (DTC 8-2)

NOTE: If there is any trouble in the system, the ABS indicator light turns on during driving.

Diagnostic Trouble Code (DTC):

- When the control unit detects a problem and the ABS indicator light comes on, the control unit memorizes the DTC.
- The control unit has three memory registers. When a problem occurs, the control unit stores the DTC in the first memory register. If another problem occurs, or the same problem occurs again, the control unit moves the first DTC to the next memory register, and stores the second DTC in the first register. If there's a third problem occurrence, the two existing DTCs are moved up one register, and the third DTC is stored in the first register. If problems continue to occur, the oldest problem is moved out of the last register and lost, and the most recent problem is stored in the first register. When the same problem occurs three times, the same DTC is stored in all memory registers.
- The most recent DTC is indicated first, and the oldest DTC is indicated last.
- The DTCs are erased from the control unit when the ABS control unit +B2 power supply or connector is disconnected.
- The control unit's memory can be erased by disconnecting the ABS B2 fuse for more than three seconds.

Self-diagnosis:

- There are three self-diagnosises described below.
(1) Initial diagnosis: Performed right after the engine starts until the ABS indicator light goes off.
(2) Regular diagnosis: Continuously performed (under some conditions) after the ABS indicator light goes off until the engine stops.
(3) Individual part/system diagnosis: Diagnosis about a specific part/system under its operating conditions.
- The CPU (central processing unit) controls the following when it detects a problem during self-diagnosis:
(1) Turns the ABS indicator light ON.
(2) Turns the front and rear fail-safe relays off.
(3) Stops the ABS control.
(4) Stops the ABS pump. (The pump may work under some conditions.)

Kickback and Pump Operation:

- When the engine is started, the ABS control unit begins the initial diagnosis and operates the solenoid valve one time. The kickback may be felt when the brake pedal is depressed.
- When the ABS control unit detects the pressure switch OFF signal during the initial diagnosis, it operates the pump motor, and performs the pump motor over-run diagnosis and pump motor diagnosis. Therefore, there are two cases where the pump motor operates or does not operate after the engine is started.
- Normally, after the initial diagnosis, the pump motor operates based on the pressure switch signal, regardless of the vehicle speed.

Troubleshooting:

- When two or three DTCs are stored in the control unit, perform troubleshooting for the DTC that appears first.
- When a customer's reported problem cannot be verified on the car, ask the customer about the conditions when the ABS indicator light came ON, and test drive the car under those conditions, if possible. When the ABS indicator light does not come ON during the test, check for loose terminals and check by shaking the harnesses and connectors while following the flowchart.
- The connector terminal numbers are viewed from the wire side for the female terminals, and from the terminal side for the male terminals.

Diagnostic Trouble Code (DTC) Indication

1. Connect the SCS short connector to the service check connector under the glove box.

2. Turn the ignition switch $O N$, but do not start the engine.
3. Record the blinking frequency of the $A B S$ indicator light. The blinking frequency indicates the diagnostic trouble code (DTC).

NOTE: Check the DTC carefully and record it. The memory of the DTC is erased if the connector is disconnected from the ABS control unit.

GAUGE ASSEMBLY

DTC Indication Pattern:

- Turn the ignition switch $O N$. The ABS indicator light comes on for two seconds to check the bulb.
- The ABS control unit can memorize three DTCs (one, two or three problems).
- If you miscount the blinking frequency or if you recheck the blinking frequency, turn the ignition switch OFF then turn it ON to cycle the ABS indicator light again.

4. Remove the SCS short connector.

NOTE: The Malfunction Indicator Lamp (MIL) will stay on after the engine is started if the SCS short connector is connected.
5. Remove the ABS B2 (15 A) fuse in the under-hood ABS fuse/relay box for at least three seconds to erase the ABS control unit's memory.

Diagnostic Troubleshooting Code (DTC)
 Symptom-to-System Chart

$\begin{array}{\|c} \hline \text { DIAGNOSTIC } \\ \text { TROBLE } \\ \text { CODE } \\ \text { IDTC) } \\ \hline \end{array}$		(iAGNOSIS/	$\xrightarrow{\text { diagnostic }}$			PROBLEM LOCATON	probable cause
$\underset{\text { Main }}{\text { COOE }}$	${ }_{\text {SUBE }}^{\text {CODE }}$						
-		$\begin{aligned} & \text { ABS indicator } \\ & \text { light does not } \\ & \text { come on when } \\ & \text { ignition switch } \\ & \text { is turned ON } \end{aligned}$					Blown BACK-UP LIGHTS/METER LIGHTS (10 A) fuse - Open circuit between the BACK-UP LIGHTS/METER LIGHTS (10 A) fuse and ABS indicator light - Blown ABS indicator light bulb Open circuit between the ABS indicator light and ABS control unit Open circuit between the ABS control unit and body ground Poor body ground Faulty ABS control Faulty ABS control unit
		ABS indicator light doses not go off after engine is started					 - unit. iircuit between the battery and under-hood ABS fuseferelay box \therefore - Open Circuit inside the under-hood ABS fusefrelay box - Open cirruit inside the under-hood ABS fusefrelay box Opor - troulvit : Faultr altemator O - Shorl to toby groenn in the WARN circuit between the ABS indicator - ight and ABS control unit
(1)	-	$\underset{\substack{\text { ABS pump } \\ \text { motor overun }}}{\text { and }}$	-	-			- Pressure switch stuck OFF Open circuit between the pressure switch and ABS control unit Open circuit in the P-SW circuit between the pressure switch and body ground, or a poor ground - ground, or a poor ground Leaking outlet valve - ABS brake fluid leakage
	(2)	Pump motor	\bigcirc		-		 - Open circuit ors short to - Fauty pump motor reay : under-hood bis tuertelay bot and ABS oontrol unit - Blown Abs Moto Bion Aflise - Open fircuit or shor to toody yround in the motor dive circuit and MCK - cirivin inside the under-hood ABr fuselnelay box - Under-hood ABs thaseralay box and ABS contro unit - tiselfeleay box and pump motor - Poen ciricuit between the pump motor and body ground or poor ground
	(3)	${ }_{\text {Heamage }}^{\substack{\text { Hiag pressure } \\ \text { leake }}}$			\bigcirc		- Leaking outlet valve - Leaking relief valve
	(4)	${ }_{\substack{\text { Pressure } \\ \text { switch }}}$	\bigcirc				- Short to body ground between the ABS control unit and pressure switch - Pressure switch stuck ON
	(6)	$\underbrace{\text { system }}_{\text {High pressure }}$	-				- Accumulator gas leakage - Rear outlet solenoid valve late to close Changed pressure switch set pressure
(3)	(1)	Parking brake			\bigcirc		- and brake system light : Blown brake systen ight bub - Parking troke tes switch stuck on - Short to body ground between the brake system light and brake fluid level switch - - Revilty switch ABS control unit

Diagnostic Troubleshooting Code (DTC)

Symptom-to-System Chart (cont'd)

$\begin{array}{\|c} \hline \text { DIAGNOSTIC } \\ \text { TROUBLE } \\ \text { CODE } \\ \text { IDTC) } \\ \hline \end{array}$		DIAGNOSIS/ SYMPTOM	DIAGNOSTIC PERIOD			PROBLEM LOCATION	PROBABLE CAUSE
$\begin{aligned} & \text { MAIN } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { SUB- } \\ & \text { CODE } \end{aligned}$						
(3)	(1)	Pulser			\bigcirc	Rightfront	- Chipped pulser gear - Improperly installed wheel sensor
	(2)					Leftfront	
	(4)					Right rear	
	(8)					Leftrear	
	-12)	Different diameter tire			\bigcirc		- Different diameter tire installed
(4)	(1)	Wheel sensor		\bigcirc	\bigcirc	Rightfront	- Open circuit, internal short or short to body ground in the wheel sensor - Open circuit or short to body ground in the positive (t) wire between the wheel sensor and ABS control unit - Open circuit or short to body ground in the negative (-) wire between the wheel sensor and ABS control unit - Positive (+) wire shorted to the negative (-) wire between the wheel sensor and ABS control unit - Loose connector or poor contact of terminals - Improper wheel sensor air gap - Faulty ABS control unit - Missing pulser - Modulator does not decrease pressure properly
	(2)					Leftfront	
	(4)					Rightrear	
	(8)					Left- rear	
(5)	-	Rear wheel lock			\bigcirc	Right/ Left	- Open circuit, internal short or short to body ground in the wheel sensor system - Rear brake drag - Modulator does not decrease pressure properly - Faulty ABS control unit
						Right	
	(8)					Left	
(6)	-	Fail-safe relay	\bigcirc			Front/ rear	- Short to power in the relay drive circuit between the fail-safe relay and ABS control unit - Faulty relay drive transistor (ON) in the ABS control unit - Fail-safe relay stuck ON - Short to power in the solenoid drive circuits between the fail-safe relay and $A B S$ control unit
	(1)					Front	
	(4)					Rear	
(7)	(1)	Solenoid	\bigcirc		\bigcirc	Rightfront	- Fail-safe relay stuck OFF - Open circuit in the solenoid drive circuit between the under-hood ABS fuse/relay box and ABS control unit - Short to body ground in the solenoid drive circuit between the solenoid and ABS control unit - Faulty solenoid drive transistor (ON) in the ABS control unit - Short to power in the solenoid drive circuit between the solenoid and ABS control unit - Faulty solenoid drive transistor (OFF) in the ABS control unit - Short to power in the drive circuit inside the solenoid - Short to the outlet circuit in the inlet circuit between the solenoid and ABS control unit
	(2)					Leftfront	
	(4)					Rear	
(8)	(1)	ABS function			0		- Wheel sensor signal disappears at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h})$ or less - Faulty ABS control unit
	(2)	CPU comparison	\bigcirc		\bigcirc		- Faulty ABS control unit
	(4)	IC $\left[\begin{array}{l}\text { Integrated } \\ \text { Circuit }\end{array}\right]$	\bigcirc		\bigcirc		- Faulty ABS control unit

PROBABLE CAUSE WHEN SYMPTOM DOES NOT REAPPEAR	DESCRIPTION OF DIAGNOSIS	REFER TO PAGE
- Intermittent interruption in the wheel sensor	- The ABS indicator light is turned on when the wheel sensor signal is periodically missing during driving.	
		19-89
(\cdot No problem)	- The ABS indicator light may be turned on while driving when one, two or three different diameter tires are installed. This diagnosis is not performed when the parking brake switch is ON.	19-89
- Intermittent interruption in the wheel sensor - Wheel spin of both front wheels conly for DTC 4-8) - (No problem) - The transmission downshifted excessively (only for DTC 4-1 and 4-2)-(No problem)	- The ABS indicator light is turned on when the wheel sensor signal is missing at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h})$ or more. This diagnosis is not performed when the parking brake switch is ON.	19-90
		19-93
		19-96
		19-99
- Intermittent interruption in the wheel sensor - Wheel spin by operating the parking brake while the parking brake switch is stuck OFF - Car spun-out-(No problem)	- The ABS indicator light is turned on when either or both rear wheels lock and the wheel sensor signal is missing during driving. This diagnosis is not performed when the parking brake switch is ON.	19-102
	- The ABS indicator light is turned on when battery voltage is detected at the solenoid terminal before the fail-safe relays are turned on at the initial diagnosis.	19-104
		19-106
		19-109
- Intermittent interruption in the solenoid valve drive circuit - Intermittent interruption in the solenoid valve ground circuit - Intermittent interruption in the failsafe relay circuit	- Each solenoid valve is momentarily activated at the initial diagnosis and when the car starts off. The ABS indicator light is turned on when battery voltage is detected at the solenoid terminal. - The ABS indicator light is turned on when OV is detected at the solenoid terminal while the solenoid OFF signal is detected at the regular diagnosis.	19-111
		19-122
- Intermittent interruption in the wheel sensor - Rough road driving-(No problem)	- The ABS indicator light is turned on when the ABS functions continuously.	19-129
(-No problem)	- The ABS indicator light is turned on when there is a difference between the CPU data.	19-130
(*No problem)	- The ABS indicator light is turned on when there is a abnormality in the IC at the regular diagnosis.	19-130

Troubleshooting

ABS Indicator Light Does Not Come On

The ABS indicator light does not come on when the ignition switch is turned ON.
When the ignition switch is turned ON, the ABS indicator light drive transistor in the ABS control unit is activated by selfbias and turns the ABS indicator light on.
Possible causes for an ABS indicator light that does not come on:

- Blown BACK-UP LIGHTS/METER LIGHTS (10 A) fuse
- Open circuit between the BACK-UP LIGHTS/METER LIGHTS (10 A) fuse and ABS indicator light.
- Blown ABS indicator light bulb
- Open circuit between the ABS indicator light and ABS control unit
- Open circuit between the ABS control unit and body ground
- Poor body ground
- Faulty ABS control unit

YES

GAUGE ASSEMBLY 16P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 22P CONNECTOR

ABS CONTROL UNIT 26P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

- Repair open in the two BLK wires between the ABS control unit and body ground.
- Repair poor ground (G406)

Check for loose ABS control unit connectors. If necessary, substitute a known-good ABS control unit and recheck.

Troubleshooting

ABS Indicator Light Does Not Go Off

The ABS indicator light does not go off after the engine is started
When no problem is found during the initial diagnosis, the ABS control unit turns the ABS indicator light drive transistor off to turn the ABS indicator light off.
Possible causes for an ABS indicator light that does not go off, but no Diagnostic Trouble Code (DTC) is indicated:

- Blown R/C MIRROR (7.5 A) fuse
- Open circuit between the under-dash fuse/relay box and ABS control unit
- Open circuit between the battery and under-hood ABS fuse/relay box
- Blown ABS B2 (15 A) fuse
- Open circuit inside the under-hood ABS fuse/relay box
- Open circuit between the under-hood ABS fuse/relay box and ABS control unit
- Faulty alternator
- Open circuit between the alternator and ABS control unit
- Short to body ground in the WARN circuit between the ABS indicator light and ABS control unit
- Faulty ABS control unit

ABS CONTROL UNIT 26P CONNECTOR +B2 (WHT/BLK)

WIRE SIDE OF FEMALE TERMINALS

NOTE: The WARN line is checked in this step with the ABS control unit connectors disconnected.

Repair short to body ground in the BLU/WHT wire between the ABS indicator light and ABS control unit.
(To page 19-72)
(cont'd)

Troubleshooting

ABS Indicator Light Does Not Go Off (cont'd)

ABS Pump Motor Over-run

Diagnostic Trouble Code (DTC) 1: ABS Pump Motor Over-run

NOTE: The ABS indicator light comes on twice; once for two seconds during the bulb check, then again, indicating DTC 1.
The ABS control unit monitors the pump motor relay drive signal during the initial diagnosis and individual diagnosis when the $A B S$ is not functioning.
When the ABS control unit detects the drive signal for 40 seconds, it turns the pump motor relay off and keeps the ABS indicator light on. When the ABS control unit detects the drive signal for 40 seconds after the ABS indicator light went off, the control unit turns the ABS indicator light on again.
Possible causes:

- Pressure switch stuck OFF
- Open circuit between the pressure switch and ABS control unit
- Open circuit in the P-SW circuit between the pressure switch and body ground, or a poor ground
- Drop in pump discharge volume
- Leaking outlet valve
- Leaking relief valve
- Brake fluid leakage on the ABS operation system
- Faulty ABS control unit

(cont'd)

Troubleshooting

ABS Pump Motor Over-run (cont'd)

(From page 19-73)

Turn the ignition switch OFF.

Disconnect the modulator unit 14 P connector.

Replace the modulator unit.
Pressure switch stuck OFF

- Drop in pump discharge volume
- Leaking outlet valve
- Leaking releif valve

Turn the ignition switch ON.

Measure the voltage between the modulator unit 14 P connector No. 4 (YEL) terminal and body ground.

Repair open in the BLK wire between the pressure switch and body ground, or poor ground.

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

MODULATOR UNIT 14P CONNECTOR

TERMINAL SIDE OF MALE TERMINALS

ABS CONTROL UNIT 26P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS Pump Motor

Diagnostic Trouble Code (DTC) 1-2: ABS Pump Motor Diagnosis

The ABS control unit checks the conditions at the pump motor relay drive (PMR) terminal and motor check (MCK) terminal during the initial diagnosis and regular diagnosis.
When the ABS control unit detects the following conditions during the diagnosis, it keeps the ABS indicator light on. When the following conditions are detected after the ABS indicator light goes off, the ABS control unit turns the ABS indicator light on again.

- Battery voltage at the MCK terminal with an OFF signal at the PMR terminal
- 0 V at the MCK terminal with an ON signal at the PMR terminal

Possible causes:

- Open circuit or short to body ground between the R/C MIRROR (7.5 A) fuse and under-hood ABS fuse/relay box
- Open circuit or short to body ground in the PMR circuit inside the under-hood ABS fuse/relay box
- Faulty pump motor relay
- Open circuit or short to body ground in the PMR circuit between the under-hood ABS fuse/relay box and ABS control unit
- Open circuit between the battery and under-hood ABS fuse/relay box
- Blown ABS MOTOR (40 A) fuse
- Blown ABS UNIT (10 A) fuse
- Open circuit or short to body ground in the motor drive circuit and MCK circuit inside the under-hood ABS fuse/relay box
- Open circuit or short to body ground in the MCK circuit between the under-hood ABS fuse/relay box and ABS control unit
- Open circuit or short to body ground between the under-hood ABS fuse/relay box and pump motor
- Faulty pump motor
- Open circuit between the pump motor and body ground or poor ground
- Faulty ABS control unit

Troubleshooting

ABS Pump Motor (cont'd)

(From page 19-76)

UNDER-HOOD ABS FUSE/RELAY BOX 3P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

UNDER-HOOD ABS FUSE/RELAY BOX 3P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Repair open in the YEL/BLK wire between the R/C MIRROR (7.5 A) fuse in the under-dash fuse/relay box and the under-hood ABS fuse/ relay box.
(To page 19-80)
To short to body ground check of the ABS pump motor relay coil circuit

Reconnect the connectors properly, bleed high pressure fluid and start the engine. If DTC $\mathbf{1 - 2}$ is stored again, replace the ABS control unit.

NOTE: Add the brake fluid if the fluid level is lower than the MIN line.

NOTE: Open circuit in the ABS pump motor relay coil circuit is checked beginning with this step.

NOTE: The ABS pump motor relay coil circuit is checked beginning with this step.

Troubleshooting

ABS Pump Motor (cont'd)

(From page 19-76)
UNDER-HOOD ABS FUSE/RELAY BOX

UNDER-HOOD ABS FUSE/RELAY BOX 4P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 26P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS
(cont'd)

Troubleshooting

ABS Pump Motor (cont'd)

UNDER-HOOD ABS FUSE/RELAY BOX

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

High Pressure Leakage

Diagnostic Trouble Code (DTC) 1-3: High Pressure Leakage Diagnosis

The ABS control unit counts the number of times that the $A B S$ pump motor operates and stops during regular diagnosis. When the ABS pump motor repeatedly operates and stops, the ABS control unit determines that the high pressure system is leaking and turns the ABS indicator light on.
This count is reset when the ABS functions.
Possible causes:

- Leaking outlet valve
- Leaking relief valve
- Poor contact in pressure switch circuit

Troubleshooting

High Pressure Leakage (cont'd)

After 30 minutes, check for conti nuity between the modulator unit 14 P connector No. 4 (YEL) and No. 11 (BLK) terminals.

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Intermittent failure, system is OK at this time.
Check for loose connectors and terminals in the pressure switch circuit.

Pressure Switch

Diagnostic Trouble Code (DTC) 1-4: Pressure Switch Diagnosis

The ABS control unit momentarily activates the outlet solenoid valve and counts the number of times that the pressure switch signal is ON during the initial diagnosis.
When the ABS control unit does not detect the pressure switch OFF signal at all when the engine is started and stopped repeatedly, it keeps the ABS indicator light on. The count of the pressure switch ON signals is reset when the ABS control unit detects the pressure switch OFF signal.
Possible causes:

- Short to body ground between the ABS control unit and pressure switch
- Pressure switch stuck ON
- Faulty ABS control unit

> -With engine running, ABS indicator light is ON.
> - With the SCS short connector connected (see page 19-62), DTC $1-4$ is indicated.

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 26P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Troubleshooting

High Pressure System

Diagnostic Trouble Code (DTC) 1-8: High Pressure System Diagnosis

When the ABS control unit detects the pressure switch OFF signal during the initial diagnosis, it drives the ABS pump motor until the pressure switch turns ON. Then, it momentarily activates the outlet solenoid valve and monitors the pressure switch signal.
The ABS control unit keeps the ABS indicator light on if it detects the pressure switch OFF signal at this time.
Possible causes:

- Accumulator gas leakage
- Changed relief valve set pressure
- Rear outlet solenoid valve late to close
- Changed pressure switch set pressure

Parking Brake

Diagnostic Trouble Code (DTC) 2-1: Parking Brake Diagnosis

The ABS control unit monitors the parking brake signal during the regular diagnosis (during driving). It turns the ABS indicator light on if it detects the parking brake ON signal for 30 seconds.
Possible causes:

- Driving with the parking brake applied
- Low fluid level in the master cylinder reservoir
- Open circuit between the BACK-UP LIGHTS/METER LIGHTS (10 A) fuse and brake system light
- Blown brake system light bulb
- Open circuit or short to body ground between the brake system light and ABS control unit
- Parking brake switch stuck ON
- Short to body ground between the brake system light and parking brake switch
- Brake fluid level switch stuck ON
- Short to body ground between the brake system light and brake fluid level switch
- Faulty ABS control unit

Troubleshooting

Parking Brake (cont'd)

(To page 19-88)

Troubleshooting

Parking Brake (cont'd)

Pulser/Different Diameter Tire

Diagnostic Trouble Code (DTC) 3-1 to 3-8: Pulser Diagnosis

The ABS control unit monitors the wheel sensor signals during the regular diagnosis (during driving).
It turns the ABS indicator light on if it detects a periodic change in the wheel sensor signal of each wheel caused by a chipped pulser gear, etc.
Possible causes:

- Chipped pulser gear
- Improperly installed wheel sensor

DTC	Pulser				
	Right-front	Left-front	Right-rear	Left-rear	
3	1	0			
	2		0		
	4			0	0

Diagnostic Trouble Code (DTC) 3-12: Different Diameter Tire Diagnosis

The ABS control unit detects the wheel sensor signal speed during the regular diagnosis (during driving).
This diagnosis is not performed when the parking brake switch signal is ON.
The ABS control unit may turn the ABS indicator light on when one or more different diameter tires are installed.

Troubleshooting

Right-front Wheel Sensor

Diagnostic Trouble Code (DTC) 4-1: Right-front Wheel Sensor Diagnosis

The ABS control unit monitors the wheel sensor signal during the regular diagnosis (at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h}$) or more). This diagnosis is not performed when the parking brake signal is ON.
The ABS control unit turns the ABS indicator light on if it detects that there is no wheel sensor signal from the right-front wheel.
Possible causes:

- Open circuit, internal short or short to body ground in the right-front wheel sensor
- Open circuit or short to body ground in the positive (+) wire between the right-front wheel sensor and ABS control unit
- Open circuit or short to body ground in the negative (-) wire between the right-front wheel sensor and ABS control unit
- Positive (+) wire shorted to the negative (-) wire between the right-front wheel sensor and ABS control unit
- Loose connector or poor contact of terminals
- Improper right-front wheel sensor air gap
- Faulty ABS control unit
- Missing right-front pulser
- Modulator does not decrease pressure properly
- Wheel lock by downshift

(From page 19-90)

ABS CONTROL UNIT 22P CONNECTOR

for continuity between the ABS control unit 22P connector No. 4 (GRN) terminal and body ground.

Repair short to body ground in the GRN wire between the ABS control unit and right-front wheel sensor.

Connect the ABS control unit 22P connector No. 5 (GRN/BLK) terminal to body ground.
$\xrightarrow{\Omega}$

FRW (-) (GRN) FRW (+) (GRN/BLK)

Ω

几ـ					FRW (+) (GRN/BLK)				
1	2	3	4	5				10	[11]
12	13	14	15	16	\square	18	20	21	22

WIRE SIDE OF FEMALE TERMINALS

Check for continuity between the wheel sensor 2P connector No. 2 (GRN/BLK) terminal and body ground.
Disconnect the right-front wheel sensor 2P connector.

Repair open in the GRN wire between the ABS control unit and right-front wheel sensor.
(To page 19-92)

Troubleshooting

Right-front Wheel Sensor (cont'd)

Left-front Wheel Sensor

Diagnostic Trouble Code (DTC) 4-2: Left-front Wheel Sensor Diagnosis

The ABS control unit monitors the wheel sensor signal during the regular diagnosis (at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h}$) or more). This diagnosis is not performed when the parking brake signal is ON.
The ABS control unit turns the ABS indicator light on if it detects that there is no wheel sensor signal from the left-front wheel.
Possible causes:

- Open circuit, internal short or short to body ground in the left-front wheel sensor
- Open circuit or short to body ground in the positive (+) wire between the left-front wheel sensor and ABS control unit
- Open circuit or short to body ground in the negative (-) wire between the left-front wheel sensor and ABS control unit
- Positive (+) wire shorted to the negative (-) wire between the left-front wheel sensor and ABS control unit
- Loose connector or poor contact of terminals
- Improper left-front wheel sensor air gap
- Faulty ABS control unit
- Missing left-front pulser
- Modulator does not decrease pressure properly
- Wheel lock by downshift

Troubleshooting

Left-front Wheel Sensor (cont'd)

(To page 19-95)

Troubleshooting

Right-rear Wheel Sensor

Diagnostic Trouble Code (DTC) 4-4: Right-rear Wheel Sensor Diagnosis

The ABS control unit monitors the wheel sensor signal during the regular diagnosis (at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h}$) or more). This diagnosis is not performed when the parking brake signal is ON.
The $A B S$ control unit turns the $A B S$ indicator light on if it detects that there is no wheel sensor signal from the right-rear wheel.
Possible causes:

- Open circuit, internal short or short to body ground in the right-rear wheel sensor
- Open circuit or short to body ground in the positive (+) wire between the right-rear wheel sensor and ABS control unit
- Open circuit or short to body ground in the negative (-) wire between the right-rear wheel sensor and ABS control unit
- Positive (+) wire shorted to the negative (-) wire between the right-rear wheel sensor and ABS control unit
- Loose connector or poor contact of terminals
- Improper right-rear wheel sensor air gap
- Faulty $A B S$ control unit
- Missing right-rear pulser
- Modulator does not decrease pressure properly

RIGHT-REAR WHEEL SENSOR 2P CONNECTOR

Measure the resistance between the wheel sensor $2 P$ connector No. 1 and No. 2 terminals.

Check for continuity between the wheel sensor 2P connector No. 2 terminal and body ground.

Disconnect the ABS control unit 22P connector.

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

(cont'd)

Troubleshooting

Right-rear Wheel Sensor (cont'd)

Left-rear Wheel Sensor

Diagnostic Trouble Code (DTC) 4-8: Left-rear Wheel Sensor Diagnosis

The ABS control unit monitors the wheel sensor signal during the regular diagnosis (at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h}$) or more). This diagnosis is not performed when the parking brake signal is ON.
The ABS control unit turns the ABS indicator light on if it detects that there is no wheel sensor signal from the left-rear wheel.
Possible causes:

- Open circuit, internal short or short to body ground in the left-rear wheel sensor
- Open circuit or short to body ground in the positive (+) wire between the left-rear wheel sensor and ABS control unit
- Open circuit or short to body ground in the negative (-) wire between the left-rear wheel sensor and ABS control unit
- Positive $(+)$ wire shorted to the negative $(-)$ wire between the left-rear wheel sensor and ABS control unit
- Loose connector or poor contact of terminals
- Improper left-rear wheel sensor air gap
- Faulty ABS control unit
- Missing left-rear pulser
- Modulator does not decrease pressure properly
- Both front wheels spin (for example, when wheels are stuck)

Troubleshooting

Left-rear Wheel Sensor (cont'd)

Troubleshooting

Rear Wheel Lock

Diagnostic Trouble Code (DTC) 5 to 5-8: Rear Wheel Lock Diagnosis

The ABS control unit monitors the rear wheel sensor signals during the regular diagnosis (during driving). This diagnosis is not performed when the parking brake signal is ON.
The ABS control unit turns the ABS indicator light on if it detects no signal(s) from the rear wheel sensor(s) due to, for example, rear wheel lock.
Possible causes:

- Wheel spin during cornering
- Open circuit, internal short or short to the body ground in the wheel sensor system
- Rear brake drag
- Modulator does not decrease pressure properly
- Faulty ABS control unit
- With engine running, ABS indicator light is ON.
- With the SCS short connector connected (see page 19-62), DTCs 5, 5-4 and/or 5-8 are indicated.

Troubleshooting

Front and Rear Fail-safe Relays

Diagnostic Trouble Code (DTC) 6: Front and Rear Fail-safe Relays Diagnosis

The ABS control unit monitors the voltage from the battery for the six solenoids during the initial diagnosis when the failsafe relays are OFF.
The ABS control unit keeps the ABS indicator light on if it detects battery voltage at the front and rear solenoid circuits. Possible causes:

- Short to power in the relay drive circuits between the fail-safe relays and ABS control unit
- Faulty relay drive transistor (ON) in the ABS control unit

Repair short to power in the VEL/ GRN wire between ABS control unit, and front and rear fail-safe relays.

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 22P CONNECTOR

FSR (YEL/GRN)

Replace the ABS control unit. (Faulty fail-safe relay drive transistor)

Troubleshooting

Front Fail-safe Relay

Diagnostic Trouble Code (DTC) 6-1: Front Fail-safe Relay Diagnosis

The ABS control unit monitors the voltage from the battery for the six solenoids during the initial diagnosis when the failsafe relays are OFF.
The ABS control unit keeps the ABS indicator light on if it detects battery voltage at the front solenoid circuits.
Possible causes:

- Front fail-safe relay stuck ON
- Short to power in the solenoid drive circuits between the front fail-safe relay and ABS control unit

(From page 19-106)

NOTE: The fail-safe relays are OFF when the ABS indicator light is kept on.

NOTE: Check with the modulator unit 14 P connector disconnected.

Measure the voltage between the ABS control unit 26P connector No. 2 (RED/BLK) terminal and body ground.

Repair short to power in the BRN/ BLK wire between the front failsafe relay and modulator unit.

FRONT FAIL-SAFE RELAY CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

WIRE SIDE OF FEMALE TERMINALS

Repair short to power in the RED/ BLU wire between the ABS control unit and modulator unit.
(To page 19-108)

Troubleshooting

Front Fail-safe Relay (cont'd)

(From page 19-107)

Rear Fail-safe Relay

Diagnostic Trouble Code (DTC) 6-4: Rear Fail-safe Relay Diagnosis

The ABS control unit monitors the voltage from the battery for the six solenoids during the initial diagnosis when the failsafe relays are OFF.
The ABS control unit keeps the ABS indicator light on if it detects the battery voltage at the two rear solenoid circuits.
Possible causes:

- Rear fail-safe relay stuck ON
- Short to power in the solenoid drive circuits between the rear fail-safe relay and ABS control unit

(cont'd)

Troubleshooting

Rear Fail-safe Relay (cont'd)

(From page 19-109)

Measure the voltage between the ABS control unit 26P connector No. 3 (RED/WHT) terminal and body ground.

Repair short to power in the RED/ WHT wire between the ABS control unit and modulator unit.

Measure the voltage between the ABS control unit 26P connector No. 16 (YEL/NHT) terminal and body ground.

Repair short to power in the YEL/ WHT wire between the ABS control unit and modulator unit.

R-OUT (YEL/WHT)

Check for loose ABS control unit connectors. If necessary, substitute a known-good ABS control unit and recheck.

Right-front Solenoid

Diagnostic Trouble Code (DTC) 7-1: Right-front Solenoid Diagnosis

During the initial diagnosis, after the fail-safe relays are turned on, and during the regular diagnosis, the ABS control unit monitors the voltage from the battery for the six solenoids (when the ABS is not functioning).
If the detection circuit for the right-front solenoid detects 0 V , the $A B S$ control unit keeps the ABS indicator light on after the engine is started. It turns the $A B S$ indicator light on again if it detects 0 V after the light goes off.
Possible causes:

- Open circuit in the right-front solenoid drive circuits between the front fail-safe relay and ABS control unit
- Short circuit to body ground in the right-front solenoid drive circuits between the solenoids and ABS control unit
- Faulty right-front solenoid drive transistor (ON) in the ABS control unit

The ABS control unit momentarily outputs the ON signal to each solenoid (too momentary to turn the solenoid on) during the initial diagnosis, and each time the car is started, to check the voltage from the battery with the detection circuit.
If the detection circuit for the right-front solenoids detects battery voltage at this time, the ABS control unit keeps the ABS indicator light on. It turns the ABS indicator light on again if it detects battery voltage when the car is started.
Possible causes:

- Short circuit to power in the right-front solenoid drive circuits between the solenoids and ABS control unit
- Faulty right-front solenoid drive transistor (OFF) in the ABS control unit
- Short circuit to power in the right-front solenoid drive circuits in the modulator wire harness or solenoids
- Short circuit to the right-front solenoid outlet circuit in the inlet circuit between the solenoid and ABS control unit

FRONT FAIL-SAFE RELAY CONNECTOR

SOLENOID (BRN/BLK)

WIRE SIDE OF FEMALE TERMINALS
(cont'd)

Troubleshooting

Right-front Solenoid (cont'd)

(From page 19-111)

Measure the voltage between the
modulator unit 14P connector
No. 5 (BRN/BLK) and No. 8 (BRN/
BLK) terminals and body ground.

Measure the resistance between the modulator unit 14P connector terminals to determine the solenoid standard resistance (A type or B type).
Inlet:

- No. 9 (WHT) and No. 13 (RED/ WHT)
- No. 10 (WHT/BLU) and No. 14 (RED/BLU)
Outlet:
- No. 2 (YEL/WHT) and No. 6 (GRYNHHT)
- No. 3 (YEL/BLU) and No. 7 (GRY/BLU)

Measure the resistance between the modulator unit 14 P connector No. 1 (YEL/BLK) and No. 5 (GRY/ BLK) terminals, and the No. 8 (WHT/BLK) and No. 12 (RED/BLK) terminals.

YES

NOTE:

	STANDARD RESISTANCE	
	A TYPE	B TYPE
Inlet Solenoid	$2.5-2.9 \Omega$	$6.5-7.5 \Omega$
Outlet Solenoid	$2.5-2.9 \Omega$	$3.3-3.9 \Omega$

Repair open in the BRN/BLK wire(s) between the front failsafe relay and modulator unit.

Visually inspect the modulator wire harness. If the harness is OK, replace the modulator unit. (Open or short in the right-front inlet or outlet solenoid)

MODULATOR UNIT 14P CONNECTOR

TERMINAL SIDE OF MALE TERMINALS

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Troubleshooting

Right-front Solenoid (cont'd)

Left-front Solenoid

Diagnostic Trouble Code (DTC) 7-2: Left-front Solenoid Diagnosis

During the initial diagnosis, after the fail-safe relays are turned on, and during the regular diagnosis, the ABS control unit monitors the voltage from the battery for the six solenoids (when the ABS is not functioning).
If the detection circuit for the left-front solenoid detects 0 V , the $A B S$ control unit keeps the $A B S$ indicator light on after the engine is started. It turns the ABS indicator light on again if it detects 0 V after the light goes off.
Possible causes:

- Front fail-safe relay stuck OFF
- Open circuit in the left-front solenoid drive circuits between the under-hood ABS fuse/relay box and ABS control unit
- Short circuit to body ground in the left-front solenoid drive circuits between the solenoids and ABS control unit
- Faulty left-front solenoid drive transistor (ON) in the ABS control unit

The ABS control unit momentarily outputs the ON signal to each solenoid (too momentary to turn the solenoid on) during the initial diagnosis, and each time the car is started, to check the voltage from the battery with the detection circuit. If the detection circuit for the left-front solenoids detects battery voltage at this time, the ABS control unit keeps the ABS indicator light on. It turns the ABS indicator light on again if it detects the battery voltage when the car is started.
Possible causes:

- Short circuit to power in the left-front solenoid drive circuits between the solenoids and ABS control unit
- Faulty left-front solenoid drive transistor (OFF) in the ABS control unit
- Short circuit to power in the left-front solenoid drive circuits in the modulator wire harness or solenoids
- Short circuit to the left-front solenoid outlet circuit in the inlet circuit between the solenoids and ABS control unit
- Short circuit to the right-front solenoid inlet or outlet circuit in the left-front solenoid inlet or outlet circuit between the solenoids and ABS control unit

Troubleshooting

- Left-front Solenoid (cont'd)

- No. 8 (WHT/BLK) and No. 12 (RED/BLK)
- No. 9 (WHT) and No. 13 (RED/ WHT)
Outlet:
- No. 1 (YEL/BLK) and No. 5 (GRY/BLK)
- No. 2 (YEL/WHT) and No. 6 (GRY/WHT)

Measure the resistance between the modulator unit 14P connector No. 3 (YEL/BLU) and No. 7 (GRY/ BLU) terminals, and the No. 10 (WHT/BLU) and No. 14 (RED/BLU) terminals.

MODULATOR UNIT 14P CONNECTOR

TERMINAL SIDE OF MALE TERMINALS

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

FL-IN (RED/BLU)
(cont'd)

Troubleshooting

Left-front Solenoid (cont'd)

(From page 19-117)

MODULATOR UNIT 14P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Replace the modulator wire harness. (Short to the YEL/BLU, RED/ BLK or YEL/BLK wire in the RED/ BLU wire)

Replace the modulator wire harness. (Short to the RED/BLK or YEL/BLK wire in the YEL/BLU wire)

Troubleshooting

Left-front Solenoid (cont'd)

(From page 19-120)

Check for continuity between the ABS control unit 22P connector No. 1 (YEL/GRN) terminal and body ground.

Repair short to body ground in the YEL/GRN wire between the ABS control unit and front failsafe relay.

Repair open in the YEL/GRN wire between the ABS control unit and front fail-safe relay.

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

FRONT FAIL-SAFE RELAY CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

FRONT FAIL-SAFE RELAY CONNECTOR

GND (BLK)

WIRE SIDE OF FEMALE TERMINALS

Troubleshooting

Rear Solenoid

Diagnostic Trouble Code (DTC) 7-4: Rear Solenoid Diagnosis

During the initial diagnosis, after the fail-safe relays are turned on, and during the regular diagnosis, the ABS control unit monitors the voltage from the battery for the six solenoids (when the ABS is not functioning).
If the detection circuit for the rear solenoids detects 0 V , the ABS control unit keeps the ABS indicator light on after the engine is started. It turns the ABS indicator light on again if it detects 0 V after the light goes off.
Possible causes:

- Rear fail-safe relay stuck OFF
- Open circuit in the rear solenoid drive circuits between the under-hood ABS fuse/relay box and ABS control unit
- Short circuit to body ground in the rear solenoid drive circuits between the solenoids and ABS control unit
- Faulty rear solenoid drive transistor (ON) in the ABS control unit

The ABS control unit momentarily outputs the ON signal to each solenoid (too momentary to turn the solenoid on) during the initial diagnosis, and each time the car is started, to check the voltage from the battery with the detection circuit. If the detection circuit for the rear solenoids detects battery voltage at this time, the ABS control unit keeps the ABS indicator light on. It turns the ABS indicator light on again if it detects the battery voltage when the car is started. Possible causes:

- Short circuit to power in the rear solenoid drive circuits between the solenoids and ABS control unit
- Faulty rear solenoid drive transistor (OFF) in the ABS control unit
- Short circuit to power in the rear solenoid drive circuits in the modulator wire harness or solenoids
- Short circuit to the rear solenoid outlet circuit in the inlet circuit between the solenoids and ABS control unit
- Short circuit to the right-front or left-front solenoid inlet or outlet circuit in the rear solenoid inlet or outlet circuit between the solenoids and ABS control unit.

Troubleshooting

Rear Solenoid (cont'd)

(From page 19-123)

(To page 19-125)
(From page 19-124)

Troubleshooting

Rear Solenoid (cont'd)

(From page 19-125)

Repair short to the YEL/WHT wire in the RED/WHT wire between the ABS controf unit and modulator unit.

Repair short to the RED/BLK, YEL/ BLK, RED/BLU or YEL/BLU wire in the RED/WHT wire between the ABS control unit and modulator unit.
(To page 19-127)
（From page 19－126）

Disconnect the ABS control unit 22P connector．

Check for continuity between the ABS control unit 22P connector No． 10 （BLK）terminal and body ground．

ABS CONTROL UNIT 26P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Repair short to the RED／BLK， YEL／BLK，RED／BLU or YEL／BLU wire in the YEL／WHT wire be－ tween the ABS control unit and modulator unit．

Repair open in the YEL／WHT or RED／WHT wire between the ABS control unit and modulator unit．

ABS CONTROL UNIT 22P CONNECTOR

几ـ几		R－GND（BLK）						亿
1	2	3	4	5	1	1	10	11
12	13	14	15	16	18	20	21	22

WIRE SIDE OF FEMALE TERMINALS

Repair open in the BLK wire be－ tween the ABS control unit and body ground，or a poor ground．

Troubleshooting

Rear Solenoid (cont'd)

NO

Connect the rear fail-safe relay connector No. 2 terminal to body ground with a jumper wire.

Check for continuity between the ABS control unit 22P connector No. 1 (YEL/GRN) terminal and body ground.

Repair short to body ground in the YEL/GRN wire between the ABS control unit and rear fail-safe relay.

ABS CONTROL UNIT 22P CONNECTOR

REAR FAIL-SAFE RELAY CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

ABS CONTROL UNIT 22P CONNECTOR

WIRE SIDE OF FEMALE TERMINALS

Repair open in the YEL/GRN wire between the ABS control unit and rear fail-safe relay.

Check for continuity between the rear fail-safe relay connector No. 4 (BLK) terminal and body ground.

Repair open in the BLK wire between the rear fail-safe relay and body ground, or poor ground.

REAR FAIL-SAFE RELAY CONNECTOR

Ω

WIRE SIDE OF FEMALE TERMINALS

ABS Function

Diagnostic Trouble Code (DTC) 8-1: ABS Function Diagnosis

The ABS control unit monitors the ABS functioning time during regular diagnosis, and it turns the ABS indicator light on if the $A B S$ is functioning for a prolonged time.
Possible causes:

- Wheel sensor signal disappears at speeds of $6 \mathrm{mph}(10 \mathrm{~km} / \mathrm{h})$ or less
- Faulty ABS control unit
- With engine running, ABS indicator light is ON.
- With the SCS short connector connected (see page 19-62), DTC 8-1 is indicated.

Test drive the car at speeds of $12 \mathrm{mph}(20 \mathrm{~km} / \mathrm{h})$ or more for more than 2 minutes.

- The system is OK at this time. Check for loose wheel sensor connectors and sensor installation condition (intermittent trouble).
- Probable cause was driving over rough roads.

Confirm the ABS code (see page 19-62).

Perform the appropriate troubleshooting for the code.

- Faulty wheel sensor
- Chipped pulser gear

Replace the ABS control unit.

Troubleshooting

ABS Control Unit

Diagnostic Trouble Code (DTC) 8-2: CPU Comparison Diagnosis

The ABS control unit checks the data of the two CPUs by comparison, and it keeps the ABS indicator light on if there are any differences in the data between the CPUs. It turns the ABS indicator light on again if it detects any difference after the light goes off.

- With engine running, ABS indicator light is ON.
- With the SCS short connector connected (see page 19-62), DTC 8-2 is indicated.
 The system is OK at this time.

YES

Confirm the ABS code (see page 19-62).

Diagnostic Trouble Code (DTC) 8-4: IC (Intergrated Circuit) Diagnosis

The ABS control unit checks the internal ICs during the initial diagnosis and regular diagnosis, and it keeps the ABS indicator light on if it detects any abnormality. It turns the ABS indicator light on again if it detects any abnormality after the light goes off.

Replace the ABS control unit if DTC 8-4 is indicated with the SCS service connector connected (see page 19-62).

1. Raise the car off the ground and support it with safety stands (see section 1).
2. Check that there is no brake drag.
3. Turn the ignition switch $O N$ and confirm that the ABS indicator light comes on.

- If the ABS indicator light does not come on, follow the troubleshooting on page 19-68.

4. With the ignition switch OFF, disconnect the ABS inspection connector (6P) from the connector cover located under the glove box, and connect it to the ALB checker.

5. Shift the transmission to neutral for manual transmission models, or to position for automatic transmission models.
6. Start the engine and release the parking brake.
7. Set the pulse selector switch to " 50 ". '
8. Turn the Mode Selector switch to "1".

9. Push the Start Test switch.

The ABS indicator light should not come on while the Test in Progress light is on.

- If the ABS indicator light comes on, confirm the ABS code and perform the appropriate troubleshooting for the code.

NOTE: Do not turn the Mode Selector switch when the Test in Progress light is on. Damage to the ALB checker can result.
10. Turn the Mode Selector switch to "2".
11. Depress the brake pedal firmly and push the Start Test switch.
The ABS indicator light should not come on while the Test in Progress light is on. There should be kickback on the brake pedal.

Have the assistant check that the wheel controlled by the ABS can be rotated by hand when there is kickback on the brake pedal.

- If the $A B S$ indicator light comes on, confirm the ABS code and perform the appropriate troubleshooting for the code.
- If the $A B S$ indicator light does not come on and the wheel controlled by the ABS cannot be rotated, check the connection of the modulator wire harness connectors. If the connections are OK, replace the modulator unit.

NOTE: The kickback should occur approximately 20 seconds after the Start Test switch is pushed.
The ABS can be checked with a brake tester, too, by checking the brake torque fluctuation of the wheel controlled by the ABS.
12. Turn the Mode Selector switch to " 3 ", " 4 " and " 5 ". Perform step 10 for each of the test mode positions.

ABS Function Test (cont'd)

Operation Sequence Simulated by Modes of ALB Checker
NOTE: The wheel sensors and sensor wire harnesses are not checked by the ALB checker.

Mode 1: Sends the simulated driving signal $0 \mathrm{mph}(0 \mathrm{~km} / \mathrm{h}) \rightarrow 113 \mathrm{mph}(180 \mathrm{~km} / \mathrm{h}) \rightarrow 0 \mathrm{mph}(0 \mathrm{~km} / \mathrm{h})$ of each wheel to the ABS control unit to check the system under the normal driving. There should be no kickback.

SIMULATED DRIVING SIGNAL

LEFT-FRONT	RIGHT-FRONT	LEFT-REAR	RIGHT-REAR

Mode 2: Sends the driving signal of each wheel, then sends the lock signal of the left-rear wheel to the ABS control unit to check the system under left-rear wheel lock. There should be kickback.

SIMULATED DRIVING SIGNAL

LEFT-FRONT	RIGHT-FRONT	LEFT-REAR	RIGHT-REAR

Mode 3: Sends the driving signal of each wheel, then sends the lock signal of the right-rear wheel to the ABS control unit to check the system under right-rear wheel lock. There should be kickback.

SIMULATED DRIVING SIGNAL

LEFT-FRONT	RIGHT-FRONT	LEFT-REAR	RIGHT-REAR

Mode 4: Sends the driving signal of each wheel, then sends the lock signal of the left-front wheel to the ABS control unit to check the system under left-front wheel lock. There should be kickback.

SIMULATED DRIVING SIGNAL

LEFT-FRONT	RIGHT-FRONT	LEFT-REAR	RIGHT-REAR

Mode 5: Sends the driving signal of each wheel, then sends the lock signal of the right-front wheel to the ABS control unit to check the system under right-front wheel lock. There should be kickback.

SIMULATED DRIVING SIGNAL

LEFT-FRONT	RIGHT-FRONT	LEFT-REAR	RIGHT-REAR

Inspection Points

If the ABS indicator light comes on and the system stops during the inspection, confirm the ABS code and perform the appropriate troubleshooting for the code.

If there is no kickback in modes 2 through 5, and the ABS indicator light does not come on, the following items are probable causes:

- Pressure switch stuck ON
- Clogged or stuck solenoid outlet valve
- Modulator wire harness connectors improperly connected

Modulator Function Check

NOTE: This inspection determines whether the basic brake system continues to operate normally when the modulator unit fluid pressure is low.

CAUTION

- This inspection is made by relieving the highpressure fluid in the modulator unit and checking for brake operation. After inspection, be sure to add fresh brake fluid to the specified level of the reservoir, and start the engine to restore the ABS to its normal operating condition.
- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Do not reuse the drained brake fluid.
- Do not loosen the relief plug on the accumulator.

1. Remove the bleeder cap from the maintenance bleeder on the modulator unit.
2. Attach the wrench to the maintenance bleeder.
3. Connect a rubber tube of the appropriate diameter to the maintenance bleeder, and set the other end of the rubber tube in a suitable container.
4. While holding the rubber tube with your hand, slowly loosen the maintenance bleeder $1 / 8$ to $1 / 4$ turn to collect the brake fluid in the container.

CAUTION: Do not loosen the maintenance bleeder too much. The high-pressure brake fluid can burst out.
5. After the brake fluid stops flowing out, loosen the maintenance bleeder more to release the pressure completely.
6. Tighten the maintenance bleeder to the specified torque.

7. Raise the car off the ground and support with safety stands (see section 1).
8. Have an assistant depress the brake pedal firmly, and check that the wheels do not rotate.

9. Remove the cap and refill the reservoir to the MAX (upper) level with fresh brake fluid.

NOTE: Pour the brake fluid slowly so that it does not foam, and wait for a few minutes.
10. Start the engine and let it idle for a minute. Stop the engine.
11. Check the brake fluid level in the reservoir. It should be below the MAX (upper) level line. Refill the reservoir with fresh brake fluid to the MAX level line again.

12. After inspection, start the engine and make sure that the ABS indicator light goes off.

Modulator Unit

Relieving System Pressure

CAUTION:

- Be sure to drain the high-pressure brake fluid completely before performing the modulator function check, disposing the modulator unit, and ABS pump motor replacement.
- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Do not reuse the drained brake fluid.
- Do not loosen the relief plug on the accumulator.

1. Remove the bleeder cap from the maintenance bleeder on the modulator unit.
2. Attach the wrench to the maintenance bleeder.
3. Connect a rubber tube of the appropriate diameter to the maintenance bleeder, and set the other end of the rubber tube in a suitable container.
4. While holding the rubber tube with your hand, slowly loosen the maintenance bleeder $1 / 8$ to $1 / 4$ turn to collect the brake fluid in the container.

CAUTION: Do not loosen the maintenance bleeder too much. The high-pressure brake fluid can burst out.
5. Tighten the maintenance bleeder to the specified torque.

Brake Fluid Replacement

CAUTION:

- Do not loosen the relief plug on the accumulator.

NOTE: Brake fluid replacement procedure explained in this section is for the brake fluid in the modulator unit (that is, the brake fluid in the high-pressure passage and in the reservoir). See page 19-6 for the brake fluid replacement procedures for the rest of the brake system.

1. Remove the bleeder cap from the maintenance bleeder on the modulator unit.
2. Attach the wrench to the maintenance bleeder.
3. Connect a rubber tube of the appropriate diameter to the maintenance bleeder, and set the other end of the rubber tube in a suitable container.
4. While holding the rubber tube with your hand, slowly loosen the maintenance bleeder $1 / 8$ to $1 / 4$ to collect the brake fluid in the container.

CAUTION: Do not loosen the maintenance bleeder too much. The high-pressure brake fluid can burst out.
5. Tighten the maintenance bleeder.

NOTE: Do not remove the rubber tube and wrench yet.

6. Start the engine and let it idle for a minute. Stop the engine.
7. Check the brake fluid level in the reservoir. It should be below the MAX (upper) level line.
8. Repeat the steps 4 through 7 to drain the rest of the brake fluid from the modulator unit.

NOTE: The modulator has a capacity of approximately 150 ml ($150 \mathrm{cc}, 5 \mathrm{fl}$.oz). Approximately $40-45 \mathrm{ml}$ ($40-45 \mathrm{cc}, 1.3-1.5 \mathrm{fl} \cdot \mathrm{oz}$) of the fluid is drained at each try.
9. Remove the cap, and refill the reservoir to the MAX (upper) level with fresh brake fluid.

NOTE: Pour the brake fluid slowly so that it does not foam, and wait for a few minutes.
10. Repeat steps 4 through 7 twice, and refill the reservoir to the MAX (upper) level with fresh brake fluid.

11. Tighten the maintenance bleeder to the specified torque.
12. After replacement, start the engine and make sure that the ABS indicator light goes off.

Bleeding:

When the brake fluid is completely drained from the reservoir (air enters in the modulator unit) during brake fluid replacement, bleed the air from the modulator unit as follows.
-1. Fill the reservoir to the MAX (upper) level with fresh brake fluid.
-2. Connect the rubber tube to the bleeder on the modulator unit, and set the other end of the rubber tube in a container (see the previous page).
-3. Loosen the bleeder, and start the engine to activate the pump motor.

NOTE: Take care not to spill the brake fluid from the container.
-4. Tighten the bleeder when the fluid starts to flow out of the bleeder.
-5. Stop the engine after the pump motor stops
NOTE: If the ABS indicator light comes on and the pump motor stops, repeat steps 3 through 5 above.

Modulator Unit

Removal/Installation

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Take care not to damage or deform the brake pipes during removal and installation.
- To prevent the brake fluid from flowing, plug and cover the hose ends and joints with a shop towel or equivalent material.
- Do not loosen the relief plug on the accumulator.

1. Disconnect the modulator unit 14 P connector and pump motor 2 P connector.
2. Remove the wire harness clip from the modulator bracket.

NOTE: When a new harness clip is installed after a wire harness or modulator unit replacement, adjust the harness clip to the dimensions shown below.
3. Remove the three 8 mm nuts, and remove the modulator unit from the bracket.

NOTE: When the pump motor or the modulator unit is replaced, bleed the high-pressure brake fluid first (see page 19-134).

4. Install the modulator unit in the reverse order of removal.

NOTE: Check the letters stamped on the modulator body, and connect the brake pipes properly. Tighten the flare nuts to $19 \mathrm{~N} \cdot \mathrm{~m}(1.9 \mathrm{kgf} \cdot \mathrm{m}, 14 \mathrm{lbf} \cdot \mathrm{ft})$.

5. Start the engine and let it idle for a minute.

Check that:

- ABS indicator light is off.
- Brake fluid is not leaking from the brake pipe joints.

6. Stop the engine.
7. Check whether the brake fluid level in the reservoir is at the MAX (upper) level. If level is low, add fresh fluid until the reservoir is refilled to the MAX (upper) level.
8. Bleed air from the brake system (see page 19-6).

Wire Harness Replacement

1. Remove the modulator unit from the car (see page 19-136).
2. Remove the modulator unit cover, and remove the wire harness.

3. Check the numbers stamped on the set plate, and connect each connector of the new wire harness to the set plate of the corresponding number.

NOTE: Be sure that each connector is locked securely with the two locking tabs.
4. Install the modulator unit cover and modulator unit (see the left column of this page).

5. Check the ABS function using the ALB checker (see page 19-131).

Modulator Unit

Pump Motor Replacement

A WARNING The modulator unit contains high-pressure brake fluid. Be sure to bleed the high-pressure fluid from the modulator unit before removing the pump motor.

1. Bleed the high-pressure brake fluid from the modulator unit (see page 19-134).
2. Remove the modulator unit from the car (see page 19-136).
3. Remove the 8 mm flange bolts from the modulator unit, and remove the pump motor.

4. Install the pump motor in the reverse order of removal.

NOTE:

- After installing the modulator unit, add fresh brake fluid until the reservoir is refilled to the specified level, and bleed air from the system (see page 19-134).
- Turn the ignition switch on, and check for the ABS indicator light operation.

Disposal

A WARNing The accumulator contains high pressure nitrogen gas. Do not puncture, expose to flame, weld, drop or apply impact to the accumulator, or attempt to remove the accumulator from the modulator unit. The modulator unit may explode and severe personal injury may result.

1. Drain the high-pressure brake fluid from the modulator unit (see page 19-134).
2. Secure the modulator unit in a vise so that the relief plug points straight up.
3. Loosen the relief plug three and a half turns slowly, and wait for three minutes for all pressure to escape.
4. Remove the accumulator from the modulator unit.
5. Remove the relief plug completely and dispose of the accumulator.

Disassembly

CAUTION:

- Do not spill brake fluid on the car; it may damage the paint; if brake fluid does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.

1. Remove the master cylinder (see page 19-13).
2. Remove the rod seal.
3. Remove the circlip while pushing in the secondary piston.

4. Remove the stop bolt while pushing in the secondary piston.

5. Remove the piston guide, secondary piston and primary piston.

NOTE: If the primary piston assembly is difficult to remove, apply compressed air from the primary piston side port.

CAUTION:

- Do not use high pressure air or bring the nozzle too close to the port.
- Place a shop rag over the master cylinder to prevent the primary piston from becoming a projectile.

(cont'd)

Master Cylinder

Disassembly (cont'd)

6. Remove the reservoir cap, strainer and reservoir from the master cylinder.
7. Remove the reservoir seal from the reservoir cap.

Reassembly

CAUTION:

- If replacing the primary piston, secondary piston or master cylinder body, check and adjust the pushrod clearance before installing the master cylinder (see page 19-18).
- Do not spill brake fluid on the car; it may damage the paint; if brake does contact the paint, wash it off immediately with water.
- Clean all parts in brake fluid and air dry; blow out all passages with compressed air.
- Before reassembling, check that all parts are free of dust and other foreign particles.
- Replace parts with new ones whenever specified to do so.
- Make sure no dirt or other foreign matter is allowed to contaminate the brake fluid.
- Do not mix different brands of brake fluid as they may not be compatible.
- Do not reuse the drained fluid. Use only clean DOT 3 or 4 brake fluid.
- Replace the master cylinder if the bore is damaged or worn. Do not hone or attempt to refinish the bore.

NOTE:

- Coat piston cups, pressure cup and master cylinder bore with clean brake fluid.
- Use recommended greases in the master cylinder seal set.

Master Cylinder

Reassembly (cont'd)

1. Install the reservoir on the master cylinder with a clamp as shown.
2. Install the reservoir seal in the groove of the reservoir cap.
3. Install the strainer and reservoir cap on the reservoir.

4. Coat the cups of a new primary piston with clean brake fluid, then install the primary piston into the master cylinder.

NOTE:

- Before installation, check that the valve stem moves smoothly by lightly pushing it through the slot in the piston.
- Install the piston so that the slot in the piston aligns with the stop bolt hole in the master cylinder.

5. Coat the cup of a new secondary piston with clean brake fluid.
6. Apply recommended grease in the master cylinder seal set to the piston, and install the piston into the master cylinder.

NOTE: Check that the valve stem moves smoothly by pushing the stop pin guide.

7. Apply recommended grease in the master cylinder seal set to a new O-ring and the secondary cup in a new piston guide, and install the O-ring onto the piston guide.

FRONT

8. Install the piston guide into the master cylinder.

9. Align the slot in the primary piston with the stop bolt hole by pushing the secondary piston in, and install the stop bolt with a new sealing washer.

10. Install a new circlip while pushing in the secondary piston.
11. Apply recommended grease in the master cylinder set to a new rod seal, and install the seal onto the master cyliner.

12. Adjust the pushrod clearance (see page 19-18).
13. Install the master cylinster (see page 19-19).

Electronic Components

ABS Control Unit Replacement

1. Remove the passenger's side kick panel.
2. Disconnect the $A B S$ control unit connectors.
3. Remove the ABS control unit mounting bolts, then remove the control unit.

4. Install the ABS control unit in the reverse order of removal.

Relay Inspection

1. Remove the fail-safe relays and motor relay (location: see page 19-45).
2. Check for continuity between the terminals C and D. There should be continuity.
3. Check for continuity between the terminals A and B. There should be continuity when the battery is connected between the terminals C and D.
There should be no continuity when the battery is disconnected.

<Motor Relay:>

Inspection

Front:

1. Check the front pulser for chipped or damaged teeth.

2. Measure the air gap between the wheel sensor and pulser all the way around while rotating the driveshaft by hand.

Standard: 0.4 - $\mathbf{1 . 0} \mathbf{~ m m}(0.02$ - 0.04 in$)$
NOTE: If the gap exceeds 1.0 mm (0.04 in), the probability is a distorted knuckle which should be replaced.

Rear:

1. Check the rear pulser for chipped or damaged teeth.

2. Measure the air gap between the wheel sensor and pulser all the way around while rotating the hub bearing unit by hand.

Standard: 0.4-1.0 mm (0.02-0.04 in)
NOTE: If the gap exceeds $1.0 \mathrm{~mm}(0.04 \mathrm{in})$, the probability is a distorted knuckle which should be replaced.

Pulsers/Wheel Sensors

Wheel Sensor Replacement

NOTE:

- Be careful when installing the sensors to avoid twisting the wires.
- After sensor replacement, confirm proper operation (see page 19-131).

SUPPLEMENTAL RESTRAINT SYSTEM (SRS) (If body maintenance is required)

Some model versions of the Accord Coupe include a driver's airbag, located in the steering wheel hub, and a front passenger's airbag, located in the dashboard above the glove box. Information necessary to safely service the SRS is included in this Shop Manual. Items marked with an asterisk (${ }^{*}$) on the contents page include, or are located near, SRS components. Servicing, disassembling or replacing these items will require special precautions and tools, and should therefore be done by an authorized Honda dealer.

A warning

- To avoid rendering the SRS inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all SRS service work must be performed by an authorized Honda dealer.
- Improper service procedures, including incorrect removal and installation of the SRS, could lead to personal injury caused by unintentional activation of the airbags.
- All SRS electrical wiring harnesses are covered with yellow insulation. Related components are located in the steering column, front console, dashboard, dashboard lower panel, and in the dashboard above the glove box. Do not use electrical test equipment on these circuits.

Body

BumpersFront BumperReplacement .. 20-83
Disassembly 20-84
Rear Bumper
Replacement 20-86
Disassembly 20-87
*Carpet
Replacement 20-71
*Consoles, Front and Rear
Replacement 20-73
Dashboard
Component Removal/Installation 20-76
Replacement Precautions 20-80
Replacement 20-81
Door
Index 20-2
Door and Side Moldings Replacement 20-102
Fenderwell Trim/Wheelhouse
Protector and Rear Air Outlet Replacement 20-106
*Frame Repair Chart 20-108
Front Grille
Replacement 20-99
Headliner
Replacement 20-50
Hood
Replacement 20-88
Adjustment 20-89
Interior Trim
Replacement 20-48
License Plate Trim
Replacement 20-98
Mirrors
Power Mirror Replacement 20-17
Manual Mirror Replacement 20-17
Mirror Holder Replacement 20-18
Mirror Visor and Mirror Cover Replacement 20-19
Rearview Mirror Replacement 20-20
Opener and Latch
Replacement 20-95
Opener Cables
Replacement 20-93
Rear Emblems
Installation 20-106
Roof Molding
Replacement 20-100
Seats
Front Seat Removal 20-51
Front Seat Replacement 20-52
Front Seat Cover Replacement 20-55
Front Seat Linkage Index $20-57$
Rear Seat Replacement 20-63
Rear Seat Cover Replacement 20-64
Seat Belts
Front Seat Beit Replacement 20-66
Rear Seat Belt Replacement 20-68
Inspection 20-70
Side Sill Panel
Replacement 20-101
Side Window Molding Replacement 20-99
Sub-frame 20-107
Sunroof
Index 20-39
Trunk Lid
Replacement 20-90
Adjustment 20-92
Trunk Lid Latch and Lock Cylinder Replacement 20-97
Trunk Lid Weatherstrip Replacement 20-98
Trunk Trim 20-49
Windshield, Rear Window, Quarter Glass Index 20-21

Doors

Index

Doors

Door Panel/Plastic Cover Replacement

1. Remove the mirror cover panel (see page 20-17).

NOTE: Take care not to scratch the door panel and other parts.
2. If applicable, remove the regulator handle by pulling the clip out a wire hook.

NOTE: Install the regulator handle so it points forward and up at a 45 degree angle with the glass closed.

3. Pry the cap and remove the screw.

4. Pull the inner handle forward and out half-way, and disconnect the inner handle rod. If so equipped, disconnect the power door lock switch connector.

5. Remove the armrest screw.

- : Screw locations

Passenger's:

6. Release the clips that hold the door panel.

Remove the door panel by pulling it upward.
NOTE: Remove the door panel with as little bending as possible to avoid creasing or breaking it.

7. Disconnect the following:

- Power window switch connector
- Power mirror switch connector (driver's, for some types)
- Courtesy light connector

NOTE: If necessary, remove the armrest (driver's) or power window switch (passenger's) to move the glass.
Driver's:

Doors

Door Panel/Plastic Cover Replacement (cont'd)

8. Remove the bracket and power door lock unit, and disconnect the connectors.

9. Detach the grommets and harness clips, then carefully remove the plastic cover.

10. Before installing the plastic cover, make sure the door harness and connectors are fastened correctly on the door.
\triangleright : Clip locations, 13

11. Install the plastic cover and all removed parts.

NOTE:

- Apply adhesive along the edge where necessary to maintain a continuous seal and prevent water leaks.
- Do not plug the elongated hole.

12. Install the door panel (see page 20-5).

NOTE:

- Make sure the door harness is not pinched.
- If necessary, replace any damaged clips.
- Make sure the connectors are connected properly.

13. Install the inner handle (see page 20-4).

NOTE: Make sure the connector is connected properly.

Outer Handle Replacement

NOTE: Raise the glass fully.

1. Remove:

- Door panel (see page 20-4)
- Plastic cover (see page 20-4)

2. Remove the rod protector.

3. If so equipped, disconnect the connector, and remove the harness clips.
\triangleright : Clip locations, 2

Doors

Outer Handle Replacement (cont'd)

4. Remove the bolts.

- Bolt locations, 2

5. Pull out the outer handle.

Pry the outer handle rod out of its joint using diagonal cutters.

NOTE:

- To ease reassembly, note the location (A) of the outer handle rod on the joint before disconnecting it.
- Take care not to bend the outer handle rod.
- Use a shop towel to protect the opening in the door.

BUSHING

6. Disconnect the cylinder rod as shown.

NOTE: Take care not to damage the lock cylinder joint.

7. Pull out the retainer clip, then remove the lock cylinder.

8. Installation is the reverse of the removal procedure.

NOTE:

- Make sure the outer handle rod and connector are connected securely.
- Make sure the wire harness is routed properly.
- Make sure the door locks and opens properly.

Latch Replacement

NOTE: Raise the glass fully.

1. Remove:

- Door panel (see page 20-4)
- Plastic cover (see page 20-4)
- Outer handle (see page 20-7)

2. Disconnect the inner handle rod and lock rod from the latch.
Detach the inner handle rod and lock rod, then remove the inner lock knob.

NOTE: Take care not to bend the rods.

3. Remove the bolt, then move the center channel forward.

4. Disconnect the connector, and detach the harness clip from the door.
Remove the latch through the hole in the door.
NOTE: Take care not to bend the outer handle rod and cylinder rod.

5. Installation is the reverse of the removal procedure.

NOTE:

- Make sure the inner handle rod, lock rod and connector are connected properly.
- Make sure the door locks and opens properly.

Doors

Glass/Regulator/Glass Run Channel Replacement

1. Remove:

- Door panel (see page 20-4)
- Plastic cover (see page 20-4)

2. Driver's: Remove the armrest from the door panel (see page 20-5).
Passenger's: Remove the power window switch from the door panel (see page 20-5).
Connect the power window switch to the door harness.
3. Lower the glass fully.
4. Peel off the channel guide cover, then remove the screws.

NOTE: When installing the channel guide cover, apply the double-faced adhesive tape to it.

5. Remove the center channel guide by pulling it upward.

6. Carefully move the glass until you can see the bolts, then remove them.

NOTE: Take care not to drop the glass inside the door.

- Bolt locations, 2

REGULATOR
7. Carefully pull the glass out through the window slot.

NOTE:

- Take care not to drop the glass inside the door.
- Check the guide pin for damage, and replace if necessary.

NOTE: Scribe a line around the guide pin to show the original location.

8. Disconnect the connector, then remove the regulator through the center hole in the door.

- Bolt locations

\triangleright : Clip locations, 2

9. Remove the glass run channel.

10. Remove the front and center channels.

NOTE:

- If necessary, remove the lower center glass run channel from the center channel.
- When installing the lower center glass run channel, apply clear sealant to the location (A) of the center channel.

Sealant: Cemedine \#8500, or equivalent

Doors

Glass/Regulator/Glass Run Channel Replacement (cont'd)

11. Grease all the sliding surfaces of the regulator where shown.
Check that the regulator moves smoothly by connecting a 12 V battery to the power window motor (see section 23).

12. Install the front and center channels.

NOTE: Make sure the lower center glass run channel is fitted into the center channel.

13. Install the glass run channel.

NOTE: Fit the glass run channel into the front channel and on the door as shown.

14. Install the regulator (see page 20-11).

NOTE: Make sure the connector is connected properly.
15. Install the glass (see page 20-10).
16. Install the center channel guide and channel guide cover.

NOTE: Make sure the guide pin is installed in the center channel guide properly.

17. Roll the glass up and down to see if it moves freely without binding. Also make sure that there is no clearance between the glass and glass run channel when the glass is closed. Adjust the position of the glass as necessary.

18. Attach the door harness to the door correctly (see page 20-6).
19. Disconnect the power window switch from the door harness, then install the armrest and power window switch on the door panel (see page 20-5).
20. When reinstalling the plastic cover, apply adhesive along the edge where necessary to maintain a continuous seal and prevent water leaks (see page $20-$ $6)$.
21. Install the door panel (see page 20-4).

Outer Molding Replacement

CAUTION: Wear gloves to remove the outer molding.

1. Remove the power or manual mirror (see page 20-17).
2. Lower the glass.
3. Remove the screw.
4. Starting at the rear, pry the outer molding up and detach the clips, then remove the outer molding.

NOTE: Take care not to twist or scratch the outer molding.

5. Installation is the reverse of the removal procedure.

NOTE:

- If necessary, replace any damaged clips.
- When installing, align the rear edge of the outer molding with the rear edge of the door.

Doors

Weatherstrip Replacement

NOTE:

- Before installing the inner weatherstrip, apply clear sealant to locations (A) on the door as shown.
- If necessary, replace any damaged clips.

Sealant: Cemedine \#8500, or equivalent
D : Clip locations
$A D, 23 \quad B D, 1$

Glass Adjustment

NOTE:

- Place the vehicle on a firm, level surface when adjusting the glass.
- Check the weatherstrips and glass run channel for damage or deterioration, and replace them if necessary.

1. Remove the door panel and peel off the plastic cover (see page 20-4).
2. Driver's: Remove the armrest (see page 20-5). Passenger's: Remove the power window switch (see page 20-5).
3. Connect the power window switch to the power window motor connector (power window model). Install the regulator handle on the door regulator (manual window model).
4. Make sure the guide pin is installed in the center channel guide properly.

5. Raise the glass.
6. Loosen the glass mounting bolts and regulator mounting bolts.
7. Adjust the glass so it is contact with the glass run channel evenly.
8. Tighten the glass mounting bolts and regulator mounting bolts.

9. Loosen the front channel mounting bolts.
10. Lower the glass.
11. Push the front channel against the glass, then tighten the mounting bolts.

12. Check that the glass moves smoothly.
13. Raise the glass fully and check for gap.
14. Check the glass operation.

NOTE: Check that the glass contacts the glass run channel evenly.

15. Check for water leaks.

NOTE: Do not use high pressure water.

16. Route the door harness and connectors, and fasten them to the door (see page 20-6).
17. Disconnect the power window switch from the door harness, then install the armrest (driver's) and power window switch (passenger's) on the door panel (see page 20-5).
18. Attach the plastic cover, then install the door panel (see page 20-4).

Doors

Position Adjustment

NOTE: Place the vehicle on a firm, level surface when adjusting the doors.

After installing the door, check for a flush fit with the body, then check for equal gaps between the front, rear, and bottom door edges and the body.
The door and body edges should also be parallel. Adjust at the hinges as shown.

CAUTION: Place a shop towel on the jack to prevent damage to the door when loosening the door and hinge mounting bolts for adjustment.

DOOR MOUNTING BOLTS

$8 \times 1.25 \mathrm{~mm} 29 \mathrm{~N} \cdot \mathrm{~m}(3.0 \mathrm{kgf} \cdot \mathrm{m}, 22 \mathrm{lbf} \cdot \mathrm{ft})$
Loosen the door mounting bolts slightly to move the door IN or OUT until it's flush with the body. If necessary, you can install a shim behind one hinge to make the door edges PARALLEL with the body.

NOTE: Check for water leaks.

Striker Adjustment

Make sure the door latches securely without slamming. If it needs adjustment:

1. Draw a line around the striker for reference.
2. Loosen the screws, and move the striker IN or OUT to make the latch fit tighter or looser. Move the striker UP or DOWN to align it with the latch opening. Then lightly tighten the screws and recheck.

NOTE: Hold the outer handle out, and push the door against the body to be sure the striker allows a flush fit.
3. If the door latches properly, tighten the screws and recheck.

Power Mirror Replacement

1. Pry out the mirror cover panel with a flat tip screwdriver, then remove it.

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

2. Disconnect the connector. Remove the nuts, then remove the mirror while holding it.

- Nut locations, 3
 $5 \times 0.8 \mathrm{~mm}$ $4 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{0 . 4} \mathrm{kgf} \cdot \mathrm{m}$, $3 \mathrm{lbf} \cdot \mathrm{ft})$

3. Installation is the reverse of the removal procedure.

Manual Mirror Replacement

1. Remove the cap and screw, then remove the control knob.
2. Pry out the mirror cover panel with a flat tip screwdriver, then remove it.

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

- Screw location, 1

3. Remove the nuts, then remove the mirror while holding it.

- Nut locations, 3

4. Installation is the reverse of the removal procedure.

Mirrors

Mirror Holder Replacement

Power mirror:

1. Insert a screwdriver in the mirror housing through the service hole, and loosen the actuator retaining screw.

2. Pull out the mirror holder from the mirror housing.
3. Pull the lock cap stopper and remove the stopper pin, then separate the actuator and mirror holder.

NOTE: The power mirror with defogger can not separate the actuator and mirror holder.

4. Installation is the reverse of the removal procedure.

NOTE: Apply grease to the locations indicated by the arrows.

Manual mirror:

1. Carefully pry out the mirror holder with a flat tip screwdriver as shown.

CAUTION: To prevent damage to the mirror, wrap the end of a flat tip screwdriver with a shop towel.

2. Installation is the reverse of the removal procedure.

NOTE: Apply grease to the locations indicated by the arrows

Mirror Visor and Mirror Cover Replacement

NOTE: The mirror visor and mirror cover replacement procedures shown are for the power mirror. The manual mirror visor and cover can be replaced in the same manner.

1. Remove the mirror holder (see page 20-18).
2. Turn the mirror base forward, then remove the screws.

3. Detach the hooks, then remove the mirror visor.

4. Remove the screws, then remove the mirror cover.

- Screw locations

5. Installation is the reverse of the removal procedure.

Mirrors

Rearview Mirror Replacement

1. Remove the rubber damper.
2. Pry the cover off using the end of a flat tip screwdriver.

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.
3. Remove the screws, then remove the rearview mirror.
4. Installation is the reverse of the removal procedure.

Windshield, Rear Window, Quarter Glass

Index

NOTE: The numbers after the part names show the quantities of the parts used.

Removal/Installation Procedures Flow

Parts

Part Number

Adhesive kit $\left.-\quad \begin{array}{l}\text { Low temperature } \\ 08718-99960 \\ \text { High temperature } \\ 08718-99961\end{array}\right\}$

Contents
Comment

NOTE:

- Both kits have two types of adhesive primer: one for the body (metal), and one for glass.
- Always use new genuine Honda adhesive, or equivalent.
- Do not use the adhesive if six months have elapsed since date of manufacture.
- Store adhesive in a cool, dry place.
- Open only immediately before you are going to use it.

Tools

Tool/Material

Glass or steel plate
Putty knife
Caulking gun
Suction cups
Knife
Awl
Two wood sticks
Toluene or alcohol

Remarks

To mix adhesive and hardener on
To mix adhesive and remove excess
To apply adhesive to windshield
To install windshield
To scrape bonding surface around window opening
To make hole through existing adhesive for piano wire
To hold piano wire
To clean bonding surfaces

Workable Time

Adhesive workable time varies widely according to temperature, so choose the correct adhesive kit for the temperature range you will be working in.
After mixing and applying adhesive, you should install the windshield within the time shown on the chart.

For example, when the ambient temperature is $25^{\circ} \mathrm{C}$ ($77^{\circ} \mathrm{F}$), the glass should be installed within 45 minutes using the high temperatue type adhesive.
Kit part numbers and contents are listed on the page before.

Hardening Time

Hardening time can be shortened by heating with infrared light.

For example, the adhesive will start to harden within 270 minutes mixing at $20^{\circ} \mathrm{C}\left(63^{\circ} \mathrm{F}\right)$. If however, it is heated to $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$, it will start to harden within 90 minutes.

Broken Windshield Removal

For some types:

SRS wire harnesses are routed near the dashboard and steering column.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

Remove as much broken windshield as possible with a vacuum cleaner.
Blow out the glass in the heater and behind the dashboard with low pressure compressed air.

A warning Wear eye protection while using the air gun.

1. Set the temperature control dial to COOL.
2. Select the $\rightarrow \boldsymbol{f}$ to the mode control button.
3. Make sure the recirculation button is OFF.
4. Blow compressed air throught the defroster center vent outlet.
5. Remove the blower duct, and remove any glass from the air mix chamber.
6. Remove any glass from the top of the vent/defrost door.
7. Remove any glass from top and bottom of carpet and seats with a vacuum cleaner.

NOTE: It is recommended to remove the front seats to shake off any glass (see page 20-51).

Windshield

Removal

CAUTION:

- Wear gloves to remove and install the windshield.
- Use seat covers to avoid damaging any surfaces.

1. To remove the windshield, first remove the:

- Front pillar trim (see page 20-48)
- Headliner (see page 20-50)
- Front wipers and air scoop (see section 23)

2. Detach the clips from the retainers, then remove both side moldings as shown.

NOTE: If necessary, replace any damaged clips.

3. Remove the right and left glass brackets.

4. Peel off the upper molding.

NOTE: When the upper molding removal is difficult, cut the upper rubber portion (1) off, then cut the side rubber portion (2).

5. Remove the other retainers from the body.

Installation

6. Apply protective tape to along the edge of the dashboard and body as shown.
Using an awl, make a hole through the rubber dam and adhesive from inside the car. Push the piano wire throught the hole, and wrap each end around a piece of wood.

PROTECTIVE TAPE

7. With a helper on the outside, pull the piano wire back and forth in a sawing motion, and carefully cut through the rubber dam and adhesive around the entire windshield.

CAUTION: Hold the piano wire as close to the windshield as possible to prevent damage to the body and dashboard.

8. Carefully remove the windshield.

1. Scrape the old adhesive smooth with a knife to a thickness of about 2 mm (0.08 in) on the bonding surface around the entire windshield opening flange.

NOTE:

- Do not scrape down to the painted surface of the body; damaged paint will interfere with proper bonding.
- Remove the rubber dam from the body.
- Mask off surrounding surfaces before painting.

2. Clean the body bonding surface with a sponge dampened in alcohol.

NOTE: After cleaning, keep oil, grease and water from getting on the surface.
3. If the old windshield is to be reinstalled, use a putty knife to scrape off all traces of old adhesive, then clean the windshield surface with alcohol where new adhesive is to be applied.

NOTE: Make sure the bonding surface is kept free of water, oil and grease.

CAUTION: Avoid setting the windshield on its edges; small chips may later develop into cracks.

NOTE:

- Clean the shadowed area.
- Clean the area (A) as shown.

(cont'd)

Windshield

Installation (cont'd)

4. Center and glue the upper molding to the upper edge of the windshield.

5. Glue the rubber dams to the inside face of the windshield as shown, to contain the adhesive during installation.

NOTE: Be careful not to touch the windshield where adhesive will be applied.

6. Glue the dashboard seal to the inside face of the windshield as shown.

NOTE: Be careful not to touch the windshield where adhesive will be applied.

7. Install the glass brackets and retainers as shown.

NOTE: The numbers after the part names show the quantities of the parts used.

8. Set the windshield on the glass brackets, then center it in the opening. Make alignment marks across the windshield and body with a grease pencil at the four points shown.

9. Remove the windshield.
10. With a sponge, apply a light coat of glass primer around the edge of the windshield as shown, then lightly wipe it off with gauze or cheesecloth.

NOTE:

- Do not apply body primer to the windshield, and do not get body and glass primer sponges mixed up.
- Never touch the primed surfaces with your hands. If you do, the adhesive may not bond to the windshield properly, causing a leak after the windshield is installed.
- Keep water, dust, and abrasive materials away from the primed surface.
: Apply glass primer here.

Windshield

Installation (cont'd)

11. With a sponge, apply a light coat of body primer to the original adhesive remaining around the windshield opening flange. Let the body primer dry for at least 10 minutes.

NOTE:

- Do not apply glass primer to the body, and be careful not to mix up glass and body primer sponges.
- Never touch the primed surfaces with your hands.
- Mask off the dashboard before painting the flange.

YIII/, Apply body primer here.

12. Thoroughly mix the adhesive and hardener together on a glass or metal plate with a putty knife.

NOTE:

- Clean the plate with a sponge and alcohol before mixing.
- Follow the instructions that come with the adhesive.

13. Before filling a cartridge, cut the end of the nozzle as shown.

Cut nozzle end as shown.

14. Pack adhesive into the cartridge without air pockets to ensure continuous delivery. Put the cartridge in a caulking gun, and run a bead of adhesive around the edge of the windshield as shown.

NOTE: Apply the adhesive within 30 minutes after applying the glass primer.

15. Use suction cups to hold the windshield over the opening, align it with the alignment marks made in step 8, and set it down on the adhesive. Lightly push on the windshield until its edge is fully seated on the adhesive all the way around.

NOTE: Do not close or open the doors until the adhesive is dry.

16. Install the clips on both side moldings.
\triangleright Clip locations

17. Scrape or wipe the excess adhesive off with a putty knife or towel.

NOTE: To remove adhesive from a painted surface or the windshield, wipe with a soft shop towel dampened with alcohol.
18. Install both side moldings.

19. Let the adhesive dry for at least one hour, then spray water over the windshield and check for leaks. Mark leaking areas, and let the windshield dry, then seal with sealant.

NOTE:

- Let the car stand for at least four hours after windshield installation. If the car has to be used within the first four hours, it must be driven slowly.
- Keep the windshield dry for the first hour after installation.
- Check that the ends of the side molding are set under the air scoop.

20. Reassemble all removed parts.

NOTE:

- Install the rearview mirror rubber damper after the adhesive has dryed thoroughly.
- When you return the car, inform the customer to avoid strong vibrations on the car for about three days.

Rear Window

Removal

CAUTION:

- Wear gloves to remove and install the rear window.
- Do not damage the defroster grid lines.

1. To remove the rear window, first remove:

- Trunk lid (see page 20-90)
- Rear seat cushion (see page 20-63)
- Rear shelf trim panel (see page 20-48)
- Gusset cover (see page 20-48)
- Side trim panel (see page 20-48)
- Quarter trim panel (see page 20-48)
- Rear shelf (see page 20-48)

2. Disconnect the defroster leads, and remove their holders.

NOTE: Avoid scratching the rear window with the cutter blade.
3. Remove the clips, then remove the lower cover.

NOTE: Use a clip remover to remove the clips.

4. Peel off the molding.

NOTE: When molding removal is difficult, cut the molding with a knife.

5. Pull down the rear of the headliner (see page 20-50).

CAUTION: Take care not to bend the headliner excessively.
6. Apply protective tape to the edge of the body as shown.
Using an awl, make a hole through the adhesive from inside the car. Push the piano wire through the hole and wrap each end around a piece of wood.

Installation

7. With a helper on the outside, pull the piano wire back and forth in a sawing motion, and carefully cut through the adhesive around the entire rear window.

CAUTION: Hold the piano wire as close to the rear window as possible to prevent damage to the body.

8. Carefully remove the rear window.

1. Scrape the old adhesive smooth with a knife to a thickness of about 2 mm (0.08 in) on the bonding surface around the entire rear window opening flange.

NOTE:

- Do not scrape down to the painted surface of the body; damaged paint will interfere with proper bonding
- Remove the upper and lower fasteners from the body.
- Mask off surrounding surfaces before applying primer.

2. Clean the body bonding surface with a sponge dampened in alcohol.

NOTE: After cleaning, keep oil, grease and water from getting on the surface.
3. If the old rear window is to be reinstalled, use a putty knife to scrape off all traces of old adhesive, then clean the rear window surface with alcohol where new adhesive is to be applied.

NOTE: Make sure the bonding surface is kept free of water, oil and grease.

CAUTION: Avoid setting the rear window on its edges; small chips may later develop into cracks.

NOTE: Clean the shadowed area.

Rear Window

Installation (cont'd)

4. Apply the double-faced adhesive tape to the inside of the rear window as shown.

5. Glue the molding around the edge of the rear window as shown.

6. Install the upper fasteners, and glue the lower fasteners to the body as shown.

NOTE: The numbers after the part names show the quantities of the parts used.

7. Glue the side upper and lower spacers and fasteners to the inside face of the rear window and molding as shown.

NOTE: The numbers after the part names show the quantities of the parts used.

- : Spacer, fastener locations

8. Set the rear window, then center it in the opening. Make alignment marks across the rear window and body with a grease pencil at the four points shown.

9. Remove the rear window.
10. With a sponge, apply a light coat of glass primer around the edge of the rear window as shown, then lightly wipe it off with gauze or cheesecloth.

NOTE:

- Do not apply body primer to the rear window, and do not get body and glass primer sponges mixed up.
- Never touch the primed surfaces with your hands. If you do, the adhesive may not bond to the rear window properly, causing a leak after the rear window is installed.
- Keep water, dust, and abrasive materials away from the primed surface.

: Apply glass primer here.

11. With a sponge, apply a light coat of body primer to the original adhesive remaining around the rear window opening flange. Let the body primer dry for at least 10 minutes.

NOTE:

- Do not apply glass primer to the body, and be careful not to mix up glass and body primer sponges.
- Never touch the primed surfaces with your hands.

12. Thoroughly mix the adhesive and hardener together on a glass or metal plate with a putty knife. Follow the instructions that came with the adhesive.

NOTE: Clean the plate with a sponge and alcohol before mixing.
13. Before filling a cartridge, cut the end of the nozzle as shown.

Cut nozzle end as shown.

Rear Window

Installation (cont ${ }^{\text {d }}$)

14. Pack adhesive into the cartridge without air pockets to ensure continuous delivery. Put the cartridge in a caulking gun, and run a bead of adhesive around the edge of the rear window as shown.

NOTE: Apply the adhesive within 30 minutes after applying the glass primer.

15. Use suction cups to hold the rear window over the opening, align it with the alignment marks made in step 8 and set it down on the adhesive. Lightly push on the rear window until its edges are fully seated on the adhesive all the way around.

NOTE: Do not close or open the doors until the adhesive is dry.

16. Scrape or wipe the excess adhesive off with a putty knife or towel.

NOTE: To remove adhesive from a painted surface or the rear window, use a soft shop towel dampened with alcohol.
17. Install the lower cover.

18. Let the adhesive dry for at least one hour, then spray water over the rear window and check for leaks. Mark leaking areas, let the rear window dry, then seal with sealant.

NOTE: Let the car stand for at least four hours after rear window installation. If the car has to be used within the first four hours, it must be driven slowly.
19. Raise the headliner back up into position, then install:

- Rear pillar trim panel
- Rear shelf
- Rear seat side bolsters

NOTE: When you return the car, inform the customer to avoid strong vibrations on the car for three days.

Quarter Glass

Removal

CAUTION:

- Wear gloves to remove and install the quarter glass.
- Use seat covers to avoid damaging any surfaces.

1. To remove the quarter glass, first remove the:

- Rear seat cushion (see page 20-63)
- Rear shelf trim panel (see page 20-48)
- Gusset cover (see page 20-48)
- Side trim panel (see page 20-48)
- Quarter window trim (see page 20-48)
- Quarter trim panel (see page 20-48)
- Side window molding (see page 20-99)

2. From inside the car, use a knife to cut through the quarter glass adhesive all the way around, then remove the quarter glass.

NOTE: If there is damage on the molding, replace the quarter glass, molding and clips as an assembly.

3. Remove any broken clips from the body.

Installation

1. Scrape the old adhesive smooth with a knife to a thickness of about 2 mm (0.08 in) on the bonding surface around the entire quarter glass opening flange.

NOTE:

- Do not scrape down to the painted surface of the body; damaged paint will interfere with proper bonding.
- Mask off surrounding surfaces before applying primer.

2. Clean the body bonding surface with a sponge dampened in alcohol.

NOTE: After cleaning, keep oil, grease and water from getting on the surface.
3. If the quarter glass is to be reinstalled, use a putty knife to scrape off all traces of old adhesive, then clean the quarter glass surface with alcohol where adhesive is to be applied.

NOTE: Make sure the bonding surface is kept free of water, oil and grease.

CAUTION: Avoid setting the quarter glass on its edges; small chips may later develop into cracks.

Clean the shadowed area all the way around.

Quarter Glass

Installation (cont'd)

4. If any of the clips are broken on the quarter glass you are installing, seal their body holes with pieces of urethane tape.

5. Apply the double-faced adhesive tapes to the molding as shown.

NOTE:

- Be careful not to touch the quarter glass where adhesive will be applied.
- Do not peel the separator off the double-faced adhesive tapes.

6. If the quarter glass you are installing has had the clips cut off, set it upright on the quarter glass opening. Make alignment marks across the quarter glass and the body with a grease pencil at the three points shown.

QUARTER GLASS
7. With a sponge, apply a light coat of body primer to the original adhesive remaining around the quarter glass opening flange.
Let the body primer dry for at least 10 minutes.

NOTE:

- Do not apply glass primer to the body, and be careful not to mix up glass and body primer sponges.
- Never touch the primed surfaces with your hands.
: Apply body primer here.

8. With a sponge, apply a light coat of glass primer to the inside face of the quarter glass as shown, then lightly wipe it off with gauze or cheesecloth.

NOTE:

- Do not apply body primer to the quarter glass, and do not get body and glass primer sponges mixed up.
- Never touch the primed surfaces with your hands.
If you do, the adhesive may not bond to the quarter glass properly, causing a leak after the quarter glass is installed.
- Keep water, dust, and abrasive materials away from the primed surface.

IVII,

: Apply glass primer here.

9. Thoroughly mix the adhesive and hardener together on a glass or metal plate with a putty knife.

NOTE:

- Clean the plate with a sponge and alcohol before mixing.
- Follow the instructions that came with the adhesive.

10. Before filling cartridge, cut the end of the nozzle as shown.

Cut nozzle end as shown.

11. Pack adhesive into the cartridge without air pockets to ensure continuous delivery. Put the cartrige in a caulking gun, and run a bead of adhesive around the edge of the quarter glass as shown.

NOTE:

- After applying the adhesive, peel the separator . off the double-faced adhesive tapes.
- Apply the adhesive within 30 minutes after applying the glass primer.

Quarter Glass

Installation (cont'd)

12. Use suction cups to hold the quarter glass over the opening, align the clips or the marks made in step 6, and set it down on the adhesive. Lightly push on the quarter glass until its edges are fully seated on the adhesive all the way around.

NOTE: Do not close or open the doors until the adhesive is dry.

13. Scrape or wipe the excess adhesive off with a putty knife or towel.

NOTE: Use a soft shop towel dampened with alcohol to remove adhesive from a painted surface or the quarter glass.
14. Let the adhesive dry for at least one hour, then spray water over the quarter glass and check for leaks.
Mark leaking areas and let the quarter glass dry, then seal with sealant.

NOTE: Let the car stand for at least four hours after quarter glass installation. If the car has to be used within the first four hours, it must be driven slowly.
15. Reinstall all remaning removed parts.

NOTE: When you return the car, inform the customer to avoid strong vibrations on the car for about three days.

Sunroof

Index

Sunroof

Troubleshooting

Symptorm	Probable Cause
Water leaks	1. Clogged drain tube. 2. Gap between glass weatherstrip and roof panel. 3. Defective or improperly installed glass weatherstrip. 4. Gap between drain seal and roof panel.
Wind noise	1. Excessive clearance between glass weatherstrip and roof panel.
Deflector noise	1. Improper clearance between deflector seal and frame seal. 2. Insufficient deflector extension. 3. Deformed deflector.
Motor noise	1. Loose motor. 2. Worn gear or bearing. 3. Cable assembly deformed.
Glass does not move, but motor turns	1. Clutch out of adjustment. 2. Foreign matter stuck between guide rail and slider. 3. Inner cable loose. 4. Cable assembly not attached properly.
Glass does not move and motor does not turn (glass can be moved with sunroof wrench)	1. Blown fuse. 2. Faulty switch. 3. Battery run down. 4. Defective motor. 5. Faulty relay.

Glass Height Adjustment

The roof panel should be even with the glass weatherstrip, to within $1 \pm 0.5 \mathrm{~mm}(0.04 \pm 0.02 \mathrm{in})$ all the way around. If not, slide the sunshade back, and:

1. Remove the bracket cover (see page 20-42).
2. Loosen the nuts, and install the shims between the glass and glass bracket as shown.

Shim thickness: Max. 2 mm (0.08 in)
3. Repeat on opposite side if necessary.

Rear Edge Closing Adjustment

Open the glass about a foot, then close it to check where rear edge begins to rise. If it rises too soon and seats too tightly against the roof panel, or too late and does not seat tightly enough, adjust it.

1. Open the glass fully.
2. Remove the rail covers from both sides, and loosen the nuts.
3. Move the lift-up guides and slide stopper forward or backward, then tighten the nuts, and recheck roof closing.

The lift-up guides have pitches of 1 mm (0.04 in) each and can be adjusted 2 pitches forward or backward.
4. If necessary, lower the rear of the headliner, remove the motor, then adjust the inner cables (location of sliders) until they are parallel.

Wind Deflector Adjustment

NOTE: A gap between deflector seal and roof panel will cause wind noise when driving at high speed with the sunroof open.

1. Open the sunroof and pry the rail covers off both sides (see page 20-43).
2. Loosen the nuts.

NOTE: The wind deflector can be adjusted 2 mm (0.08 in) forward or backward.

3. Adjust the wind deflector forward or backward so the edge of its seal touches the roof panel evenly. The deflector seal should touch the roof panel across entire front edge.

NOTE: The height of the deflector arm when open cannot be adjusted. If damaged or deformed, replace it (page 20-44).

Sunroof

Glass Replacement

1. Slide the sunshade all the way back.
2. Open the glass as shown.

3. Pry out the plug from each bracket cover, remove the screw, and slide the bracket cover off to the rear.

- Screw locations, 2

4. Remove the nuts from the glass brackets on both sides.

5. Remove the glass by lifting up and pulling forward as shown.

NOTE: Do not damage the roof panel.

6. Installation is the reverse of the removal procedure.
7. Check for water leaks.

NOTE: Do not use high pressure water.

Slide Stopper, Lift-up Guide and Glass Bracket Replacement

1. Remove the glass (see page 20-42).
2. Remove the motor (see page 20-44).
3. Slide the glass bracket to the rear.
4. Remove the rail cover, then remove the slide stopper and lift-up guide.

5. Remove the rail holder cover and sunshade rail holder while lifting the guide rail up.

NOTE: Take care not to bend the guide rail.

6. Slide the glass bracket forward while lifting the guide rail up.

NOTE: Take care not to bend the guide rail.

7. Remove the link lifter, then separate the glass bracket and lift-up link.

NOTE: When installing, apply grease to the sliding portion.

8. Installation is the reverse of the removal procedure.

NOTE:

- Before installing the motor, make sure both sliders are parallel.
- After installing the glass, adjust the lift-up guide and slide stopper on each side (see page 20-41).

Sunroof

Wind Deflector Replacement

1. Open the glass fully.
2. Remove the rail cover (see page 20-43).
3. Remove the wind deflector.

- Nut locations, 2

4. Installation is the reverse of the removal procedure.

NOTE: Adjust the wind deflector alignment (see page 20-41).

Motor, Drain Tube and Frame Replacement

CAUTION: Be careful not to damage the seats, dashboard and other interior trim.

1. Remove the glass (see page 20-42) and headliner (see page 20-50).
2. Disconnect the connector, then remove the motor, if necessary.

NOTE: Make sure both sliders are parallel when installing the motor.

3. Disconnect the drain tubes.
4. Disconnect the connector, then remove the frame from the car.

NOTE: You may require assistance when removing the frame.

5. Pull the drain tubes out the front and rear pillars.

NOTE: Before pulling out the drain tube, tie a string to the end of it so it can be reinstalled.

6. Installation is the reverse of the removal procedure.

NOTE:

- When installing the frame, first attach the rear hooks, then align the frame with the pins on the body.
- When connecting the drain tube, slide it over the frame nozzle at least $10 \mathrm{~mm}(0.4 \mathrm{in})$.
- Install the tube clip as shown.

- Clean the surface of the frame.
- Check the frame seal.
- Check for water leaks.

Sunroof

- Guide Rails, Sunshade and Cable Assembly Replacement

1. Remove the frame from the car (see page 20-44).
2. Remove the motor (see page 20-44).
3. Remove the wind deflector (see page 20-44).
4. Remove the rail cover, slide stopper and lift-up guide on each side (see page 20-43).
5. Lift and remove both guide rails and the cable assembly from the frame.
Remove the sunshade.
NOTE: Take care not to bend the cable tubes.

6. Slide the guide rail forward, then remove it.

NOTE: Take care not to bend the inner cable.

7. Remove the link lifter, glass bracket and lift-up link from the slider (see page 20-43).
8. Installation is the reverse of the removal procedure.

NOTE:

- Damaged parts should be replaced.
- Apply grease to the sliding portion.
- Fill the groove in each grommet with sealant.

- Glue the frame seal securely.

Opening Drag Check (Motor Removed)

Before installing the motor, measure the effort required to open the glass using a spring scale as shown.

CAUTION: When using a spring scale, protect the leading edge of the glass with a shop towel.

If load is over 40 N ($4 \mathrm{kgf}, 9 \mathrm{lbf}$), check side clearance and glass height adjustment (see page 20-40).

Closing Force Check (Motor Installed)

1. After installing all removed parts, have a helper hold the switch to close the glass while you measure force required to stop it. Attach a spring scale as shown. Read the force as soon as the glass stops moving, then immediately release the switch and spring scale.

CAUTION: When using a spring scale, protect the leading edge of the glass with a shop towel.

Closing Force: 200-290 N
(20-30 kgf, 44-66 lbf)

2. If the force is not within specification, install a new lock washer, adjust the tension by turning the motor clutch adjusting nut, and bend the lock washer against the motor clutch adjusting nut.

Interior Trim

Replacement

CAUTION:

- Wear gloves to remove and install the trim and panels.
- When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

NOTE: Take care not to scratch the trim and panels.

Disassemble in numbered sequence.

Installation is the reverse of the removal procedure.
NOTE:

- If necessary, replace any damaged clips.
- Before attaching the side trim panel and quarter trim panel, make sure there are no twists or kinks in the front and rear seat belt.
- Make sure the door and quarter window trims are installed securely.
- Apply clear sealant (cemedine \#8500, or equivalent) to location (A) on the body.

Trunk Trim

Replacement

CAUTION:

- Wear gloves to remove and install the panels.
- When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

NOTE: Take care not to scratch the panels.
Disassemble in numbered sequence.
\triangleright : Clip locations

(4) RIGHT ACCESS
(2) RIGHT TRUNK SIDE PANEL
To remove, first remove the right gusset cover (see page 20-48).

(6) REAR TRIM PANEL

Installation is the reverse of the removal procedure.
NOTE: If necessary, replace any damaged clips.
(5) LEFT ACCESS

(1) SPARE TIRE LID

Headliner

Replacement

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.
NOTE:

- Take care not to bend and scratch the headliner.
- Be careful not to damage the dashboard and other interior trim.
- Fold the front seat-back backward.

1. Remove:

- Door sill molding (see page 20-48)
- Door trim (see page 20-48)
- Front pillar trim (see page 20-48)
- Rearview mirror (see page 20-20)
- Sunvisors and holders
- Grab handles
- Ceiling light (see section 23)
- Upper portion of the quarter trim panel (see page 20-48)
- Roof trim (sunroof model)

2. Detach the clips, then remove the headliner.

NOTE: If necessary, remove the sunvisor bracket (without vanity mirror light) as shown.

ROOF TRIM (Sunroof model)

D: Clip locations

3. Remove the headliner from the passenger's door opening.
4. Installation is the reverse of the removal procedure.

NOTE:

- When installing the headliner, be careful not to fold or bend it. Also, be careful not to scratch the body.
- Install the ceiling light harness to the headliner securely with a tape.
- Check that both sides of the headliner are securely attached to the trim and panels.
- When installing the roof trim, install the joint toward the rear.

Front Seat Removal

NOTE: Take care not to scratch the seat covers and body.

1. Slide the front seat backward, then remove the bolts.

- Bolt locations, 2

$10 \times 1.25 \mathrm{~mm}$ $34 \mathrm{~N} \cdot \mathrm{~m} 13.5 \mathrm{kgF} \cdot \mathrm{m}$, $25 \mathrm{lbf} . \mathrm{tt} \mid$

2. Slide the front seat forward, then remove the seat track end covers.

CAUTION: When prying with a flat tip screwdriver. wrap it with protective tape to prevent damage.

3. Remove the bolts.

- Bolt locations. 2

4. Lift the front seat, then disconnect the up-down motor connector (driver's, for some types).
If so equipped, disconnect the seat belt switch comnector (driver's).

5. Carefully remove the front seat through the door opening.
6. Installation is the reverse of the removal procedure.

Seats

Front Seat Replacement

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

NOTE:

- Take care not to scratch the seat covers and body.
- Before removing the front seat, raise the seat cushion to its maximum height.

1. Remove the front seat through the door opening (see page 20-51).
2. Remove the recline cover.
*: Screw locations, 2

Power height adjustable:
Disconnect the connector.

Manually adjustable:

3. Remove the bracket cover (power height adjustable).

4. Remove the center cover.

Power height adjustable:
NOTE: Remove the seat belt buckle (see page 20 67).

Manually adjustable:

5. Remove the back cover.

6. Release the hook, and fold the seat-back cover and pad, then remove the bolts.

7. Remove the pivot nut.

- Pivot nut location, 1

8. Remove the seat-back.

NOTE:

- Take care not to bend the hinge bracket.
- If so equipped, disconnect the rear seat access cable from the seat-back (see page 20-59).

Seats

Front Seat Replacement (cont'd)

9. Disconnect the connector, then remove the wire harness from the seat cushion (power height adjustable).

10. If so equipped, remove the recline cable and rear seat access cable from the seat cushion by releasing the clips (see page 20-59).
11. Remove the seat cushion.

NOTE: Take care not to bend the joint rod.

- Bolt locations, 4

12. If necessary, remove the washer as shown, then remove the joint rod.

13. Installation is the reverse of the removal procedure.

NOTE:

- When installing the seat-back, make sure the bushing is installed to the hinge bracket properly.

- Make sure the wire harness is fastened securely.

Front Seat Cover Replacement

CAUTION: Wear gloves to remove and install the seat covers.

NOTE: Take care not to tear the seams or damage the seat covers.

Seat-back cover removal:

1. Slide the front seat forward and fold the seat-back forward.
2. Remove the back cover (see page 20-53).
3. Remove the headrest and headrest guides.

- Screw location, 1

HEADREST GUIDE

4. If so equipped, remove the lumbar support knob, and remove the trim plate (see page 20-59).

5. Loosen the seat-back cover by releasing all the hooks and inside springs.

6. Pull back the edge of the seat-back cover all the way around, then remove the seat-back cover.

7. Installation is the reverse of the removal procedure.

NOTE: To prevent wrinkles when installing a seatback cover, make sure the material is stretched evenly over the pad before securing the inside springs and hooks.
(cont'd)

Seats

- Front Seat Cover Replacement (cont'd)

Seat cushion cover removal:

NOTE: Remove the clips as shown.

1. Remove the seat cushion (see page 20-52).
2. Remove the clips and hooks from under the seat cushion, then loosen the seat cushion cover.

3. Remove the clips, hooks and inside springs.

4. Pull back the edge of the seat cushion cover all the way around, then remove the seat cushion cover.

5. Installation is the reverse of the removal procedure.

NOTE:

- To prevent wrinkles when installing a seat cushion cover, make sure the material is stretched evenly over the pad before securing the clips, hooks and inside springs.
- Replace the released clips with new ones.

UPHOLSTERY RING PLIERS

Commercially available.

Front Seat Linkage Index

Power height adjustable:

(cont'd)

Seats

Front Seat Linkage Index (cont'd)

Manually adjustable (driver's):

Manually adjustable (passenger's):

NOTE:

- Take care not to bend the recline cable and rear seat access cable.
- After installing the seat tracks, adjust the recline cable and rear seat access cable.

ゆ: Clip locations, 3

Seats

Recline Adjuster, Slide/Up-down Adjuster Replacement

CAUTION: Wear gloves to remove and install the recline adjuster and slide/up-down adjuster.

NOTE:

- Take care not to scratch the seat covers.
- Before removing the front seat, raise the seat cushion to its maximum height.

1. Remove the frorit seat through the door opening (see page 20-51).
2. Remove the seat-back and seat cushion (see page 20-52).
Remove the wire harness from the front seat linkage (see page 20-54).
3. Separate the recline adjuster and slide/up-down adjuster.

NOTE:

- Replace the front bushing with a new one as described on page 20-61.

- When replacing the rear bushings do not flatten them.

4. Installation is the reverse of the removal procedure.

NOTE:

- Replace the bushings with new ones as follows
-1) Install the bushing.

-2) Hold the bushing down against a metal plate, then flare the edge of the bushing using a center punch as shown.

-3) Flatten the bushing using a flat tip screwdriver as shown.

- Check the recline adjuster and slide/up-down adjuster operations.

Up-down Motor Replacement

CAUTION: Wear gloves to remove and install the updown motor.

NOTE:

- Take care not to scratch the seat covers.
- Before removing the front seat, raise the seat cushion to its maximum height.

1. Remove the front seat through the door opening (see page 20-51).
2. Remove the bolts while holding the up-down motor.

- Bolt locations, 2

UP-DOWN MOTOR
(cont'd)

Seats

Up-down Motor Replacement (cont'd)

3. Disconnect the connector, then remove the updown motor.

- Bolt location, 1

4. Installation is the reverse of the removal procedure.

NOTE:

- Before installing the up-down motor, apply grease to the up-down lead screw.

- Apply liquid thread lock to the bolts.
- Make sure the connector is connected properly.
- Check the up-down motor operation.

Rear Seat Replacement

NOTE: Take care not to scratch the seat covers and body.
Disassemble in numbered sequence.

If necessary, remove the rear seat latch and lock cylinder.

NOTE:

- Pry the rear shelf up after removing the rear shelf trim panel (see page 20-48) and seat lock cover.
- Take care not to bend the lock rod.

: Bolt, screw locations

(2) SEAT CUSHION
$9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}$,
7.2 lbffft)

REAR SEAT
PIVOT BRACKET
$8 \times 1.25 \mathrm{~mm}$ $22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}$, 16 lbffft)

SEAT LOCK

Seats

Rear Seat Replacement (cont'd)

Installation is the reverse of the removal procedure.
NOTE:

- Make sure the seat-back locks securely.
- In necessary, adjust the rear seat latch and seatback.
- Before attaching the seat-back and seat cushion, make sure there are no twists or kinks in the rear seat belts and center belt.

Rear Seat Cover Replacement

CAUTION: Wear gloves to remove and install the seat covers.

NOTE:

- Take care not to tear the seams or damage the seat covers.
- Remove the clips as shown.

Seat-back cover removal:

1. Remove the seat-back (see page 20-63).
2. Pull back the bulkhead cover by releasing the clips and fasteners.

3. Release the clips and hooks, then remove the bulkhead cover.

4. Release all hooks, then loosen the seat-back cover.

5. Pull buck the edge of the seat-back cover all the way around, then release the clips.

6. Installation is the reverse of the removal procedure.

NOTE:

- To prevent wrinkles when installing a seat cover, make sure the material is stretched evenly over the pad before securing the hooks and clips.
- Replace the released clips with new ones.

Seat cushion cover removal:

1. Remove the seat cushion (see page 20-63).
2. Remove all the clips and inside springs from under the seat cushion, then loosen the seat cushion

INSIDE SPRINGS
3. Pull back the edge of the seat cushion cover all the way around, then remove the seat cushion cover.

4. Installation is the reverse of the removal procedure.

NOTE:

- To prevent wrinkles when installing a seat cover, make sure the material is stretched evenly over the pad before securing the hooks and clips.
- Replace the released clips with new ones.

UPHOLSTERY RING PLIERS
Commercially available.

Seat Belts

Front Seat Belt Replacement

CAUTION: Check the front seat belts for damage and replace them if necessary. Be careful not to damage them during removal and installation.

Front seat belt removal:

1. Remove the following parts, and slide the front seat forward fully.

- Door sill molding (see page 20-48)
- Rear seat cushion (see page 20-63)
- Rear shelf trim panel and gusset cover (see page 20-48)
- Side trim panel (see page 20-48)

2. Remove all the anchor bolts, the retractor bolt and the retractor mounting bolt, then remove the front seat belt.

NOTE: When removing the anchor bolts and the retractor bolt, use a 17 mm socket or box-end wrench.
3. Check that the retractor locking mechanism functions as described on page 20-70.
4. Installation is the reverse of the removal procedure.

NOTE:

- Make sure you assemble the washers and collars on the upper and lower bolts.
- Before attaching the center pillar lower trim, make sure there are no twists or kinks in the front seat belt.

Seat belt buckle removal:

1. Remove the front seat (see page 20-51).

NOTE: Before removing the front seat, raise the seat cushion to its maximum height.
2. Remove the following covers (see page 20-52).

- Bracket cover (power height adjustable)
- Center cover (manually adjustable)

3. Disconnect the seat belt switch connector (driver's, for some types), remove the center anchor bolt, then remove the seat belt buckle.
4. Installation is the reverse of the removal procedure.

NOTE: Make sure you assemble the washers and bearing on the center anchor bolt as shown.

Upper and lower anchor bolt construction:

Seat Belts

Rear Seat Belt Replacement

CAUTION: Check the rear seat belts for damage and replace them if necessary. Be careful not to damage them during removal and installation.

1. Remove:

- Rear seat cushion (see page 20-63)
- Door sill molding (see page 20-48)
- Side trim panel (see page 20-48)
- Rear shelf trim panel and gusset cover (see page 20-48)

2. Remove all the anchor bolts, the retractor bolt and the retractor mounting bolts, then remove the rear seat belts and center belts.

NOTE: When removing the anchor bolts and the retractor bolt, use a 17 mm socket or box-end wrench.
3. Check that the retractor locking mechanism functions as described on page 20-70.
4. Installation is the reverse of the removal procedure.

NOTE:

- Make sure you assemble the washers on the upper and center anchor bolt (see page 20-39).
- Before attaching the quarter trim panel, make sure there are no twists or kinks in the rear seat belt.
- Before attaching the seat-back and seat cushion, make sure there are no twists or kinks in the rear seat belts and center belts.

Upper anchor bolt construction:

Retractor bolt construction:

Center anchor bolt construction:

Seat Belts

Inspection

Retractor Inspection

1. Before installing the retractor, check that the seat belt can be pulled out freely.
2. Make sure that the seat belt does not lock when the retractor is leaned slowly up to 15° from the mounted position. The seat belt should lock when the retractor is leaned over 40°.

CAUTION: Do not attempt to disassemble the retractor.
3. Replace the seat belt with a new one if there is any abnormality.

Front:

*: Mounted Position

$\xrightarrow{\text { Forward }}$

Rear:

On-the-Car Seat Belt Inspection

1. Check that the seat belt is not twisted or caught on anything.
2. After installing the anchors, check for free movement on the anchor bolts. If necessary, remove the anchor bolts and check that the washers and other parts are not damaged or improperly installed.
3. Check the seat belts for damage or discoloration. Clean with a shop towel if necessary.

CAUTION: Use only soap and water to clean.
NOTE: Dirt build-up in the metal loops of the upper anchors can cause the seat belts to retract slowly. Wipe the inside of the loops with a clean cloth dampened in isopropyl alcohol.
4. Check that the seat belt does not lock when pulled out slowly. The seat belt is designed to lock only during a sudden stop or impact.
5. Make sure that the seat belt will retract automatically when released.
6. Replace the seat belt with a new one if there is any abnormality.

Replacement

SRS wire harnesses are routed near the carpet.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Remove:

- Front seat (see page 20-51)
- Rear seat cushion (see page 20-63)
- Door sill molding (see page 20-48)
- Rear shelf trim panel and gusset covers (see page 20-48)
- Side trim panel (see page 20-48)
- Front seat belt lower anchor or slide anchor (see page 20-66)
- Front and rear consoles (see page 20-73)
- Kick panel (see page 20-48)
- Opener cover (see page 20-95)

2. Remove the footrest.

NOTE: Loosen the clips using a hex wrench by turning them counterclockwise.
$\triangleright:$ Clip locations, 2

3. Cut the (A) area in the carpet, then pull it back as shown.

Carpet

Replacement (cont'd)

4. Remove the carpet by sliding it rearward.

NOTE: LHD is shown, RHD is symmetrical.

5. Installation is the reverse of the removal procedure.

NOTE:

- Take care not to damage, wrinkle or twist the carpet.
- Make sure the seat harness is routed correctly.
- Slip the slits in the carpet over the hooks.
- Slip the carpet under the heater air vent.

- Reattach the (A) cut area of the carpet (see page 20-71) with a wire tie as shown.

WIRE TIE

- If necessary, replace any damaged clips.

Consoles, Front and Rear

Replacement

SRS wire harnesses are routed near the front console.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

NOTE:

- Take care not to scratch the front and rear consoles, front seats and dashboard.
- LHD is shown, RHD is symmetrical.

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

1. Open the armrest and remove the inner panel.

2. Remove the access lid and screws.

- Screw locations, 2

(cont'd)

Consoles, Front and Rear

Replacement (cont'd)

3. Remove the beverage holder and screw.

4. Remove the rear console.

NOTE:

- Lift up the parking brake lever.
- Detach the hooks by lifting the front of the rear console and sliding it rearward.

5. Remove the ashtray and screws.

- Screw locations, 3

6. Remove the radio panel for some types.

7. Detach the clips by lifting the console panel, and disconnect the connectors (LHD is shown, RHD is symmetrical).

NOTE:

- Take care not to scratch the selecter lever and A/T gear position indicator panel.

8. KE model: Remove the bolts, then remove the stereo radio/cassette and pocket by pulling it out.

9. Remove:

- Dashboard lower cover (see page 20-78).
- Glove box (see page 20-79).

10. Remove the screws.

- Screw locations, 6

11. Remove the front console.

NOTE: Wrap the selector lever and A / T gear position indicator panel with a shop towel to prevent damage.

12. Installation is the reverse of the removal procedure.

Dashboard

Component Removal/Installation

SRS wire harnesses are routed near the dashboard and steering column

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape, and apply protective tape around the related parts, to prevent damage.

Instrument panel removal:
NOTE: LHD is shown, RHD is symmetrical.

1. Remove:

- Console panel (see page 20-73)
- Stereo radio/cassette (see page 20-73)
- Glove box (see page 20-79)

2. Remove the switches and disconnect the connectors.

- Cruise control master switch (KE, KH models)/ sunroof switch
- Panel brightness controller
- Rear window defogger switch

CRUISE CONTROL MASTER SWITCH/SUNROOF SWITCH

3. Remove the heater air vent and disconnect the air mix control cable.

NOTE: Adjust the air mix control cable (see section 21).

4. Lower the steering column and remove the screws.

Carefully pull out the instrument panel.

5. Disconnect the heater control panel connectors.

6. Remove the heater control panel.

(cont'd)

Dashboard

- Component Removal/Installation (cont'd)

7. If necessary, disassemble the center air vent and side air vent (driver's).

- Screw locations، 2

8. Installation is the reverse of the removal procedure.

Dashboard lower cover and knee bolster removal:

1. Remove the coin pocket (LHD).
2. Remove the screw and detach the clips, then remove the dashboard lower cover.

3. Remove the knee bolster (KH model).

4. Installation is the reverse of the removal procedure.

Glove box removal:
NOTE: LHD is shown, RHD is symmetrical.

1. Open the glove box.
2. Remove the screw, then remove the damper from the glove box.
3. Remove the screw and bolts, then remove the glove box.

- Bolt, screw locations

4. Remove the damper and striker.

- Screw locations

5. Installation is the reverse of the removal procedure.

Side air vent (Front passenger's) removal:
NOTE: LHD is shown, RHD is symmetrical.

1. Remove the glove box.
2. Carefully pry the side air vent at the lower edge, then pull it out.
ゆ: Clip locations, 2

NOTE: LHD is shown, RHD is symmetrical.
Carefully pry the side defogger trim at the rear edge, then remove it.

D: Clip location, 1

Dashboard

Replacement Precautions

SRS wire harnesses are routed near the dashboard and steering column.

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

Before removing the dashboard:

A WARNING To avoid accidental deployment and possible injury, always install the protective short connectors on the driver's and front passenger's airbag connectors before working near any SRS wiring.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Install the short connectors (RED).

Driver's:

Remove the access panel, then disconnect the connector between the cable reel and driver's airbag. Connect the short connector (RED) to the driver's airbag connector.

Front passenger's:
Remove the glove box (see page 20-79), then disconnect the connector between the front passenger's airbag and SRS main harness. Connect the short connector (RED) to the front passenger's airbag connector.

FRONT PASSENGER'S

AIRBAG
FRONT PASSENGER'S AIRBAG CONNECTOR

Replacement

NOTE: LHD is shown, RHD is symmetrical.

1. To remove the dashboard, first remove the:

- Front and rear consoles (see page 20-73)
- Dashboard lower cover (see page 20-78)
- Knee bolster (KH model, see page 20-78)
- Glove box (see page 20-79)

2. Lower the steering column (see section 17).

A WARNING To avoid accidental deployment and possible injury, always install the protective short connector on the driver's airbag connector before lowering the steering column (see page 20-80).

NOTE: To prevent damage to the steering column, wrap it with a shop towel.

- Bolt locations, 2

: Nut locations, 2

3. Disconnect the dashboard wire harness connectors. Detach the harness clips.

(cont'd)

Dashboard

Replacement (cont'd)

4. Disconnect the air mix control cable (see page 2077).
5. Disconnect the recirculation control motor connector and resistor connector.

6. Remove the side defogger trim on each side (see page 20-79).
7. Remove the bolts.

- Bolt locations, 6

CAUTION: Use protective tape on the bottom of the front pillar trim.

- To prevent damage to the shift lever (M / T) or selecter lever and A/T gear position indicator panel (A / T), wrap them with a shop towel.

8. If so equipped, remove the front passenger's airbag.
Lift and remove the dashboard.
NOTE: Remove the (A) nut for without front passenger's airbag.

A WARNING To avoid accidental deployment and possible injury, always install the protective short connector on the front passenger's airbag connector when the SRS main harness is disconnected (see page 20-80).

- Nut locations, 5

9. Installation is the reverse of the removal procedure.

NOTE:

- Make sure the dashboard fits onto the guide pin correctly.
- Before tightening the bolts, make sure the dashboard wire harnesses are not pinched, and that the dashboard is not interfering with the air mix control cable.

Bumpers

Front Bumper Replacement

CAUTION: Wear gloves to remove and install the front bumper.

NOTE:

- An assistant is helpful when removing the front bumper.
- Take care not to scratch the front bumper.

1. Remove the front turn signal light, then disconnect the connectors on each side.

2. Remove the bolt and screw on each side.

- : Bolt, screw locations

3. Remove the bolts and clips.
```
- Bolt locations, 4
```


$8 \times 1.25 \mathrm{~mm}$ $22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}$, $16 \mathrm{lbf} \cdot \mathrm{ft})$
\triangleright : Clip locations, 2

4. Lift and remove the front bumper.

NOTE:

- Disconnect the headlight washer hose (KE model).
- If necessary, disassemble the front bumper (see pages 20-84, 85).

5. Installation is the reverse of the removal procedure.

NOTE: Align the front bumper with the front fender and headlight properly, then tighten the bolts.

Bumpers

Front Bumper Disassembly

KG, KH models:

- Bolt, screw locations

KE model:

Bumpers

Rear Bumper Replacement

CAUTION: Wear gloves to remove and install the rear bumper.

NOTE:

- An assistant is helpful when removing the rear bumper and rear bumper beam.
- Take care not to scratch the rear bumper.

1. Remove the screws and clip from each side.

NOTE: If so equipped, remove the rear mud guard.

2. Remove the clips.
\triangleright : Clip locations

3. If so equipped, disconnect the rear side marker light connector on each side and rear fog light connector, then remove the rear bumper.

NOTE:

- Rear fog light: KG model is shown, KE model is symmetrical.
- If necessary, disassemble the rear bumper (see page 20-87).

Remove the nut on each side from under the trunk floor.

5. Open the trunk lid, then remove the rear trim panel (see page 20-49).
Remove the nut on each side.

6. Remove the absorber, bumper beam gusset, rear bumper beam and rear bumper upper beam.

- Nut locations, 4

7. Installation is the reverse of the removal procedure.

Replacement

NOTE:

- An assistant is helpful when removing the hood.
- Take care not to damage the hood and body.
- When removing the clips, use a clip remover.
- Open the hood.

1. If necessary, remove the hood edge protector, hood seal and hood insulator.

2. Disconnect the washer hose, then remove the hood.

NOTE: If necessary, remove the hood hinge.

- Bolt locations, 4

3. Installation is the reverse of the removal procedure.

NOTE:

- If necessary, replace any damaged clips.
- Make sure the hood locks securely.
- Make sure the hood opens properly.
- Adjust the hood alignment (see page 20-89).

Adjustment

NOTE: Before adjusting the hood, loosen each bolt slightly.

1. Adjust the hood hinges right and left, as well as fore and aft, by using the elongated holes.
2. Turn the hood edge cushions, as necessary, to make the hood fit flush with the body at front and side edges.
3. Adjust the hood latch to obtain the proper height at the forward edge.
4. After adjustment, tighten each bolt securely.

NOTE: Move the hood latch right or left until the striker is centered in the hood latch as shown.

Trunk Lid

Replacement

NOTE:

- An assistant is helpful when removing the trunk lid.
- Take care not to damage the trunk lid and body.
- Open the trunk lid.

1. Remove the harness grommet, clip and disconnect the connector.

2. Remove the trunk lid.

- Bolt locations, 4

3. Remove the wire harness from the trunk lid.

NOTE: Before pulling out the wire harness, tie a string to the end of it so you can pull it back in when the trunk lid is reinstalled.
\triangleright : Harness clip locations
KG, KE models, 1
KH model, 3

KH model:
TRUNK LID
LATCH

4. If necessary, remove the trunk lid hinge.

5. If necessary, remove the support strut.

6. Installation is the reverse of the removal procedure.

- Make sure the trunk lid locks securely.
- Make sure the trunk lid opens properly.
- Adjust the trunk lid alignment (see page 20-92).

Trunk Lid

Adjustment

NOTE: Before adjusting the trunk lid, loosen each bolt slightly.

1. Adjust the trunk lid right and left, as well as fore and aft, by using the elongated holes.
2. Turn the trunk lid edge cushions, as necessary, to make the trunk lid fit flush with the body at the rear and side edges.
3. Adjust the fit between the trunk lid and the trunk lid opening by moving the striker.
4. After adjustment, tighten each bolt securely.
TRUNK LID EDGE
CUSHION
 the trunk lid latch as shown.

Opener Cables

Replacement

NOTE:

- When removing the clips, use a clip remover.
- Take care not to bend the opener cables.

Hood Opener Cable:

NOTE: LHD is shown, RHD is symmetrical (except hood latch).

Trunk/Fuel Lid Opener Cables (LHD):
Remove the following parts:

- Rear seat cushion (see page 20-63)
- Door sill molding (see page 20-48)
- Rear shelf trim panel (see page 20-48)
- Spare tire lid (see page 20-49)
- Left gusset cover and left side trim panel (see page 20-48)
- Pull the carpet back, as necessary (see page 20-71)

FUEL LID LATCH

- Rear trim panel and left trunk side panel (see page 20-49)

Opener Cables

Replacement (cont'd)

Trunk/Fuel Lid Opener Cables (RHD):

Remove the following parts:

- Rear seat (see page 20-63)
- Door sill molding (see page 20-48)
- Rear shelf trim panel (see page 20-48)
- Left and right gusset covers, and left side trim panel (see page 20-48)
- Pull the carpet back, as necessary (see page 20-71)

D: Clip locations

- Spare tire lid (see page 20-49)
- Rear trim panel and left trunk side panel (see page 20-49)

Opener and Latch

Replacement

NOTE: Take care not to bend the opener cables.

Hood Release Handle:

NOTE: LHD is shown, RHD is symmetrical.

Hood Latch:

Trunk Lid/Fuel Lid Opener:

NOTE: LHD is shown, RHD is symmetrical.

- Bolt, screw locations

A : Bolt, 2

B : Screw, 1

Installation is the reverse of the removal procedure.

NOTE:

- Make sure each opener cable is connected properly.
- Make sure the hood locks securely.
- Make sure the hood, trunk lid and fuel lid open properly.

Opener and Latch

Replacement (cont'd)

NOTE: Take care not to bend the opener cables.
Striker:

Fuel Lid Latch:

- Bolt locations, 2

FUEL LID LATCH
Remove the fuel lid latch by turning it 90°.

fuel lid latch

Remove the rear trim panel, then pull the rear edge of the left trunk side panel back (see page 20-49).

Installation is the reverse of the removal procedure.
NOTE:

- Make sure each opener cable is connected properly.
- Make sure the trunk lid and fuel lid lock securely.
- Make sure the trunk lid and fuel lid open properly.

FUEL LID LATCH
Push and turn the fuel lid latch to make the lid fit flush with the body.

Trunk Lid Latch and Lock Cylinder

Replacement

NOTE: Take care not to bend the cylinder rod.

1. Remove the bolts.

- Bolt locations, 3

2. Pull the trunk lid latch.

Disconnect the cylinder rod and connector.

3. Disconnect the cylinder rod.

4. Remove the bolt, then pull the lock cylinder out.

- Bolt location, 1

5. Pull the cylinder rod out.

6. Installation is the reverse of the removal procedure.

NOTE:

- Apply grease to the trunk lid latch.

- Make sure the trunk lid locks securely.
- Make sure the trunk lid opens properly.
- Make sure the connector is connected properly.

Trunk Lid Weatherstrip/License Plate Trim

Trunk Lid Weatherstrip Replacement

When installing the trunk lid weatherstrip, align it with the alignment mark on the trunk lid opening.

NOTE:

- Make sure there are no wrinkles in the weatherstrip.
- Check for water leaks.

TRUNK LID WEATHERSTRIP

Forward

License Plate Trim Replacement

CAUTION: Wear gloves to remove and install the license plate trim.

NOTE: Take care not to scratch the trunk lid.

1. Remove the trunk lid latch (see page 20-97).
2. Remove the nuts.

NOTE:

- Take care not to drop the nuts inside the trunk lid.
- Disconnect the license plate light connector, then detach it from the trunk lid (KG, KE models).

3. KG, KE models: Detach the clips, then remove the license plate trim, and remove the grommet.
KH model: Remove the screw and detach the clip, then remove the license plate trim.
4. Installation is the reverse of the removal procedure.

NOTE: If damaged, replace the clip.

Front Grille/Side Window Molding

Front Grille Replacement

NOTE: Take care not to scratch the front grille.

1. Remove the front grille by removing the screws, and push the clips on each side with a flat tip screwdriver as shown.
2. Installation is the reverse of the removal procedure.

Side Window Molding Replacement

NOTE: Take care not to bend the side window molding and body.

- Screw location, 1

-:- Clip locations, 9
 DRIVER

LDING
Remove the screw, and pull the side window molding by hand.

Installation is the reverse of the removal procedure.
NOTE: If necessary, replace any damaged clips.

Roof Molding

Replacement

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.

NOTE: Take care not to scratch the body and roof molding.

1. Pry the roof molding with a flat tip screwdriver as shown.

CAUTION: Use protective tape on the body.

2. Pull and slide the roof molding, then detach the bracket on the end of the roof molding from the pin.

3. Pull the roof molding up, detach the bracket from the pin, then remove the roof molding.

4. Installation is the reverse of the removal procedure.

NOTE:

- Take care not to damage the windshield side molding.
- Make sure the roof molding is installed securely.

Replacement
\triangleright : Clip locations

NOTE: Loosen the screw then remove the lower clip using a clip remover.

\qquad
: Screw locations, 3

NOTE: When removing the side sill panel, the side clips will stay in the body.

To install the side sill panel, remove the side clips from the body, install them on the side sill panel, then install the side sill panel on the car.

NOTE:

- Take care not to twist the side sill panel.
- If necessary, replace any damaged side and lower clips.

Door and Side Moldings

Replacement

CAUTION: When prying with a flat tip screwdriver, wrap it with protective tape to prevent damage.
NOTE:

- To remove the door molding, remove the door panel and plastic cover (see page 20-4).
- Take care not to bend the door molding.
- Before reassembling, clean the door bonding surface with a sponge dampened in alcohol.
- After cleaning, keep oil, grease and water from getting on the surface.
- The steel core in the door molding cannot be restored to it original shape once it is bent. Replace the door molding when the steel core is bent.

\triangleright Clip locations

FRONT SIDE MOLDING
First remove the inner fender.

$$
\mathrm{D} \triangleright, 4
$$

 First remove the side trim panel and plastic cover (see page 20-48).

Installation is the reverse of the removal procedure.
NOTE: If necessary, replace any damaged clips.

Removal

The following materials and tools are required to repair the door molding.

NOTE: Follow the manufacturer's instructions.
Materials: (Reference)

- Stripe remover 3M 08907
- Stripe adhesive remover 3M 08908
- Adhesive tape 3M Super Automotive Attachment Tape

Tools:

- Protective tape
- Film
- Knife or Cutter
- Putty knife
- Sponge or Shop towel
- Alcohol
- Infrared dryer

CAUTION: Wear gloves to remove and install the door molding.

1. Remove the door panel and pull back the plastic cover (see page 20-4).
2. Apply protective tape on and around the molding.

3. Release the clips from inside of the door. Carefully cut the adhesive tape with a knife or cutter while pulling the edge of the molding away from the door as shown.

NOTE: Take care not to scratch or bend the molding.

4. Apply the stripe remover evenly to the bonding surface of the door.

5. Cover the bonding surface of the door with a film, then heat to $40-50^{\circ} \mathrm{C}\left(104-122^{\circ} \mathrm{F}\right)$ for $5-10 \mathrm{~min}$ utes with an infrared dryer.

NOTE: Use care when heating to prevent deformation of the door.

6. Scrape the adhesive tape with a putty knife.

(cont'd)

Door Molding

Removal (cont'd)

7. For removal of adhesive tape residue, follow-up with stripe adhesive remover, then scrape the adhesive tape with a putty knife.
8. Peel off the protective tape, then clean the bonding surface with a sponge dampened in alcohol.

NOTE: Make sure the bonding surface is kept free or water, oil and grease.
9. Remove the clips from the molding.

NOTE: If necessary, replace any damaged clips.
10. Apply the stripe remover evenly to the bonding surface of the molding.

11. Wrap the molding with film, then heat to $40-50^{\circ} \mathrm{C}$ (104-122 ${ }^{\circ} \mathrm{F}$) for $5-10$ minutes with an infrared dryer.

NOTE: Use care when heating to prevent deformation of the molding.

12. Scrape the adhesive tape with a putty knife.

13. For removal of adhesive tape residue, follow-up with stripe adhesive remover, then scrape the adhesive tape with a putty knife.
14. Peel off the protective tape, then clean the molding with a sponge dampened in alcohol.

NOTE: Make sure the bonding surface is kept free of water, oil and grease.

Installation

1. Glue the new adhesive tape to the molding as shown.
\$1110 : Adhesive tape locations

NEW ADHESIVE TAPE Thickness: 1.2 mm (0.05 in)
2. Install the clips on the molding.
3. Heat the bonding surface of the door and door molding with an infrared dryer.
Door: $\quad 40-60^{\circ} \mathrm{C}\left(104-140^{\circ} \mathrm{F}\right)$
Molding: $20-30^{\circ} \mathrm{C}\left(68-86^{\circ} \mathrm{F}\right)$
NOTE: Use care when heating to prevent deformation of the molding.
4. Align the molding with the clip locations and set the molding. Lightly push on the molding until its edge is fully seated on the adhesive tape.

NOTE: Do not spray water on the molding within the first 24 hours after installation.
5. Reassemble all removed parts.

Rear Emblems, Fenderwell Trim/Wheelhouse Protector and Rear Air Outlet

Rear Emblems Installation

Apply the rear emblems where shown.

NOTE:

- Before applying, clean the body surface with a sponge dampened in alcohol.
- After cleaning, keep oil, grease and water from getting on the surface.
- When applying, make sure there are no wrinkles in the emblems.

Attachment Points (Reference):

ACCORD COUPE Emblem

VERSION Emblem

Fenderwell Trim/Wheelhouse Protector and Rear Air Outlet Replacement

NOTE:

- Take care not to bend the fenderwell trim.
- Before installing the fenderwell trim, clean the body bonding surface with a sponge dampened in alcohol.
- After cleaning, keep oil, grease or water from getting on the surface.
- Screw location, 1

Sub-frame Torque Sequence:
CAUTION: After loosening the sub-frame mounting bolts, be sure to replace them with new ones.

SPECIAL BOLT
$12 \times 1.25 \mathrm{~mm}$
$64 \mathrm{~N} \cdot \mathrm{~m}$ ($6.5 \mathrm{kgf} \cdot \mathrm{m}$,
47 lbfft)
앙
Replace.

47 Ibf.ft)
Replace.
$50 \mathrm{~N} \cdot \mathrm{~m}(5.1 \mathrm{kgf} \cdot \mathrm{m}, 37 \mathrm{lbf} \cdot \mathrm{ft})$

Frame Repair Chart

Heater and Air Conditioning

Heater

Air Conditioning 22-2

SUPPLEMENTAL RESTRAINT SYSTEM (SRS)

Some model versions of the Accord Coupe include a driver's airbag, located in the steering wheel hub, and a front passenger's airbag, located in the dashboard above the glove box. Information necessary to safely service the SRS is included in this Shop Manual. Items marked with an asterisk (*) on the contents page include, or are located near, SRS components. Servicing, disassembling or replacing these items will require special precautions and tools, and should therefore be done by an authorized Honda dealer.

A warning

- To avoid rendering the SRS inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all SRS service work must be performed by an authorized Honda dealer.
- Improper service procedures, including incorrect removal and installation of the SRS, could lead to personal injury caused by unintentional activation of the airbags.
- All SRS electrical wiring harnesses are covered with yellow insulation. Related components are located in the steering column, front console, dashboard, dashboard lower panel, and in the dashboard above the glove box. Do not use electrical test equipment on these circuits.

Heater

Illustrated Index 21-2
Heater Door Positions 21-3
Circuit Diagram 21-5
Troubleshooting
Symptom Chart 21-6
Flowcharts
Blower Motor Speed 21-7
Blower Motor 21-9
Mode Control Motor 21-12
Recirculation Control Motor 21-14
Heater Control Panel Input/ Output Signals 21-16

* Blower Unit
Replacement 21-17
Overhaul 21-19
* Heater Unit
Replacement 21-20
Overhaul 21-22
Heater Control Panel
Replacement 21-23
Overhaul 21-24
Heater Valve Cable
Adjustment 21-25
Air Mix Control Cable
Adjustment 21-25
Mode Control Motor
Test 21-26
Replacement 21-26
Recirculation Control Motor
Test 21-27
Replacement 21-27
Relay
Test 21-28
Heater Fan Switch
Test 21-28
Mode Control Switch Test 21-29
Recirculation Control Switch
Test 21-29
*: Read SRS precautions before working in these areas.

Illustrated index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

BLOWER UNIT

Replacement, page 21-17 RECIRCULATION CONTROL MOTOR
Overhaul, page 21-19 Test, page 21-27
$\begin{cases}\text { Test, page 21-27 } \\ & \text { Replacement, page 21-27 }\end{cases}$

SRS MAIN HARNESS
(Covered with yellow insulation)

Heater Door Positions (cont'd)

Circuit Diagram

Troubleshooting

Symptom Chart

NOTE: Check the engine coolant level and allow the engine to warm up before troubleshooting.

SYMPTOM		REMEDY
Hot air flow is low.	Blower motor runs, but one or more speeds are inoperative.	Follow the flowchart (see page 21-7).
	Blower runs properly.	Check for the following: - Clogged heater duct - Clogged heater outlet - Incorrect door position
No hot air flow	Blower motor does not run at all.	Follow the flowchart (see page 21-9).
	Blower motor runs.	Check for the following: - Clogged heater duct - Clogged blower outlet - Clogged heater valve - Faulty air mix door - Heater valve cable adjustment (see page 21-25) - Air mix control cable adjustment (see page 21-25) - Faulty thermostat (see section 10) - Clogged evaporator (with air conditioning) - Frozen evaporator (with air conditioning)
Mode control motor does not run, or one or more modes are inoperative.		Follow the flowchart (see page 21-12).
Recirculation control doors do not change between FRESH and RECIRCULATE.		Follow the flowchart (see page 21-14).

Blower Motor Speed

Troubleshooting

Blower Motor Speed (cont'd)

From page 21-7

Turn the ignition switch OFF.

Repair short in the wire(s) between the heater fan switch and the blower resistor.

Blower Motor

(cont'd)

Troubleshooting

Blower Motor (cont'd)

From page 21-9

Remove the blower motor relay from the under-dash fuse/relay box, and test it (see page 21-28).

Repair open in the WHT wire between the under-hood fuse/relay box and the under-dash fuse/ relay box.

Repair open in the YEL/BLK wire between the under-dash fuse/ relay box and the blower motor.

Check for an open in the BLK wire between the under-dash fuse/ relay box and body ground. If the wire is OK, check for poor ground at G402 and G404.

Troubleshooting

Mode Control Motor

Troubleshooting

Recirculation Control Motor

Troubleshooting

Heater Control Panel Input/Output Signals

No.	Wire Color	Signal		No.	Wire Color	Signal	
1	GRN/WHT	FRESH	INPUT	8	BLU/RED	A/C THERMOSTAT	INPUT
2	BLK	GROUND	OUTPUT	9	RED	BRIGHTNESS CONTROLLER	OUTPUT
3	GRN/RED	RECIRCULATE	INPUT	10	RED/BLK	COMBINATION LIGHT SWITCH	INPUT
4	LT GRN/WHT	VENT	INPUT	11	BLK/YEL	IG2	INPUT
5	LT GRN/BLK	HEATNENT	INPUT	12	BLU	DEF	INPUT
6	LT GRN/RED	MODE CONTROL MOTOR (GND)	INPUT	13	BLU/RED	HEAT/DEF	INPUT
7	GRN	HEATER FAN SWITCH	OUTPUT	14	YEL/GRN	HEAT	INPUT

Blower Unit

Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

SRS MAIN HARNESS

(Covered with yellow insulation)
NOTE: The blower motor, recirculation control motor and blower resistor can be replaced without removing the blower unit (see page 21-19).

1. Remove the glove box (see section 20).
2. Remove the two bolts and the glove box frame, and disconnect the connectors from the radiator fan control module and the glove box frame.

Without Air Conditioning

3-a. Remove the two self-tapping screws and the heater duct.

With Air Conditioning
3-b. Remove the evaporator (see page 22-28).

Blower Unit

Replacement (cont'd)

4. Disconnect the connectors from the blower motor, blower resistor and the recirculation control motor, then remove the three mounting nuts and the blower unit.

5. Install in the reverse order of removal, and make sure there are no air leaks.

Overhaul

NOTE:

- Before reassembly, make sure that the recirculation control doors and linkage move smoothly without binding.
- When reattaching the recirculation control motor, make sure its positioning will not allow the recirculation control doors to be pulled too far. Attach the recirculation control motor and all links, then connect power and ground, and watch the movement of the recirculation control doors.

RECIRCULATION CONTROL MOTOR

Test, page 21-27
Replacement, page 21-27

Test, page 21-7

Heater Unit

Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

(Covered with yellow insulation)

1. When the engine is cool, drain the engine coolant from the radiator (see section 10).

A warning Do not remove the radiator cap when the engine is hot; the engine coolant is under pressure and could severely scald you.
2. Open the clamp, then disconnect the heater valve cable from the heater valve arm.

3. Disconnect the heater hoses from the heater unit.

CAUTION: Engine coolant will damage paint. Quickly rinse any spilled engine coolant from painted surfaces.

NOTE: Engine coolant will run out when the hoses are disconnected; drain it into a clean drip pan.

4. Remove the two mounting nuts from the heater unit.

NOTE: When removing the mounting nuts, take care not to damage or bend the fuel pipes, brake pipes, etc.

5. Remove the dashboard (see section 20).
6. Remove the mounting bolts and mounting nuts in the following sequence, then remove the steering hanger beam.

7. Remove the heater duct (see page 21-17) or the evaporator (see page 22-28).
8. Disconnect the mode control motor connector, then remove the mounting bolt and the heater unit.

9. Install in the reverse order of removal. Make note of the following items.

- Apply sealant to the grommets.
- Do not interchange the inlet and outlet heater hoses. Make sure that the clamps are secure.
- Loosen the bleed bolt on the engine, and refill the radiator and coolant reservoir with the proper engine coolant mixture (see section 10).
Tighten the bleed boit when all the trapped air has escaped and engine coolant begins to flow from it (see section 10).
- Connect all cables, and make sure they are properly adjusted (see page 21-25).

Heater Unit

Overhaul

1. Remove the two self-tapping screws and the vent/ defroster duct.
2. Remove the self-tapping screw and pipe clamp.
3. Remove the self-tapping screw and core clamp.
4. Pull out the heater core.

NOTE: Be careful not to bend the inlet and outlet pipes during heater core removal.
5. Assemble in the reverse order of disassembly.

Heater Control Panel

Replacement

1. Disconnect the air mix control cable from the heater unit (see page 21-25).
2. Remove the stereo radio/cassette player (see section 23) and the glove box (see section 20).
3. Remove the cruise control main/moonroof, dash lights brightness controller and rear window defogger switches.

4. Remove the six self-tapping screws, then pull out the instrument/heater control panels. Disconnect the connectors from the heater control panel, then remove the instrument/heater control panels.

5. Remove the five self-tapping screws and the heater control panel from the instrument panel.

6. Install in the reverse order of removal, and adjust the air mix control cable at the heater unit (see page 21-25). If necessary, adjust the heater valve cable (see page 21-25).

Heater Control Panel

Overhaul

Air Mix Control Cable Replacement
Adjustment, page 21-25

1. Remove the self-tapping screw and clamp.
2. Lift the end of the temperature control lever up, then remove the air mix control cable.

3. Install in the reverse order of removal. Make note of the following items.

- Be sure the end of the cable housing is against the stop before tightening the cable clamp.
- After assembly, check that the temperature control lever slides smoothly through the full stroke from right to left.

Heater Valve Cable

Adjustment

1. Disconnect the heater valve cable from the heater valve arm and clamp, and from the heater control arm and clamp.
2. Set the temperature control dial to MAX. COOL.
3. Turn the heater control arm, as shown, then connect the end of the heater valve cable to the heater control arm.
4. Gently slide the heater valve cable housing back from the end enough to take up any slack in the heater valve cable, but not enough to make the temperature control dial move. Hold the end of the heater valve cable housing against the stop, then snap the heater valve cable housing into the clamp.

5. Turn the heater valve arm, as shown, then connect the end of the heater valve cable to the heater valve arm.
6. Gently slide the heater valve cable housing back from the end enough to take up any slack in the heater valve cable, but not enough to make the temperature control dial move, then snap the heater valve cable housing into the clamp.

NOTE: The air mix control cable should always be adjusted whenever the heater valve cable has been disconnected.

Adjustment

1. Disconnect the air mix control cable from the air mix control arm and clamp.
2. Set the temperature control dial to MAX. COOL.
3. Turn the air mix control arm, as shown, then connect the end of the air mix control cable to the air mix control arm.
4. Gently slide the air mix control cable housing back from the end enough to take up any slack in the air mix control cable, but not enough to make the temperature control dial move, then snap the air mix control cable housing into the clamp.

NOTE: The heater valve cable should always be adjusted whenever the air mix control cable has been disconnected.

Mode Control Motor

Test

1. Connect battery power to the No. 1 terminal, and ground the No. 7 terminal.

CAUTION: Never connect the battery in the opposite direction.
2. Using a jumper wire, connect the No. 7 terminal individually to the No. 2, 3, 4, 5 and 6 terminals in that order. Each time the connection is made, the mode control motor should run smoothly and stop.

NOTE: If the mode control motor does not run when jumping the first terminal, jump that terminal again after jumping the other terminals.
The mode control motor is normal if it runs when jumping the first terminal again.

3. If the mode control motor does not run in step 2, remove it, and check the mode control linkage and doors for smooth movement. If the mode control linkage and doors move smoothly, replace the mode control motor.

Replacement

1. Disconnect the 7P connector from the mode control motor.
2. Remove the three self-tapping screws, mode control motor and the flange collar.

3. Install in the reverse order of removal, and after installation, make sure the mode control motor runs smoothly.

Recirculation Control Motor

Test

1. Connect battery power to the No. 1 terminal, and ground the No. 2 and No. 4 terminals; the recirculation control motor should run smoothly.

CAUTION: Never connect the battery in the opposite direction.
2. Disconnect the No. 2 or No. 4 terminals from ground; the recirculation control motor should stop at FRESH or RECIRCULATE.

NOTE: Don't cycle the recirculation control motor for a long time.

3. If the recirculation control motor does not run in step 1, remove it, and check the recirculation control linkage and doors for smooth movement. If the recirculation control linkage and doors move smoothly, replace the recirculation control motor.

Replacement

1. Disconnect the $4 P$ connector from the recirculation control motor.
2. Remove the two self-tapping screws, recirculation control motor and the flange collar.

3. Install in the reverse order of removal, and after installation, make sure the recirculation control motor runs smoothly.

Relay

Test

There should be continuity between the A and C terminals when power and ground are connected to the B and D terminals, and there should be no continuity when power is disconnected.

Test

Check for continuity between the terminals according to the table below.

Position Terminal	B	A	D	E	F	G
OFF						
1	0	0	0			
2	0	0		0		
3	0	0			0	
4	0	0				0

Recirculation Control Switch

Test

Check for continuity between the terminals according to the table below.

	Terminal	3	1
Position		0	0
Fresh	0		0
Recirculate		0	

Air Conditioning

Special Tools 22-2
Illustrated Index 22-3
Wiring/Connector Locations 22-4
Circuit Diagram 22-5
Description
Outline 22-6
Troubleshooting
Reference Chart 22-7
Flowcharts
Radiator Fan 22-8
Condenser Fan 22-10
Engine Coolant Temperature (ECT)
Switch A 22-12
Both Fans 22-13
Compressor 22-14
A/C System 22-16
Radiator Fan Control Module Input Tests 22-19
A/C Thermostat
Test 22-20
Relays
Test 22-20
Diode
Test 22-21
A/C Switch
Test 22-21
A/C Service Tips and Precautions 22-22
A/C System Torque Specifications 22-23
A/C System Service
Performance Test 22-24
Pressure Test Chart 22-26
Discharge 22-27
*Evaporator
Replacement 22-28
Overhaul 22-29
Compressor (Hadsys)Description22-30
Illustrated Index 22-31
Replacement 22-32
Clutch Inspection 22-34
Clutch Overhaul 22-35
Relief Valve Replacement 22-36
Compressor (Nippondenso)
Description 22-37
Illustrated Index 22-38
Replacement 22-32
Clutch Inspection 22-39
Clutch Overhaul 22-40
Relief Valve Replacement 22-41
A/C Compressor Belt
Adjustment 22-42
Condenser Replacement 22-43
A/C System Service
Evacuation 22-45
Charging 22-46
Leak Test 22-47
*: Read SRS precautions before working inthis area.

Special Tools

Ref. No.	Tool Number	Description	Oty	Page Reference
(1) (2) (3) (4)	07JGG - 0010100 or 07JGG - 0010101 07LAJ - PT3010A or 07LAJ - PT30100 07NAB - HAC0100 07QAD - P0A0100	Belt Tension Gauge Test Harness A/C Clutch Holder Outer Screw Driver	1 1 1 1	$\begin{aligned} & 22-42 \\ & 22-15 \\ & 22-35,40 \\ & 22-36 \end{aligned}$

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

(Covered with yellow insulation)

A: Joint locations

B: Joint locations

CONDENSER
Replacement, page 22-43

A/C PRESSURE SWITCH

When the refrigerant pressure is below $200 \mathrm{kPa}\left(2.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $28 \mathrm{psi})$ due to refrigerant leakage or above $3,200 \mathrm{kPa}\left(32 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, $455 \mathrm{psi})$ due to refrigerant blockage, the A / C pressure switch opens the circuit to the A / C switch and stops the air conditioning to protect the compressor.

Wiring/Connector Locations

Description

Outline

The air conditioning system delivers cooled air into the passenger compartment by circulating refrigerant through the system as shown below.

This car uses HFC-134a (R-134a) refrigerant which does not contain chlorofluorocarbons. Pay attention to the following service items:

- Do not mix refrigerants CFC-12 (R-12) and HFC-134a (R-134a). They are not compatible.
- Use only the recommended polyalkyleneglycol (PAG) refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7 - 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) designed for the R-134a compressor. Intermixing the recommended (PAG) refrigerant oil with any other refrigerant oil will result in compressor failure.
- All A/C system parts (compressor, discharge line, suction line, evaporator, condenser, receiver/dryer, expansion valve, O-rings for joints) have to be proper for refrigerant R-134a. Do not confuse with R-12 parts.
- Use a halogen gas leak detector designed for refrigerant R-134a.
- Use a vacuum pump adapter which is equipped with a check valve to prevent the backflow of the vacuum pump oil.
- Separate the manifold gauge sets (pressure gauges, hoses, joints) for refrigerants R-12 and R-134a. Do not confuse them.

Troubleshooting

Reference Chart

- Any abnormality must be corrected before continuing the test.
- Because of the precise measurements needed, use a multimeter when testing.

Before performing any troubleshooting procedures check:

- Fuses ${ }^{* 1}$ No. 34 (15 A), *1 No. 21 (20 A), *2 No. 8 (7.5 A), *2 No. 4 (7.5 A)
- Grounds No. G401, G402, G403, G404, G301, G201, G101
- Cleanliness and tightness of all connectors
${ }^{* 1}$: In the under-hood fuse/relay box
*2: In the under-dash fuse/relay box

SYMPTOM	REMEDY
Radiator fan does not run at all.	Perform the procedures in the flowchart (see page 22-8).
Condenser fan does not run at all.	Perform the procedures in the flowchart (see page 22-10).
Both fans (radiator and condenser) do not run for engine cooling, but they both run with the A/C on.	Perform the procedures in the flowchart (see page 22-12).
Both fans do not run at all.	Perform the procedures in the flowchart (see page 22-13).
Compressor clutch does not engage.	Perform the procedures in the flowchart (see page 22-14).
A/C system does not come on (compressor and both fans).	Perform the procedures in the flowchart (see page 22-16).

Troubleshooting

Radiator Fan

From page 22-8

Measure the voltage between the No. 4 terminal (+) and body ground (-).

Troubleshooting

Condenser Fan

Condenser fan does not run at all.

Check the No. 4 (7.5 A) and No. 8 (7.5 A) fuses in the under-dash fuse/relay box, and No. 34 (15 A)

To page 22-11
NO

Check for continuity in the BLU/ YEL wire between the condenser fan relay and the condenser fan.

Repair open in the BLU/YEL wire between the condenser fan relay and the condenser fan.

Check for continuity in the BLK wire between the condenser fan and body ground.

Check for an open in the BLK wire between the condenser fan and body ground. If the wire is OK, check for poor ground at G301.

From page 22-10
 and the radiator fan control module.

Troubleshooting

Engine Coolant Temperature (ECT) Switch A

Both fans (radiator and condenser) do not run for engine cooling, but they both run with the A / C on.

Disconnect the engine coolant temperature (ECT) switch A 2P connector.

Turn the ignition switch ON (II).

Measure the voltage between the GRN wire terminal (+) and body ground (-).

Repair open in the GRN wire between the ECT switch A and the under-hood fuse/relay box, condenser fan relay.

Turn the ignition switch OFF, and check for continuity in the BLK wire between the ECT switch A and body ground.

Both Fans

Measure the voltage between the BLK wire terminal (+) of radiator fan control module and body

Repair open in the BLK/YEL² wire between the under-dash fuse/ relay box and the radiator fan control module.

View from wire side

Repair open in the BLK wire between the radiator fan control module and body ground.

YES
Test the A/C diode (see page 2221).

Repair open in the RED/WHT wire between the A / C diode and the A/C pressure switch.

Troubleshooting

Compressor

Compressor clutch does not engage.

Check the No. 4 (7.5A) and No. 8 (7.5 A) fuses in the under-dash fuse/relay box, and No. 34 (15 A) fuse in the under-hood fuse/relay box.
Are the fuses OK?

Repair open in the WHT wire between the under-hood fuse/relay box and the compressor clutch relay.

View from wire side

Troubleshooting

A/C System

From page 22-16

Turn the ignition switch ON (II).

Measure the voltage between the BLK/VEL wire terminal (+) and body ground (-).

Turn the ignition switch OFF.

Reconnect the A / C thermostat 3 P connector, and connect the BLU/ RED wire terminal to ground with

To page 22-18

Troubleshooting

A/C System (cont'd)

Radiator Fan Control Module Input Tests

NOTE: Perform the following tests with the radiator fan control module connected, the ignition switch $O N$, and the A / C switch OFF.
If you find the cause of a problem, correct it before you continue.

WIRE COLOR	TEST CONDITION	DESIRED RESULTS	CORRECTIVE ACTION IF DESIRED RESULTS ARE NOT OBTAINED
BLK	Check for voltage to body ground.	There should be less than one volt.	Repair open to body ground.
WHT	Check for battery voltage:	There should be battery voltage.	Check No. 34 (15 A) fuse in the underhood fuse/relay box; if OK, repair open in the WHT wire.
BLK/YEL ${ }^{1}$	Check for battery voltage: Ignition switch - ON (II)		Check No. 4 (7.5 A) fuse in the underdash fuse/relay box; if OK, repair open in the BLK/YEL' wire.
BLK/YEL ${ }^{2}$	Check for battery voltage: Ignition switch - ON (II)		Check No. 8 (7.5 A) fuse in the underdash fuse/relay box; if OK, repair open in the BLK/YEL² wire.
YEL/NHT	Check for battery voltage: Ignition switch - ON (II)		Replace radiator fan control module. Before you connect the new radiator fan control module, disconnect both fan relays. Check for continuity between the YEL/WHT (or YEL) wire and ground, using the $20 \mathrm{k} \Omega$ scale on your ohmmeter. There should be no continuity. If there is continuity, the new radiator fan control module will be damaged when you connect it.
YEL	Check for battery voltage: Ignition switch - ON (II)		
GRN	Connect to body ground: Ignition switch - ON (II)	Condenser fan and radiator fan should come on.	Check for an open in the GRN wire between the radiator fan control module and condenser fan relay or radiator fan relay. If OK, check for an open in the YEL/WHT wire between the radiator fan control module and condenser fan relay or the YEL wire between the radiator fan control module and radiator fan relay. If OK, test condenser fan relay or radiator fan relay.
WHT/GRN	Check for voltage.	Approx. 11 V (engine coolant temperature below $106^{\circ} \mathrm{C}$ [223 ${ }^{\circ} \mathrm{F}$])	Faulty engine coolant temperature (ECT) switch B, short to body ground or faulty radiator fan control module

A/C Thermostat

Test

Connect battery power to the C terminal, ground the B terminal, and connect a test light between the A and B terminals.

NOTE: Use a $12 \mathrm{~V}, 3 \mathrm{~W}-18 \mathrm{~W}$ test light.
Dip the A / C thermostat into a cup filled with ice water, and check the test light.

The light should go off at $2-4^{\circ} \mathrm{C}\left(36-39^{\circ} \mathrm{F}\right)$ or less, and should come on at $4-5^{\circ} \mathrm{C}\left(39-41^{\circ} \mathrm{F}\right)$ or more.

If the light doesn't come on and go off as specified, replace the A / C thermostat.

Relays

Test

There should be continuity between the A and C terminals when power and ground are connected to the B and D terminals, and there should be no continuity when power is disconnected.

- Radiator fan relay

- Condenser fan relay
- Compressor clutch relay

Test

NOTE: The diode is designed to pass current in one direction while blocking it in the opposite direction. Use an analog ohmmeter or a digital ohmmeter equipped with a diode tester.

Check for current flow in both directions between the A and B terminals; there should be current flow in only one direction.

B

Test

Check for continuity between the terminals according to the table below.

Terminal	7	8
Position	0	0
OFF		

A/C Service Tips and Precautions

The air conditioner system uses HFC-134a (R-134a) refrigerant and polyalkyleneglycol (PAG) refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7 - 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003), which are not compatible with CFC-12 (R12) refrigerant and mineral oil. Do not use R-12 refrigerant or mineral oil in this system, and do not attempt to use R-12 servicing equipment; damage to the air conditioner system or your servicing equipment will result.

Separate the manifold gauge sets (pressure gauges, hoses, joints) for refrigerants R-12 and R-134a. Do not confuse them.
A WARNING When handing refrigerant (R -134a):

- always wear eye protection.
- do not let refrigerant get on your skin or in your eyes. If it does:
- do not rub your eyes or skin.
- splash large quantities of cool water in your eyes or on your skin.
- rush to a physician or hospital for immediate treatment. Do not attempt to treat it yourself.
- keep refrigerant containers (cans of R-134a) stored below $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$
- Keep away from open flame. Refrigerant, although non-flammable, will produce poisonous gas if burned.
- work in well-ventilated area. Refrigerant evaporates quickly, and can force all the air out of a small, enclosed area.

1. Always disconnect the negative cable from the battery whenever replacing air conditioning parts.
2. Keep moisture and dust out of the system. When disconnecting any lines, plug or cap the fittings immediately; don't remove the caps or plugs until just before you reconnect each line.
3. Before connecting any hose or line, apply a few drops of refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) to the O-ring.
4. When tightening or loosening a fitting, use a second wrench to support the matching fitting.
5. When discharging the system, don't let refrigerant escape too fast; it will draw the compressor oil out of the system.
6. Add refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7-003 or Hadsys: Dn. S10X, P/N 38899-P0A - 003) after replacing the following parts:

NOTE:

- To avoid contamination, do not return the oil to the container once dispensed, and never mix it with other refrigerant oils.
- Immediately after using the oil, replace the cap on the container, and seal it to avoid moisture absorption.
- Do not spill the refrigerant oil on the car; it may damage the paint; if the refrigerant oil contacts the paint, wash it off immediately.

	Line or hose $10 \mathrm{~m} \ell$ (1/3 flooz, 0.4 Imp-oz)	
	Receiver/Dryer......................... $10 \mathrm{~m} \ell$ (1/3 flooz, 0.4 Imp.oz)	
	Leakage repair $25 \mathrm{~m} \ell$ (5/6 flooz, 0.9 Imp-oz)	
	Compressor	

NOTE: Even if no oil is drained from the removed compressor, don't drain more than $50 \mathrm{~m} \ell(12 / 3 \mathrm{fl} \cdot \mathrm{oz}, 1.8 \mathrm{lmp} \cdot \mathrm{oz}$) from the new compressor.

[^8]
A/C System Service

Performance Test

The performance test will help determine if the air conditioner system is operating within specifications.

NOTE:

- Only use gauge set for refrigerant HFC-134a (R-134a).
- Use a vacuum pump adapter which is equipped with a check valve to prevent the backflow of the vacuum pump oil.

1. Connect a R-134a gauges as shown.
2. Insert a thermometer in the center vent outlet. Determine the relative humidity and ambient air temperature by a portable weather station calling the local weather station.
3. Test conditions:

- Avoid direct sunlight.
- Open hood.
- Open front doors.
- Set the temperature control lever to MAX COOL, the mode control switch on VENT and the recirculation control switch to RECIRCULATE.
- Slide the heater fan switch to MAX.
- Run the engine at $1,500 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
- No driver or passengers in vehicle

4. After running the air conditioning for 10 minutes under the above test conditions, read the delivery temperature from the thermometer in the dash vent and the high and low system pressure from the A/C gauges.
5. To complete the charts:

- Mark the delivery temperature along the vertical line.
- Mark the intake temperature (ambient air temperature) along the bottom line.
- Draw a line straight up from the air temperature to the humidity.
- Mark a point one line above and one line below the humidity level (10% above and 10% below the humidity level).
- From each point, draw a horizontal line across to the delivery temperature.
- The delivery temperature should fall between the two lines.
- Complete the low side pressure test and high side pressure test in the same way.
- Any measurements outside the line may indicate the need for further inspection.

A/C System Service

Pressure Test Chart

NOTE: Performance Test is on page 22-24.

TEST RESULTS	RELATED SYMPTOMS	PROBABLE CAUSE	REMEDY
Discharge (high) pressure abnormally high	After stopping compressor, pressure drops to about $200 \mathrm{kPa}\left(2.0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 28 psi) quickly, and then falls gradually.	Air in system	Recover, evacuate and recharge with specified amount. Evacuation: see page $22-45$ Charging: see page 22.46
	No bubbles in sight glass when condenser is cooled by water.	Excessive refrigerant in system	Recover, evacuate and recharge with specified amount.
	Reduced or no air flow through condenser	- Clogged condenser or radiator fins - Condenser or radiator fan not working properly	- Clean. - Check voltage and fan rpm. - Check fan direction.
	Line to condenser is excessively hot.	Restricted flow of refrigerant in system	- Restricted lines.
Discharge pressure abnormally low	Excessive bubbles in sight glass; condenser is not hot.	Insufficient refrigerant in system	- Check for leak. - Charge system.
	High and low pressures are balanced soon after stopping compressor. Low side is higher than normal.	- Faulty compressor discharge valve - Faulty compressor seal	Replace the compressor.
	Outlet of expansion valve is not frosted, low pressure gauge indicates vacuum.	- Faulty expansion valve - Moisture in system	- Replace. - Recover, evacuate and recharge with specified amount.
Suction (low) pressure abnormally low	Excessive bubbles in sight glass; condenser is not hot.	Insufficient refrigerant	Repair the leaks. Recover, evacuate and recharge with specified amount. Charge as required.
	Expansion valve is not frosted and low pressure line is not cold. Low pressure gauge indicates vacuum.	- Frozen expansion valve - Faulty expansion valve	Replace the expansion valve.
	Discharge temperature is low and the air flow from vents is restricted.	Frozen evaporator	Run the fan with compressor off, then check A/C thermostat.
	Expansion valve is frosted.	Clogged expansion valve	Clean or replace.
	Receiver/dryer outlet is cool and inlet is warm (should be warm during operation).	Clogged receiver/dryer	Replace.
Suction pressure abnormally high	Low pressure hose and check joint are cooler than the temperature around evaporator.	- Expansion valve open too long - Loose expansion capillary tube	Repair or replace,
	Suction pressure is lowered when condenser is cooled by water.	Excessive refrigerant in system	Recover, evacuate and recharge with specified amount.
	High and low pressure are equalized as soon as the compressor is stopped, and both gauges fluctuate while running.	- Faulty gasket - Faulty high pressure valve - Foreign particle stuck in high pressure valve	Replace the compressor.
Suction and discharge pressures abnormally high	Reduced air flow through condenser.	- Clogged condenser or radiator fins - Condenser or radiator fan not working properly	- Clean condenser and radiator. - Check voltage and fan rpm. - Check fan direction.
	No bubbles in sight glass when condenser is cooled by water.	Excessive refrigerant in system	Recover, evacuate and recharge with specified amount.
Suction and dis charge pressure abnormally low	Low pressure hose and metal end areas are cooler than evaporator.	Clogged or kinked low pressure hose parts	Repair or replace.
	Temperature around expansion valve is too low compared with that around receiver/dryer.	Clogged high pressure line	Repair or replace.
Refrigerant leaks	Compressor clutch is dirty.	Compressor shaft seal leaking	Replace the compressor.
	Compressor bolt(s) are dirty.	Leaking around bolt(s)	Tighten bolt(s) or replace compressor.
	Compressor gasket is wet with oil.	Gasket leaking	Replace the compressor.

Discharge

A WARNING

- Keep away from open flames. The refrigerant, although nonflammable, will produce a poisonous gas if burned.
- Work in a well-ventilated area. Refrigerant evaporates quickly, and can force all the air out of a small enclosed area.

NOTE: Only use a gauge set for refrigerant HFC-134a (R-134a).

1. Connect the R-134a gauges as shown.
2. Disconnect the center hose of the gauge set, and place the free end in a shop towel.
3. Open the evacuation valve (two valve gauge: evacuate stop valve).

THREE VALVE GAUGE

4. Slowly open the high pressure valve slightly to let refrigerant flow from the center hose only. Do not open the valve too wide. Check the shop towel to make sure no oil is being discharged with the refrigerant.

CAUTION: If refrigerant is allowed to escape too fast, compressor oil will be drawn out of the system.
5. After the high pressure gauge reading has dropped below $980 \mathrm{kPa}\left(10 \mathrm{kgf} / \mathrm{cm}^{2}, 140 \mathrm{psi}\right)$, open the low side valve to discharge both high and low sides of the system.
6. Note the gauge reading, and as system pressure drops, gradually open both high and low side valves fully until both gauges indicate $0 \mathrm{kPa}\left(0 \mathrm{kgf} / \mathrm{cm}^{2}\right.$, 0 psi).

TWO VALVE GAUGE

Evaporator

Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Discharge the refrigerant (see page 22-27).
2. Disconnect the receiver line and the suction line from the evaporator.

NOTE: Plug or cap the lines immediately after disconnecting to avoid moisture and dust contamination into the system.

3. Remove the glove box (see section 20).
4. Remove the glove box frame (see page 21-17).
5. Disconnect the connector from the A / C thermostat. Remove the four self-tapping screws, two mounting nuts and the mounting bolt.
Disconnect the drain hose, then remove the evaporator.

$9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
6. Install in the reverse order of removal. Make note of the following items.

- If you're installing a new evaporator, add refrigerant oil (Nippondenso: ND-OIL. 8, P/N 38899 - PR7 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) (see page 22-22).
- Replace the O-rings with new ones at each fitting, and apply a thin coat refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7 - 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) before installing them.
NOTE: Be sure to use the right O-rings for HFC134a (R-134a) to avoid leakage.
- Apply sealant to the grommets.
- Make sure that there is no air leakage.
- Charge the system (see page 22-46), and test its performance (see page 22-24).

Overhaul

1. Pull out the A / C thermostat sensor from the evaporator fins.
2. Remove the self-tapping screws and clamps from the housings.
3. Carefully separate the housings, then remove the evaporator.
4. If necessary, remove the expansion valve.

NOTE: When loosening the expansion valve nuts, use a second wrench to hold the expansion valve or evaporator pipe. Otherwise, they can be damaged.
5. Assemble in the reverse order of disassembly. Make note of following items.

- Replace the O-rings with new ones at each fitting, and apply a thin coat of refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7 - 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) before installing them.
NOTE: Be sure to use the right O-rings for HFC134a (R-134a) to avoid leakage.
- Install the expansion valve capillary tube with the capillary tube in contact with the suction line directly, and wrap it with tape.
- Reinstall the A / C thermostat sensor to its original location.

Compressor (Hadsys)

Description

This compressor is a Hadsys piston type compressor for HFC-134a (R-134a). A revolving inclined disc causes the seven reciprocating pistons to be pulled, thus compressing the refrigerant.

Illustrated Index

Compressor (Hadsys)

Replacement

1. If the compressor is marginally operable, run the engine at idle speed, and let the air conditioner work a few minutes. Then shut the engine off, and disconnect the negative cable from the battery.
2. Discharge the refrigerant (see page 22-27).
3. Remove the power steering pump (see section 17).

NOTE: Do not disconnect the hoses from the power steering pump.
4. Remove the alternator (see section 23).
5. Disconnect the condenser fan connector. Disconnect the compressor clutch connector, then remove the compressor clutch connector from the condenser fan shroud.
Loosen the lower mounting bolt, then remove the two upper mounting bolts and the condenser fan shroud.

NOTE: Do not damage the radiator fins when removing the condenser fan shroud.

6. Remove the nuts, then disconnect the suction line and the discharge line from the compressor.

NOTE: Plug or cap the lines immediately after disconnecting to avoid moisture and dust contamination into the system.
$6 \times 1.0 \mathrm{~mm}$

7. Remove the four mounting bolts and the compressor.

NOTE: Do not damage the radiator fins when removing the compressor.

8. If necessary, remove the bolt from the heat insulator, the two mounting bolts, two mounting nuts and the compressor bracket.

9. Install in the reverse order of removal. Make note of the following items.

- If you're installing a new compressor, drain all the refrigerant oil from the removed compressor, and measure its volume. Subtract the volume of drained oil from 160 ml ($51 / 3 \mathrm{fl} \cdot \mathrm{oz}, 5.6 \mathrm{Imp} \cdot \mathrm{oz}$); the result is the amount of oil you should drain from the new compressor (through the suction fitting).
- Replace the O-rings with new ones at each fitting, and apply a thin coat of refrigerant oil before installing them.
NOTE: Be sure to use the right O-rings for HFC134a (R-134a) to avoid leakage.
- Use refrigerant oil (Dn. S10X: P/N 38899 - P0A 003) for R-134a Hadsys piston type compressors only.
Use refrigerant oil (ND-OIL 8: P/N 38899 - PR7 003) for R-134a Nippondenso piston type compressors only.
- To avoid contamination, do not return the oil to the container once dispensed, and never mix it with other refrigerant oils.
- Immediately after using the oil, replace the cap on the container, and seal it to avoid moisture absorption.
- Do not spill the refrigerant oil on the car; it may damage the paint; if the refrigerant oil contacts the paint, wash it off immediately.
- Do not damage the radiator fins when installing the condenser fan shroud and the compressor.
- Adjust the A/C compressor belt (see page 22-42) and the power steering pump belt (see section 17).
- Charge the system (see page 22-46), and test its performance (see page 22-24).

Compressor (Hadsys)

Clutch Inspection

- Check the plated parts of the pressure plate for color changes, peeling or other damage. If there is damage, replace the clutch set.
- Check the pulley bearing play and drag by rotating the pulley by hand. Replace the clutch set with a new one if it is noisy or has excessive play/drag.

- Measure the clearance between the pulley and the pressure plate all the way around. If the clearance is not within specified limits, the pressure plate must be removed and shims added or removed as required, following the procedure on page 22-35.

Clearance: $0.5 \pm 0.1 \mathrm{~mm}(0.02 \pm 0.088 \mathrm{in})$
NOTE: The shims are available in six thicknesses: $0.1 \mathrm{~mm}, 1.0 \mathrm{~mm}, 1.25 \mathrm{~mm}, 1.5 \mathrm{~mm}, 1.75 \mathrm{~mm}$, and 2.0 mm .

- Check resistance of the field coil.

Field Coil Resistance: 3.0 ± 0.15 ohms at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
If resistance is not within specifications, replace the field coil.

Clutch Overhaul

1. Remove the center bolt while holding the pressure plate.

2. Remove the pressure plate and shim(s), taking care not to lose the shims.

3. Remove the snap ring with snap ring pliers.

NOTE:

- Be careful not to damage the pulley and compressor during removal/installation.
- Once the snap ring is removed, replace it with a

4. Remove the pulley from the shaft with a puller.

NOTE: Put the claws of the puller on the back of the pulley, not on the belt area; otherwise the pulley can be damaged. If the pulley doesn't come off easily, replace the compressor, clutch set and field coil as a whole.

(cont'd)

Compressor (Hadsys)

Clutch Overhaul (cont'd)

5. Remove the two bolts and the field coil.
$9.8 \mathrm{~N} \cdot \mathrm{~m}$ (1.0 kgf.m, $7.2 \mathrm{lbf} \cdot \mathrm{ft}$)

- Install the field coil with the wire side facing down (see above).

6. Clean the pulley and compressor sliding surfaces with non-petroleum solvent.
7. Position the pulley squarely over the field coil. Press the pulley onto the compressor boss with the special tool. If the pulley does not press on straight, remove it, and check the pulley and compressor boss for burrs or damage.

CAUTION: Maximum press load: $\mathbf{3 0 0} \mathbf{~ k g f}$ (661 lbf)

8. Install the remaning parts in reverse order of removal. Make note of the following items.

- Make sure the snap ring is the groove properly.
- Apply locking agent to the threads of the center bolt, and tighten it securely.
- Make sure that the pulley turns smoothly after it's reassembled.

Relief Valve Replacement

1. Remove the relief valve and the O-ring.

NOTE:

- Do not let the compressor oil run out.
- Make sure there is no foreign matter in the system.

RELIEF VALVE
9.8 N-m (1.0 kgf.m, 7.2 lbfft)
2. Clean the mating surfaces.
3. Replace the O-ring with a new one at the relief valve, and apply a thin coat of refrigerant oil (Dn. S10X: P/N 38899 - P0A - 003) before installing it.

NOTE:

- To avoid contamination, do not return the oil to the container once dispensed, and never mix it with other refrigerant oils.
- Immediately after using the oil, replace the cap on the container, and seal it to avoid moisture absorption.
- Do not spill the refrigerant oil on the car; it may damage the paint; if the refrigerant oil contacts the paint, wash it off immediately.

4. Install and tighten the relief valve.
5. Charge the system (see page 22-46), and test its performance (see page 22-24).

Compressor (Nippondenso)

Description

This compressor is a Nippondenso piston type compressor for HFC-134a (R-134a). A revolving inclined disc drives the surrounding 10 reciprocating pistons. As the inclined disc revolves, it pushes the pistons, protected by a ceramic shoe, thus compressing the refrigerant.

Compressor (Nippondenso)

Illustrated Index

NOTE: For replacement, use the same method as for Hadsys compressor (see page 22-32).

Clutch Inspection

- Check the plated parts of the pressure plate for color changes, peeling or other damage. If there is damage, replace the clutch set.
- Check the pulley bearing play and drag by rotating the pulley by hand. Replace the clutch set with a new one if it is noisy or has excessive play/drag.

- Measure the clearance between the pulley and the pressure plate all the way around. If the clearance is not within specified limits, the pressure plate must be removed and shims added or removed as required, following the procedure on page 22-40.

Clearance: $0.5 \pm 0.15 \mathrm{~mm}(0.02 \pm 0.006 \mathrm{in})$
NOTE: The shims are available in three thicknesses: $0.1 \mathrm{~mm}, 0.3 \mathrm{~mm}$ and 0.5 mm .

- Check resistance of the field coil.

Field Coil Resistance: 3.6 ± 0.2 ohms at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
If resistance is not within specifications, replace the field coil.

Compressor (Nippondenso)

Clutch Overhaul

1. Remove the center bolt while holding the pressure plate.

2. Remove the pressure plate and shim(s), taking care not to lose the shims.

3. Remove the snap ring B with snap ring pliers, then remove the pulley.

NOTE:

- Be careful not to damage the pulley and compressor during removal/installation.
- Once the snap ring B is removed, replace it with a new one.

4. Remove the screw from the field coil ground terminal. Remove the snap ring A with snap ring pliers, then remove the field coil.

NOTE:

- Be careful not to damage the field coil and compressor during removal/installation.
- Once the snap ring A is removed, replace it with a new one.

SNAP RING A

5. Install in the reverse order of removal. Make note of the following items.

- Install the field coil with the wire side facing down (see above).
- Clean the pulley and compressor sliding surfaces with non-petroleum solvent.
- Make sure the snap rings are in the grooves properly.
- Apply locking agent to the threads of the center bolt, and tighten it securely.
- Make sure that the pulley turns smoothly after it's reassembled.

Relief Valve Replacement

1. Remove the relief valve, cap and the O-ring.

NOTE:

- Do not let the compressor oil run out.
- Make sure there is no foreign matter in the system.

$13.2 \mathrm{~N} \cdot \mathrm{~m}(1.35 \mathrm{kgf} \cdot \mathrm{m}, 9.76 \mathrm{lbf} \cdot \mathrm{ft})$

2. Clean the mating surfaces.
3. Replace the O-ring with a new one at the relief valve, and apply a thin coat of refrigerant oil (NDOIL 8: P/N 38899 - PR7 - 003) before installing it.

NOTE:

- To avoid contamination, do not return the oil to the container once dispensed, and never mix it with other refrigerant oils.
- Immediately after using the oil, replace the cap on the container, and seal it to avoid moisture absorption.
- Do not spill the refrigerant oil on the car; if may damage the paint; if the refrigerant oil contacts the paint, wash it off immediately.

4. Install and tighten the relief valve.
5. Charge the system (see page 22-46), and test its performance (see page 22-24).

A/C Compressor Belt

Adjustment

Deflection Method

1. Apply a force of 98 N ($10 \mathrm{kgf}, 22 \mathrm{lbf}$), and measure the deflection between the A/C compressor and the crankshaft pulley.

A/C Compressor Belt

Used Belt: 8.0 - 10.5 mm (0.31 - 0.41 in)
New Belt: 5.0-7.0 mm (0.20-0.28 in)

Power Steering Pump Belt

Used Belt: 13.0-16.0 mm (0.51-0.63 in)
New Belt: 11.0-12.5 mm (0.43-0.49 in)
NOTE:

- If there are cracks or any damage evident on the belt, replace it with a new one.
- "Used belt" means a belt which has been used for five minutes or more.
- "New belt" means a belt which has been used for less than five minutes.

2. Loosen the upper mounting bolt and the lower mounting nut of the alternator.
3. Turn the adjusting bolt to get proper belt tension, then retighten the lower mounting nut and the upper mounting bolt.
4. Recheck the deflection of the A/C compressor belt.

Tension Gauge Method

1. Attach the belt tension gauge to the A / C compressor belt as shown below, and measure the tension of the belt.

A/C Compressor Belt

Used Belt: 440-590 N (45-60 kgf, 99-132 lbf)
New Belt: 930-1130 N (95-115 kgf, 209-254 lbf)
Power Steering Pump Belt
Used Belt: 390-540 N (40-55 kgf, 88-121 lbf)
New Belt: 740-880 N (75-90 kgf, 165-198 lbf)

NOTE:

- If there are cracks or any damage evident on the belt, replace it with a new one.
- Follow the manufacturer's instructions for the belt tension gauge.
- "Used belt" means a belt which has been used for five minutes or more.
- "New belt" means a belt which has been used for less than five minutes.

2. Loosen the upper mounting bolt and the lower mounting nut of the alternator.
3. Turn the adjusting bolt to get proper belt tension, then retighten the lower mounting nut and the upper mounting bolt.
4. Recheck the tension of the A / C compressor belt.

Replacement

1. Discharge the refrigerant (see page 22-27).
2. Remove the coolant reservoir.

Remove the two bolts and the suction hose bracket.
NOTE: Do not disconnect the reservoir hose from the coolant reservoir and the radiator.

3. Remove the five self-tapping screws, and push the clips on each side with a flat tip screwdriver as shown, then remove the front grille.

4. Remove the four bolts and the two radiator upper mount brackets.

$6 \times 1.0 \mathrm{~mm}$

5. Remove the bolts, and disconnect the discharge line and the condenser line from the condenser.

NOTE: Plug or cap the lines immediately after disconnecting to avoid moisture and dust contamination into the system.

(cont'd)

Condenser

Replacement (cont'd)

6. Remove the two mounting bolts, and lift out the condenser as shown.

NOTE: Do not damage the radiator and condenser fins when removing the condenser.

7. Install in the reverse order of removal. Make note of the following items.

- If you're installing a new condenser, add refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7 003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) (see page 22-22).
- Replace the O-rings with new ones at each fitting, and apply a thin coat of refrigerant oil (Nippondenso: ND-OIL 8, P/N 38899 - PR7-003 or Hadsys: Dn. S10X, P/N 38899 - P0A - 003) before installing them.
NOTE: Be sure to use the right O-rings for HFC134a (R -134a) to avoid leakage.
- Do not damage the radiator and condenser fins when installing the condenser.
- Be sure to install the condenser mount cushions securely into the holes.
- Charge the system (see page 22-46), and test its performance (see page 22-24).

Evacuation

NOTE:

- Only use a gauge set for refrigerant HFC-134a (R134a).
- Use a vacuum pump adapter which is equipped with a check valve to prevent the backflow of the vacuum pump oil.

1. When an A/C System has been opened to the atmosphere, such as during installation or repair, it must be evacuated using a R-134a refrigerant vacuum pump. (If the system has been open for several days, the receiver/dryer should be replaced.)
2. Connect a R-134a refrigerant gauge, pump and refrigerant containers (cans of R-134a) as shown.

NOTE: Do not open the cans.

THREE VALVE GAUGE

3. Start the pump, then open the both pressure valves, and evacuation valve (two valve gauge: evacuation stop valve). Run the pump for about 15 minutes.
Close both pressure valves and the evacuation valve (two valve gauge: evacuation stop valve), and stop the pump. The low pressure gauge should indicate above 93.3 kPa ($700 \mathrm{mmHg}, 27.6 \mathrm{in} \cdot \mathrm{Hg}$), and remain steady with the valves closed.

NOTE: If low pressure does not reach more than $93.3 \mathrm{kPa}(700 \mathrm{mmHg}, 27.6 \mathrm{in} \cdot \mathrm{Hg})$ in 15 minutes, there is probably a leak in the system. Check for leaks, and repair (see Leak Test).
4. If there are no leaks, open the valves and continue pumping for at least another 15 minutes. Then close both valves, and stop the pump.

two valve gauge

A/C System Service

Charging

NOTE:

- Only use a gauge set for refrigerant HFC-134a (R134a).
- Use a vacuum pump adapter which is equipped with a check valve to prevent the backflow of the vacuum pump oil.

A WARNING When handling refrigerant (R -134a):

- always wear eye protection.
- do not let refrigerant get on your skin or in your eyes. If it does:
- do not rub your eyes or skin.
- splash large quantities of cool water in your eyes or on your skin.
- rush to a physician or hospital for immediate treatment. Do not attempt to treat it yourself.
- keep refrigerant containers (cans of R-134a) stored below $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
- keep away from open flame. Refrigerant, although non-flammable, will produce poisonous gas if burned.
- work in well-ventilated area. Refrigerant evaporates quickly, and can force all the air out of a small, enclosed area.

CAUTION: Do not overcharge the system; the compressor will be damaged.

1. After the leak test, check that the high pressure valve is closed, and start the engine.

NOTE: Run the engine below $1,500 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$.
three valve gauge
EVACUATION VALVE
2. Open the front door.

Turn the AC switch ON.
Set the temperature control lever to MAX. COOL.
Set the mode control switch on VENT.
Slide the heater fan switch to MAX.
3. Open the low pressure valve, and charge with R 134a refrigerant.

A warinng

- Do not open the high pressure valve.
- Do not turn the cans upside down.

4. Charge the system with refrigerant capacity.

Refrigerant capacity: $\left.650{ }_{-50}^{+0} \mathbf{g (2 2 . 9}{ }_{-1.8}^{+0} \mathbf{~ o z}\right)$
5. When fully charged, close the low pressure valve and the refrigerant cans. Check the system.
6. Stop the engine, and disconnect the charge hose quickly.
7. Check the system for leaks using a leak detector proper to refrigerant R-134a.

NOTE: Particularly check for leaks around the compressor, condenser, and receiver/dryer.

TWO VALVE GAUGE

Leak Test

NOTE:

- Only use a gauge set for refrigerant HFC-134a (R134a).
- Use a vacuum pump adapter which is equipped with a check valve to prevent the backflow of the vacuum pump oil.

A warning When handling refrigerant (\mathbf{R}-134a):

- always were eye protection.
- do not let refrigerant get on your skin or in your eyes. If it does:
- do not rub your eyes or skin.
- splash large quantities of cool water in your eyes or on your skin.
- rush to a physician or hospital for immediate treatment. Do not attempt to treat it yourself.
- keep refrigerant containers (cans of R-134a) stored below $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
- keep away from open flame. Refrigerant, although non-flammable, will produce poisonous gas if burned.
- work in well-ventilated area. Refrigerant evaporates quickly, and can force all the air out of a small, enclosed area.

1. Close the evacuation valve (two valve gauge; evacuation stop valve).
three valve gauge

Read this before you do any electrical work on the car.

Some model versions of the Accord Coupe include a driver's airbag, located in the steering wheel hub, and a front passenger's airbag, located in the dashboard above the glove box. Information necessary to safely service the SRS is included in this Shop Manual. Items marked with an asterisk (${ }^{*}$) on the contents page include, or are located near, SRS components. Servicing, disassembling or replacing these items will require special precautions and tools, and should therefore be done by an authorized Honda dealer.

A Warning

- To avoid rendering the SRS inoperative, which could lead to personal injury or death in the event of a severe frontal collision, all SRS service work must be performed by an authorized Honda dealer.
- Improper service procedures, including incorrect removal and installation of the SRS, could lead to personal injury caused by unintentional activation of the airbags.
- All SRS electrical wiring harnesses are covered with yellow insulation. Related components are located in the steering column, front console, dashboard, dashboard lower panel, and in the dashboard above the glove box. Do not use electrical test equipment on these circuits.

Electrical

Special Tools 23-2
Troubleshooting
Tips and Precautions 23-3
Five-step Troubleshooting 23-5
How to Use This Section
Schematic Symbols 23-6
Wire Color Codes 23-6
Relay and Control Unit Locations Engine Compartment 23-7
Dashboard 23-8
Wire Harness and Ground Locations 23-14
Index to Circuits and Systems
Air Conditioning Section 22
Anti-lock Brake System (ABS) Section 19
Automatic Transmission System Section 14
Battery 23-69
Blower Controls Section 21
Charging System 23-109
*Cigarette Lighter 23-230
Clock 23-229
*Cruise Control 23-298
Fan Controls 23-125
Fuel Pump Section 11
Fuses
Under-dash Fuse/Relay Box 23-34
Under-hood ABS Fuse/Relay Box 23-31
Under-hood Fuse/Relay Box 23-32
PGM-FI Control System Section 11
*Gauges
Circuit Diagram 23-132
Engine Coolant Temperature
(ECT) Gauge 23-144
Fuel Gauge 23-142
Speedometer 23-131
Tachometer 23-131
Grounds Distribution 23-51
Heater Controls Section 21
*Horns 23-233
*Ignition Switch 23-74
Ignition System 23-91
Indicators 23-163
*Safety Indicator 23-154
*Integrated Control Unit 23-170
*Interlock System (KH model) 23-146
Lights, Exterior
Back-up Lights 23-210
Brake Lights and High Mount Brake Light 23-212
Front Parking/Side Marker Lights 23-197
Front Turn Signal Lights 23-198
Headlights 23-196
License Plate Lights 23-201
Rear Fog Light (KG and KE models) 23-200
Rear Side Marker Lights (KH model) 23-201
Side Turn Signal Lights 23-198
Taillights 23-199
Lights, Interior
Ceiling Light 23-204
Courtesy Light 23-207
Glove Box Light 23-202
Vanity Mirror Light (KH model) 23-202
Trunk Light 23-206
*Dash Lights Brightness Controller 23-208
*Lighting System 23-183
Power Distribution 23-36
Power Door Locks 23-274
Power Mirrors 23-257
Power Relays 23-72
Power Seat 23-241
Power Windows 23-263
*Rear Window Defogger 23-244
*Sunroof 23-250

* Side Marker/Turn Signal/Hazard Flasher System 23-215
Starting System 23-78
*Stereo Sound System 23-220
*Supplemental Restraint System (SRS) 23-317
*Under-dash Fuse/Relay Box 23-70
Vehicle Speed Sensor (VSS) 23-140
*Wiper/Washer 23-285
Wiring Diagrams 23-360
*Read the SRS precautions on page 23-324, theninstall the short connectors on the airbags beforeworking in these areas.

Ref. No.	Tool Number	Description	Oty	Page Reference
$\begin{aligned} & (1) \\ & (2) \\ & (3) \\ & (4) \\ & (5) \\ & (6) \\ & (7) \end{aligned}$	07PAZ - 0010100 07LAJ - PT30200 07HAZ - SG00400 07MAZ - SL00500 07MAZ - SP00500 07LAZ - SL40300 07LAZ - SL40400	SCS Short Connector Test Harness Deployment Tool Test Harness A Test Harness B Test Harness C Test Harness D	1 1 1 1 1 1 1	$\begin{aligned} & 23-95 \\ & 23-139 \\ & 23-350 \\ & 23-333 \\ & 23-336 \\ & 23-337 \\ & 23-339 \end{aligned}$
(1) (2)				
(3) (4) (5)				
(6) (7)				

Tips and Precautions

Before Troubleshooting

- Check applicable fuses in the appropriate fuse/relay box.
- Check the battery for damage, state of charge, and clean and tight connections.
- Check the alternator belt tension.

CAUTION:

- Do not quick-charge a battery unless the battery ground cable has been disconnected, otherwise you will damage the alternator diodes.
- Do not attempt to crank the engine with the battery ground cable loosely connected or you will severely damage the wiring.

Handling Connectors

- Make sure the connectors are clean and have no loose wire terminals.
- Make sure multiple cavity connectors are packed with grease (except watertight connectors).
- All connectors have push-down release type locks.

- Some connectors have a clip on their side used to attach them to a mount bracket on the body or on another component. This clip has a pull type lock.
- Some mounted connectors cannot be disconnected unless you first release the lock and remove the connector from its mount bracket.

- Never try to disconnect connectors by pulling on their wires; puli on the connector halves instead.
- Always reinstall plastic covers.

- Before connecting connectors, make sure the terminals are in place and not bent.

- Check for loose retainer and rubber seals.

- The backs of some connectors are packed with grease. Add grease if necessary. If the grease is contaminated, replace it.

(cont'd)

Troubleshooting

Tips and Precautions (cont'd)

- Insert the connector all the way and make sure it is securely locked.
- Position wires so that the open end of the cover faces down.

Handling Wires and Harnesses

- Secure wires and wire harnesses to the frame with their respective wire ties at the designated locations.
- Remove clips carefully; don't damage their locks.

Slip pliers under the clip base and through the hole at an angle, then squeeze the expansion tabs to release the clip.

- After installing harness clips, make sure the harness doesn't interfere with any moving parts.
- Keep wire harnesses away from exhaust pipes and other hot parts, from sharp edges of brackets and holes, and from exposed screws and bolts.
- Seat grommets in their grooves properly.

Testing and Repairs

- Do not use wires or harnesses with broken insulation. Replace them or repair them by wrapping the break with electrical tape.
- After installing parts, make sure that no wires are pinched under them.
- When using electrical test equipment, follow the manufacturer's instructions and those described in this manual.
- If possible, insert the probe of the tester from the wire side (except waterproof connector).

- Use a probe with a tapered tip.

Five-step Troubleshooting

1. Verify The Complaint

Turn on all the components in the problem circuit to verify the customer complaint. Note the symptoms. Do not begin disassembly or testing until you have narrowed down the problem area.
2. Analyze The Schematic

Look up the schematic for the problem circuit. Determine how the circuit is supposed to work by tracing the current paths from the power feed through the circuit components to ground. If several circuits fail at the same time, the fuse or ground is a likely cause.

Based on the symptoms and your understanding of the circuit operation, identify one or more possible causes of the problem.
3. Isolate The Problem By Testing The Circuit Make circuit tests to check the diagnosis you made in step 2. Keep in mind that a logical, simple procedure is the key to efficient troubleshooting. Test for the most likely cause of failure first. Try to make tests at points that are easily accessible.
4. Fix The Problem

Once the specific problem is identified, make the repair. Be sure to use proper tools and safe procedures.
5. Make Sure The Circuit Works

Turn on all components in the repaired circuit in all modes to make sure you've fixed the entire problem. If the problem was a blown fuse, be sure to test all of the circuits on the fuse. Make sure no new problems turn up and the original problem does not recur.

How to Use This Section

Relay and Control Unit Locations

Engine Compartment

NOTE: LHD type is shown, RHD type is similar.

Relay and Control Unit Locations

Dashboard

LHD type:

(GRN/WHT): KH model

RHD type:

(cont'd)

Relay and Control Unit Locations

Dashboard (cont'd)

LHD type:

RHD type:

Relay and Control Unit Locations

Dashboard (cont'd)

LHD type:

RHD type:

Wire Harness and Ground Locations

Engine Compartment

NOTE: LHD type is shown, RHD type is similar.

(cont'd)

Wire Harness and Ground Locations

Engine Compartment (cont'd)

NOTE: LHD type is shown, RHD type is similar.

(cont'd)

Wire Harness and Ground Locations

Engine Compartment (cont'd)

LHD type:

RHD type:

Wire Harness and Ground Locations

- Dashboard/Floor

LHD type:

RHD type:

Wire Harness and Ground Locations

- Dashboard/Floor (cont'd)

LHD type:

RHD type:

Wire Harness and Ground Locations

Floor/Rear

LHD type:

RHD type:

Wire Harness and Ground Locations

Dashboard/Rear

LHD type:

RHD type:

Wire Harness and Ground Locations

- Door

NOTE: LHD type is shown, RHD type is symmetrical.

DRIVER'S DOOR WIRE HARNESS

Dashboard/Seat

NOTE: LHD type is shown, RHD type is symmetrical.

Wire Harness and Ground Locations

Roof/Rear

LHD type:

RHD type:

Fuses

Under-hood ABS Fuse/Relay Box

NOTE: LHD type is shown, RHD type is similar.

Fuse Number	Amps	Wire Color	Component(s) or Circuit(s) Protected
41	40 A	-	ABS pump motor relay (contacts)
42	10 A	GRN	ABS control unit
43	20 A	WHT/GRN	ABS front solenoids
44	15 A	WHT/BLK	ABS rear solenoids, ABS control unit
45	-	-	Not used

[^9]
Fuses

Under-hood Fuse/Relay Box

NOTE: LHD type is shown, RHD type is similar.

Fuse Number	Amps	Wire Color	Component(s) or Circuit(s) Protected
15	$\begin{array}{lr} * 1 & 100 \mathrm{~A} \\ * 2 & 80 \mathrm{~A} \end{array}$	\qquad	Battery, Power distribution
16	40 A	WHT/GRN	Rear window defogger, Noise condenser
17	40 A	WHT	Blower motor
18	50 A	WHT	Ignition switch (BAT)
19	20 A	RED/YEL	Left headlight, High beam indicator light
20	20 A	RED/GRN	Right headlight
21	20 A	BLU/BLK	Radiator fan motor
22	7.5 A	RED/YEL	Rear fog light (Except KH)
23	-	-	Not used
24	-	-	Not used
25	-	-	Not used
26	20 A	BLU/BLK	Front passenger's power window motor
27	30 A	WHT/BLK	Headlight washer control unit (KE)
28	20 A	GRN/WHT	Driver's power window motor, Power window control unit
29	30 A	GRN	Sunroof motor
30	20 A	WHT/YEL	Horns, Brake lights, Key interlock solenoid (KH)
31	20 A	RED	Driver's power seat up-down motor (Height-adjustable power seat)
32	15 A	RED/GRN	VDash lights, Parking lights, Taillights, License plate lights
33	15 A	WHT/GRN	PGM-FI main relay, Alternator (Except KH)
34	15 A	WHT	Radiator fan control module, Condenser fan motor, A/C compressor clutch relay
35	15 A	WHT/GRN	Turn signal/hazard relay
36	15 A	RED/WHT	Cigarette lighter, Stereo radio/cassette player, Data link connector
37	7.5 A	WHT/BLU	Integrated control unit, Power antenna motor, Trunk light, Courtesy lights, Ceiling light
38	20 A	WHT	Power door lock control unit
39	7.5 A	WHT/YEL	ECM, Clock, Transmission control module (TCM), Stereo radio/cassette player

*1: F22B1 engine
*2: Except F22B1 engine

Under-dash Fuse/Relay Box

NOTE: RHD type is shown, LHD type is similar.

- : Spare fuse
* : Not used
$\left.\begin{array}{l}\text { A } \\ \text { B } \\ \text { C } \\ \text { D }\end{array}\right\}$ To optional connector

Fuse Number	Amps	Wire Color	Component(s) or Circuit(s) Protected
1	10 A	YEL	Gauge assembly, Back-up lights, Clock, Vehicle speed sensor (VSS), Shift lock solenoid (KH model)
		Fuse/relay box socket	Integrated control unit
2	15 A	BLK/YEL	PGM-FI main relay
		RED	SRS unit (VA)
3	10 A	PNK	SRS unit (VB)
4	7.5 A	BLK/YEL	Alternator, Transmission control module (TCM), ELD unit (KH model), Radiator fan control module, Cruise control system, Charging system light, EGR control solenoid valve, Engine mount control solenoid valve (A/T), Intake air resonator (IAR) control solenoid valve
5	10 A	YEL/GRN	Sunroof open relay, Sunroof close relay, Power window relay, Headlight adjuster units, Headlight washer control unit (Except KH)
6	30 A	GRN/BLK	Windshield wiper motor, Intermittent wiper relay, Windshield washer motor
		Fuse/relay box socket	Integrated control unit (Except KH model)
7	7.5 A	YEL/BLK	ABS inspection connector, ABS control unit, ABS pump motor relay, Power mirror actuators, Power mirror defoggers
		Fuse/relay box socket	Optional connector (B)
8	7.5 A	BLK/YEL	Recirculation control motor, Heater control panel, Rear window defogger indicator light, Mode control motor, Radiator fan control module, A/C compressor clutch relay, A/C thermostat
		Fuse/relay box socket	Rear window defogger relay, Blower motor relay
9	7.5 A	BLU/RED	PGM-FI main relay, ECM, Gauge (Brake check circuit)
10	-	-	Not used
11	10 A	WHT/YEL	Cigarette lighter relay
		Fuse/relay box socket	Optional connector (A)
12	7.5 A	YEL/WHT	Turn signal/hazard relay (Except KG model)

Power Distribution

Circuit Identification (KG model)

Power Distribution

Circuit Identification (KG model cont'd)

(cont'd)

23-39

Power Distribution

Circuit Identification (KG model cont'd)

Circuit Identification (KE model)

(cont'd)

Power Distribution

Circuit Identification (KE model cont'd)

(cont'd)

Power Distribution

Circuit Identification (KE model cont'd)

Power Distribution

Circuit Identification (KH model)

(cont'd)

Power Distribution

Circuit Identification (KH model cont'd)

(cont'd)

Power Distribution

Circuit Identification (KH model cont'd)

Ground Distribution

Circuit Identification (KG model cont'd)

$\frac{\square}{\square}$ ABLK pump motor G351
(D) : Main wire harness
E. : Right engine compartment wire harness

F : Left engine compartment wire harness
G : A/C wire harness

D : Main wire harness
E : Right engine compartment wire harness
F : Left engine compartment wire harness

H : Driver's door wire harness
I : Passenger's door wire harness
J : Dashboard wire harness

K : ABS wire harness
(cont'd)

Ground Distribution

Circuit Identification (KG model cont'd)

$D:$ Main wire harness	0 : Rear wire harness
M : Left side wire harness	D : Trunk lid wire harness
M : Driver's power seat wire harness A	

Ground Distribution

Circuit Identification (KG model cont'd)

[0] : SRS main harness
[B]: Fuel unit wire harness
S : Rear window defogger ground wire

Circuit Identification (KE model)

Ground Distribution

Circuit Identification (KE model cont'd)

(D) : Main wire harness

E : Right engine compartment wire harness
F: Left engine compartment wire harness

(D) : Main wire harness

E : Right engine compartment wire harness
F : Left engine compartment wire harness

H] : Driver's door wire harness
J] : Dashboard wire harness
L- Roof wire harness
(cont'd)

Ground Distribution

Circuit Identification (KE model cont'd)

D : Main wire harness
0 : Rear wire harness
(M) : Left side wire harness
P : Trunk lid wire harness
(cont'd)

23-61

Ground Distribution

Circuit Identification (KE model cont'd)

(Q) : SRS main harness

R : Fuel unit wire harness
S : Rear window defogger ground wire

Circuit Identification (KH model)

Ground Distribution Circuit Identification (KH model cont'd)

\square
$\frac{\square}{-}$
G351 BLK ABS pump motor
\square
$\frac{\square}{-}$
G351
BLK
[D]: Main wire harness
[E]: Right engine compartment wire harness
[F] : Left engine compartment wire harness
[G]: A/C wire harness

[D]: Main wire harness
JJ: Dashboard wire harness
K : ABS wire harness
[H] : Driver's door wire harness
[1] : Passenger's door wire harness

Ground Distribution

Circuit Identification (KH model cont'd)

(D) : Main wire harness

J : Dashboard wire harness
\square : Roof wire harness

[D : Main wire harness
[0]: Rear wire harness
M : Left side wire harness
P] : Trunk lid wire harness
(cont'd)

Ground Distribution

Circuit Identification (KH model cont'd)

G751

G801
(0) : SRS main harness

R : Fuel unit wire harness
[S: Rear window defogger ground wire

A warning

- Battery fluid (electrolyte) contains sulfuric acid. It may cause severe burns if it gets on your skin or in your eyes.
Wear protective clothing and a face shield.
- If electrolyte gets on your skin or clothes, rinse it off with water immediately.
- If electrolyte gets in your eyes, flush it out by splashing water in your eyes for at least 15 minutes; call a physician immediately.
- A battery gives off hydrogen gas. If ignited, the hydrogen will explode and could crack the battery case and splatter acid on you. Keep sparks, flames, and cigarettes away from the battery.
- Overcharging will raise the temperature of the electrolyte. This may force electrolyte to spray out of the battery vents. Follow the charger manufacturer's instructions, and charge the battery at a proper rate.

NOTE: To get accurate results, the temperature of the electrolyte must be between 21 and $38^{\circ} \mathrm{C}$ (70 and $100^{\circ} \mathrm{F}$) before testing.

Test Equipment Required:

- Battery Tester with:

Voltmeter with $0-18 \mathrm{~V}$ scale, ammeter with 0 100 V A and $0-500 \mathrm{~A}$ scales, and a carbon pile with $0-300 \mathrm{~W}$

- 12 V Battery Charger:

Fast charge capability of 50 A and slow charge capability of 5 A

Test Procedure:

1. Check for damage: If the case is cracked or the terminals are loose, replace the battery.
2. Check indicator (for basic charge condition): Blue or Green is OK. If the indicator is red, peel the tape off, remove the caps, and add distilled water; then reinstall the caps and tape. If the indicator is clear, go to step 3.
3. Test battery load capacity by connecting a battery tester, and applying a load of three times the battery ampere hour rating.
When the load has been applied for exactly 15 sec onds, the battery voltage reading should stay above 9.6 V .

- If the reading stays above 9.6 V , the battery is OK; clean its terminals and case, and reinstall it.
- If the reading is between 6.5 and 9.6 V , connect a battery charger and charge the battery for three minutes at an initial rate of 40 amps .

CAUTION: Amperage will drop as voltage increases; do not increase the amperage to compensate or you may damage the battery.

- Watch the battery voltage during the entire three minutes; the highest reading should stay below 15.5 V .
- If the reading stays below 15.5 V , the battery is OK; clean its terminals and case, and reinstall it.
- If the reading exceeds 15.5 V any time during the three minutes of fast charge, the battery is not good; replace it.
- If the reading drops below 6.5 V , slow charge the battery by connecting a battery and charge at five amps for no more than 24 hours (or until the indicator shows full charge, or the specific gravity of the electrolyte is at least 1.250).
Then test load capacity again.
- If the voltage stays above 9.6 V , the battery is OK; clean its terminals and case, and reinstall it.
- If the voltage still drops below 6.5 V , the battery is not good; replace it.

Under-dash Fuse/Relay Box

Removal/Installation

CAUTION:

- All SRS electrical wiring harnesses are covered with vellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED) to the airbag 3-P connectors.

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.
- Disconnect the 3-P connector between the driver's airbag and cable reel, then connect the short connector (RED) to the airbag side of the connector.

Front Passenger's Side:

- Remove the glove box.

NOTE: Before removing the glove box, remove the glove box damper (see section 20).

- Disconnect the front passenger's airbag 3-P connector from the SRS main harness, and connect the short connector (RED) to the front passenger's airbag 3-P connector.

FRONT PASSENGER'S
AIRBAG
3-P CONNECTOR

3. Remove the driver's foot rest (see section 20).
4. Remove the dashboard lower cover and knee bolster.

DASHBOARD LOWER COVER
5. Remove the door sill molding, left kick panel and access panel.

LEFT KICK PANEL
6. Remove the two mounting bolts, and pull the under-dash fuse/relay box away from the left kick panel.

7. Disconnect the under-dash fuse/relay box connectors, and take out the under-dash fuse/relay box.

NOTE: The SRS main harness connector is double locked. To remove it, first lift the connector lid, then press the connector tab down and pull the connector out.

Installation:

1. Reconnect the connectors to the under-dash fuse/ relay box.

NOTE: To reinstall the SRS main harness connector, push it into position until it clicks, then close the connector lid.
2. Install the under-dash fuse/relay box.
3. Disconnect the short connectors (RED) from the airbags.
4. Reconnect the airbag 3-P connectors.
5. Attach the driver's airbag short connector (RED) to the access panel, and reinstall the panel.

6. Reinstall the glove box.
7. Connect both the negative cable and positive cable to the battery.
8. Confirm that all systems work properly.

Power Relays

Relay Test

NOTE: See page 23-218 for turn signal/hazard relay input test.

NORMALLY-OPEN Type:

1. Remove the power relay from its socket.
2. Check for continuity between the terminals.

- There should be continuity between the A and B terminals when power and ground are connected to the C and D terminals.
- There should be no continuity between the A and B terminals when power is disconnected.

Terminal	A	B
Power (C - D)		
Disconnected		
Connected	0	-

- Radiator fan relay
- Power window relay
- Blower motor relay

- ABS pump motor relay

- Condenser fan relay
- A/C compressor clutch relay

- Horn relay
- Cigarette lighter relay
- ABS front fail-safe relay (RHD type)
- ABS rear fail-safe relay (RHD type)

- ABS front fail-safe relay (LHD type)
- ABS rear fail-safe relay (LHD type)

- Headlight relay

- Rear window defogger relay

FIVE-TERMINAL Type:

1. Remove the power relay from its socket.
2. Check for continuity between the terminals.

- There should be continuity between the A and C terminals when power and ground are connected to the D and E terminals.
- There should be continuity between the B and C terminals when power is disconnected.

Power (D-E) Terminal	A	B	C
Disconnected		O	-
Connected	\bigcirc		-

- Dimmer relay

- Intermittent wiper relay

- Sunroof open relay
- Sunroof close relay

Ignition Switch

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the dashboard lower cover, left knee bolster (KH model) and access panel (see page 23-70).
2. Disconnect the switch harness 7-P connector from the under-dash fuse/relay box.

3. Check for continuity between the terminals in each switch position according to the table.

	$\begin{aligned} & \text { WHT/ } \\ & \text { BLK } \\ & \text { (ACC) } \end{aligned}$	WHT (BAT)	$\begin{aligned} & \text { BLK/ } \\ & \text { YEL } \\ & (\mathrm{IG1}) \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { (IG2) } \end{aligned}$	BLK/ WHT (ST)
0					
1		\bigcirc			
1	\bigcirc	\bigcirc	O	\bigcirc	
III		\bigcirc	\bigcirc		O

View from wire side
4. If the continuity checks do not agree with the table, check for a bad connection between the switch and switch harness.

- If connection is OK, replace the switch.
- If connection isn't OK, repair as necessary, and recheck. If continuity checks still do not agree with the table, replace the switch.

Electrical Switch Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the dashboard lower cover and knee bolster (see page 23-70).
2. Remove the steering column covers (see page 23-76).
3. Disconnect the connectors from the switch.

4. Remove the column holder mounting bolts and nuts (see page 23-77).
5. Lower the steering column assembly.
6. Center punch each of the two shear bolts, and drill their heads off with a 5 mm ($3 / 16 \mathrm{in}$) drill bit (see page 23-77).

CAUTION: Do not damage the switch body when removing the shear bolts.
7. Remove the shear bolts from the switch body, then remove the switch assembly.
8. Remove the three screws, and replace the electrical switch.

Ignition Switch

Steering Lock Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Disconnect the battery ground cable, then disconnect the starter (positive) cable.
2. Remove the dashboard lower cover and knee bolster.

DASHBOARD LOWER COVER
3. Remove the steering column covers.

4. Disconnect the connectors from the switch.

5. Remove the column holder mounting bolts and nuts.

6. Lower the steering column assembly.
7. Center punch each of the two shear bolts, and drill their heads off with a $5 \mathrm{~mm}(3 / 16 \mathrm{in})$ drill bit.

CAUTION: Do not damage the switch body when removing the shear bolts.

8. Remove the shear bolts from the switch body.
9. Install the new ignition switch without the key inserted.
10. Loosely tighten the new shear bolts.
11. Insert the ignition key, and check for proper operation of the steering wheel lock and that the ignition key turns freely.
12. Tighten the shear bolts until the hex heads twist off.

Starting System

Component Location Index

Description

The starter/engine combinations are shown in the table below.

F20B3 engine F22B5 engine	M / T	NIPPONDENSO $(1.4 \mathrm{~kW})$
F20B3 engine (KE)	A / T	MITSUBA $(1.4 \mathrm{~kW})$
F22B5 engine (KE)		
F20B3 engine (KG)	A/T	MITSUBA $(1.6 \mathrm{~kW})$
F22B1 engine		
F22B2 engine		
F22B5 engine (KG)		

Circuit Diagram

Starting System

Starter Test

NOTE: The air temperature must be between 15 and $38^{\circ} \mathrm{C}$ (59 and $100^{\circ} \mathrm{F}$) before testing.

Recommended Procedure:

- Use a starter system tester.
- Connect and operate the equipment in accordance with the manufacturer's instructions.
- Test and troubleshoot as described.

Alternate Procedure:

- Use the following equipment:
- Ammeter, 0-400 A
- Voltmeter, $0-20 \mathrm{~V}$ (accurate within 0.1 volt)
- Tachometer, 0-1,200 rpm $\left(\mathrm{min}^{-1}\right)$
- Hook up voltmeter and ammeter as shown.

NOTE: After this test, or any subsequent repair, reset the ECM to clear any codes (see section 11).

Check Starter Engagement

1. Disconnect the 4-P (2-P) connector from the ignition coil.
Except F22B2 engine:

F22B2 engine:

2. Turn the ignition switch to "Start". The starter should crank the engine.
3. Check the battery, battery positive cable, ground, and the wire connections for looseness and corrosion. Test again. If the starter still does not crank the engine, go to step 4.
4. Bypass the ignition switch circuit as follows (make sure the transmission is in neutral):
Unplug the connector (BLK/WHT wire and solenoid terminal) from the starter. Then connect a jumper wire from the battery positive (+) terminal to the solenoid terminal. The starter should crank the engine.

- If the starter still does not crank the engine, remove it, and diagnose its internal problems.
- If the starter cranks the engine, go to step 5.

5. Check for an open in the BLK/WHT wire circuit between the starter and ignition switch, and connectors.
6. Check the ignition switch (see page 23-74).

Starter Solenoid Test

7. On cars with automatic transmission, check the A / T gear position switch (neutral position switch) and connector.

Check for Wear and Damage

The starter should crank the engine smoothly and steadily. If the starter engages, but cranks the engine erratically, remove it. Inspect the starter, drive gear, and flywheel ring gear for damage.

- Check the drive gear overrunning clutch for binding or slipping when the armature is rotated with the drive gear held. Replace the gears if damaged.

Check Cranking Voltage and Current Draw

Cranking voltage should be no less than 8.5 volts.
Current draw should be no more than 350 amperes.
If cranking voltage is too low, or current draw too high, check for:

- Dead or low battery
- Open circuit in starter armature commutator segments
- Starter armature dragging
- Shorted armature winding
- Excessive drag in engine

Check Cranking rpm

Engine speed during cranking should be above 100 rpm $\left(\right.$ min $^{-1}$).

If speed is too low, check for:

- Loose battery or starter terminals
- Excessively worn starter brushes
- Open circuit in commutator segments
- Dirty or damaged helical spline or drive gear
- Defective drive gear overrunning clutch

Check Starter Disengagement

Turn the ignition switch to "III", and release to "II". The starter drive gear should disengage from the flywheel ring gear when you release the key.

If the drive gear hangs up on the flywheel ring gear, check for:

- Solenoid plunger and switch malfunction
- Dirty drive gear assembly or damaged overrunning clutch

1. Check the hold-in coil for continuity between the S terminal and the armature housing (ground). The coil is OK if there is continuity.
M/T (Nippondenso):

2. Check the pull-in coil for continuity between the S and M terminals. The coil is OK if there is continuity.

Starting System

Starter Replacement

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Remove the engine wire harness and radiator lower hose from the bracket on the starter motor.
3. Disconnect the starter cable from the B terminal on the solenoid, then the BLKNHT wire from the S terminal.

A/T (Mitsuba):

MOUNTING NUT
$9 \mathrm{~N} \cdot \mathrm{~m}(0.9 \mathrm{kgf} \cdot \mathrm{m}, 6.5 \mathrm{lbf} \cdot \mathrm{ft})$

M/T (Nippondenso):

4. Remove the two bolts holding the starter, then remove the starter.
5. Install in the reverse order of removal.

NOTE: When installing the starter cable, make sure that the crimped side of the ring terminal is facing out.

Starter Overhaul (Mitsuba)

CAUTION: Before removing the starter, disconnect the negative cable from the battery.

Starting System

Starter Overhaul (Nippondenso)

CAUTION: Disconnect the battery negative cable before removing the starter.

HARNESS BRACKET

STEEL BALL
When reassembling, install steel ball from clutch side.

MOLYBDENUM DISULFIDE

Armature Inspection and Test

1. Inspect the armature for wear or damage due to contact with the field coil magnets.

2. A dirty or burnt commutator surface may be resurfaced with emery cloth or a lathe within the following specifications.

Commutator Diameter

	Standard (NEW)	Service Limit
Nippondenso	$29.9-30.0 \mathrm{~mm}$	29.0 mm
$(1.4 \mathrm{~kW})$	$(1.177-1.181 \mathrm{in})$	$(1.14 \mathrm{in})$
Mitsuba	$28.0-28.1 \mathrm{~mm}$	27.5 mm
$(1.4 \mathrm{~kW})(1.6 \mathrm{~kW})$	$(1.102-1.106 \mathrm{in})$	$(1.083 \mathrm{in})$

Commutator Runout

	Standard (NEW)	Service Limit
Nippondenso $(1.4 \mathrm{~kW})$		
	$0-0.02 \mathrm{~mm}$	0.05 mm
Mitsuba	$(0-0.001 \mathrm{in})$	$(0.002 \mathrm{in})$

3. If the commutator runout and diameter are within limits, check the commutator for damage or for carbon dust or brass chips between the segments.
4. If the surface is dirty, recondition it with $\# 500$ or \#600 sandpaper.

Starting System

Armature Inspection and Test (cont'd)

5. Check for mica depth. If necessary, undercut mica with a hacksaw blade to achieve proper depth.

Commutator Mica Depth

	Standard (NEW)	Service Limit
Nippondenso	$0.5-0.8 \mathrm{~mm}$	0.2 mm
$(1.4 \mathrm{~kW})$	$(0.02-0.03 \mathrm{in})$	$(0.008 \mathrm{in})$
Mitsuba	$0.4-0.5 \mathrm{~mm}$	0.15 mm
$(1.4 \mathrm{~kW})(1.6 \mathrm{~kW})$	$(0.016-0.02 \mathrm{in})$	$(0.006 \mathrm{in})$

6. Check for continuity between the segments of the commutator. If an open circuit exists between any segments, replace the armature.

7. Place the armature on an armature tester. Hold a hacksaw blade on the armature core.

If the blade is attracted to the core or vibrates while the core is turned, the armature is shorted. Replace the armature.
8. Check with an ohmmeter that no continuity exists between the commutator and armature coil core, and between the commutator and armature shaft. If continuity exists, replace the armature.

Starter Brush Holder Test

1. Check that there is no continuity between the \oplus and Θ brush holders.
2. If continuity exists, replace the brush holder assembly.

Nippondenso:

Mitsuba:

3. Insert the brush into the brush holder, and bring the brush into contact with the commutator, then attach a spring scale to the spring. Measure the spring tension at the moment the spring lifts off the brush. If it is out of spec, replace the brush holder assembly.

Spring Tension:

	Spring Tension
Nippondenso $(1.4 \mathrm{~kW})$	$18-24 \mathrm{~N}$
Mitsuba $(1.4 \mathrm{~kW})(1.6 \mathrm{~kW})$	$(1.8-2.4 \mathrm{kgf}, 4.0-5.3 \mathrm{lbf})$

Starting System

Starter Brush Inspection

Measure the brush length. If not within the service limit, replace the armature housing and brush holder assembly.

Brush Length

	Standard (NEW)	Service Limit
Nippondenso	$15.0-15.5 \mathrm{~mm}$	10.0 mm
$(1.4 \mathrm{~kW})$	$(0.59-0.61 \mathrm{in})$	$(0.39 \mathrm{in})$
Mitsuba	$15.8-16.2 \mathrm{~mm}$	11.0 mm
$(1.4 \mathrm{~kW})(1.6 \mathrm{~kW})$	$(0.62-0.64 \mathrm{in})$	$(0.43 \mathrm{in})$

NOTE: To seat new brushes after installing them in their holders, slip a strip of \#500 or \#600 sandpaper, with the grit side up, over the commutator, and smoothly rotate the armature. The contact surface of the brushes will be sanded to the same contour as the commutator.

Solenoid Plunger Inspection (Nippondenso)

Check the contact points and the face of the starter solenoid plunger for burning, pitting or any other defects. If surfaces are rough, recondition them with a strip of \#500 or \#600 sandpaper.

Starter Field Winding Test (Nippondenso)

1. Check for continuity between the brushes. If there is no continuity, replace the armature housing.

2. Check for continuity between each brush and the armature housing (ground).

If continuity exists, replace the armature housing.

Overrunning Clutch Inspection

1. Slide the overrunning clutch along the shaft. Does it move freely? If not, replace it.
2. Rotate the overrunning clutch both ways. Does it lock in one direction and rotate smoothly in reverse? If it does not lock in either direction or it locks in both directions, replace it.

3. If the starter drive gear is worn or damaged, replace the overrunning clutch assembly; the gear is not available separately.
4. Check the condition of the flywheel or torque converter ring gear if the starter drive gear teeth are damaged.

Starter Reassembly

Reassemble the starter in the reverse order of disassembly.

1. Pry back each brush spring with a screwdriver, then position the brush about halfway out of its holder, and release the spring to hold it there.

2. Install the armature in the housing. Next, pry back each brush spring again, and push the brush down until it seats against the commutator, then release the spring against the end of the brush.

3. Install the end cover on the brush holder.

Starting System

Performance Test

NOTE: Before starting the following checks, disconnect the wire from terminal M, and make a connection as described below using as heavy a wire as possible (preferably equivalent to the wire used for the car).

Pull-in Coil Test:

Connect the battery as shown. If the starter pinion pops out, it is working properly.

CAUTION: Do not leave the battery connected for more than 10 seconds.

Hold-in Coil Test:

Disconnect the battery from the M terminal. If the pinion does not retract, the hold-in coil is working properly.

CAUTION: Do not leave the battery connected for more than 10 seconds.

Retracting Test:

Disconnect the battery also from the body. If the pinion retracts immediately, it is working properly.

CAUTION: Do not leave the battery connected for more than 10 seconds.

Starter No-load Test:

1. Clamp the starter firmly in a vise.
2. Connect the starter to the battery as described in the diagram below, and confirm that the motor starts and keeps rotating.

3. If the electric current and motor speed meet the specifications when the battery voltage is at 11 V , the starter is working properly.

Specifications:

Mitsuba	80 A or less (Electric current),				
$(1.4 \mathrm{~kW})(1.6 \mathrm{~kW})$	2600 rpm or more (Motor- speed)	$	$	Nippondenso	90 A or less (Electric current),
:---	:---				
$(1.4 \mathrm{~kW})$	3000 rpm or more (Motor-speed)				

Ignition System

Component Location Index

IGNITION TIMING CONTROL SYSTEM

- Description, page 23-92
- Troubleshooting, section 11
- Inspection and Setting, page 23-95

NOTE: LHD type is shown.

Removal, page 23-97
Overhaul, page 23-98, 99, 100
Top End Inspection, page 23-107
Installation, page 23-102
Ignition Control Module (ICM)
Input Test, page 23-106
Ignition Coil Test, page 23-103, 104
Ignition Coil Replacement, page 23-104, 105

Ignition System

Description

Ignition Timing Control:

The programmed ignition (PGM-IG) used in this engine provides optimum control of ignition timing. A microcomputer determines the timing in response to engine speed and manifold vacuum. The input signals are transmitted by the TDC/CKP/CYP sensor, throttle position (TP) sensor, engine coolant temperature (ECT) sensor, and MAP sensor. This system, which is not dependent on a governor or vacuum diaphragm, is capable of setting lead angles with complicated characteristics which cannot be provided by conventional governors or diaphragms.

Basic Control:

The control unit has stored within it the optimum basic ignition timing for operating conditions based upon engine speed and intake manifold pressure. With compensating signals from sensors, the system determines optimum ignition timing and duration for ambient conditions and sends voltage pulses to the ICM.

Compensation of ignition timing:

Compensation Item	Related Sensor and Information	Description
Idling	TDC/CKP/CYP sensor MAP sensor TH sensor	Ignition timing is controlled to the target speed with compensation according to the idling speed.
Compensation at warm-up	ECT sensor IAT sensor	Lag angle is adjusted according to warm-up con- ditions to bring about a good balance between operating performance and exhaust gas level.
ECT compensation	ECT sensor	Compensation for lead angle at low engine coolant temperature and lag angle at high engine coolant temperature.

Control at Start:

Ignition timing is fixed at 8° BTDC for cranking. The cranking is detected by the CKP sensor (cranking rpm) and starter signal.

Circuit Diagram (Except F22B2 engine)

Ignition System

- Circuit Diagram (F22B2 engine)

Idle Speed Inspection

1. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
2. Connect a tachometer to the test tachometer connector.

Idle speed:
F22B1 engine
F22B2 engine

\mathbf{M} / \mathbf{T}	$700 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in neutral
\mathbf{A} / \mathbf{T}	$700 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in \mathbf{N} or \mathbf{P} position

F22B5 engine

F20B3 engine

M/T	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in neutral
$\mathbf{A / T}$	$770 \pm 50 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ in N or P position

NOTE: All electrical systems should be turned OFF.
3. Adjust the idle speed if necessary (see section 11).

Ignition Timing Inspection and Setting

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connector(s).
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ (min^{-1}) with no load (A/T in N or P position, M / T in neutral) until the radiator fan comes on, then let it idle.
2. Pull out the service check connector located behind the glove box. Connect the GRN/BLU and RED terminals with the SCS short connector.

SERVICE CHECK CONNECTOR (2-P)
NOTE: Located behind the glove box
NOTE: LHD type is shown, RHD type is symmetrical.
(cont'd)

Ignition System

Ignition Timing Inspection and Setting (cont'd)

3. Check the idle speed (see page 23-95).
4. Connect a timing light to the No. 1 ignition wire.

- Point the light toward the pointer on the timing belt cover.

5. Adjust ignition timing, if necessary, to the following specifications:

Ignition Timing:

F22B1 engine
F22B2 engine

M/T	$15^{\circ} \pm 2^{\circ}$ BTDC (RED) at $700 \pm 50 \mathrm{rpm}$ $\left(\mathrm{min}^{-1}\right)$ in neutral
A/T	$15^{\circ} \pm 2^{\circ}$ BTDC (RED) at $700 \pm 50 \mathrm{rpm}$ $\left(\mathrm{min}^{-1}\right)$ in N or P position

F22B5 engine

F20B3 engine

\mathbf{M} / \mathbf{T}	$15^{\circ} \pm 2^{\circ}$ BTDC (RED) at $770 \pm 50 \mathrm{rpm}$ $\left(\mathrm{min}^{-1}\right)$ in neutral
$\mathbf{A / T}$	$15^{\circ} \pm 2^{\circ}$ BTDC (RED) at $770 \pm 50 \mathrm{rpm}$ $\left(\mathrm{min}^{-1}\right)$ in \mathbf{N} or P position

NOTE:

- Shift lever must be in neutral.
- All electrical systems should be turned OFF.

6. To adjust ignition timing, loosen the distributor mounting bolts, and turn the distributor housing counterclockwise to advance the timing, or clockwise to retard the timing.

7. Tighten the adjusting bolts, and recheck the timing.
8. Remove the SCS short connector from the service check connector.

Distributor Removal

NOTE: Before you remove the distributor, bring the No. 1 piston to compression stroke TDC (see section 6).

1. Disconnect the 2-P and 8-P connectors from the distributor.

2. Disconnect the ignition wires from the distributor cap.
3. Remove the distributor mounting bolts, then remove the distributor from the cylinder head.

Ignition System

Distributor Overhaul (F22B1 engine)

Distributor Overhaul (F22B2 engine)

DISTRIBUTOR
 CAP SEAL

Check for damage.

IGNITION CONTROL
MODULE (ICM)
Troubleshooting, section 11 Input Test, page 23-106

Ignition System

Distributor Overhaul (Except F22B1/F22B2 engine)

Distributor Reassembly

1. When reassembling the distributor, install the distributor rotor so that it faces in the direction shown (toward the No. 1 cylinder).
2. Align the index mark on the distributor housing with the index mark on the end of the shaft.

F22B1 engine:

Except F22B1 engine:

Ignition System

Distributor Installation

NOTE: Before you install the distributor, bring the No. 1 piston to compression stroke TDC (see section 6).

1. Coat a new O-ring with engine oil, then install it.
2. Slip the distributor into position.

NOTE: The lugs on the end of the distributor and their mating grooves in the camshaft end are both offset to eliminate the possibility of installing the distributor 180° out of time.

3. Install the mounting bolts, and tighten them lightly.
4. Connect the 2-P and 8-P connectors to the distributor.
5. Connect the ignition wires as shown.

F22B1 engine:

Except F22B1 engine:

6. Set the timing with a timing light (see page 23-95).
7. After setting the timing, tighten the mounting bolts.

Ignition Coil Test

F22B1 engine:

1. Turn the ignition switch OFF, and remove the distributor cap.
2. Remove the BLK/YEL and BLU wires from terminals $A(+)$ and $B(-)$ respectively.

3. Using an ohmmeter, measure resistance between the terminals. Replace the coil if the resistance is not within specifications.

NOTE: Resistance will vary with the coil temperature; specifications are at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

Primary Winding Resistance

(Between the A and B terminals):
0.4-0.6 Ω

Secondary Winding Resistance
(Between the A and secondary winding terminals):
22-34 k Ω

F22B2 engine:

1. Turn the ignition switch OFF.
2. Disconnect the 4-P connector and ignition coil wire.

3. Using an ohmmeter, measure resistance between the terminals. Replace the coil if the resistance is not within specifications.

NOTE: Resistance will vary with the coil temperature; specifications are at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

Primary Winding Resistance
(Between the A and B terminals):
0.6-0.8 Ω

Secondary Winding Resistance
(Between the A and secondary winding terminals): 14-22 k Ω

4. Check for continuity between the A and C terminals. Replace the coil if there is no continuity.
(cont'd)

Ignition System

- Ignition Coil Test (cont'd)

Except F22B1/F22B2 engine:

1. Turn the ignition switch OFF, and remove the distributor cap.
2. Disconnect the BLK/YEL and WHT/BLU wires from the terminals by removing the two screws.

3. Using an ohmmeter, measure resistance between the terminals. If the resistance is not within specifications, replace the coil.

NOTE: Resistance will vary with coil temperature; specifications are at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.

Primary Winding Resistance

(Between the A and B terminals):
0.6-0.8 Ω

Secondary Winding Resistance
(Between the A and secondary winding terminals): $13-19 \mathrm{k} \Omega$

Ignition Coil Replacement

F22B1 engine:

1. With the ignition switch OFF, remove the distributor cap and distributor rotor.

2. Disconnect the BLK/YEL and BLU wires from the coil.
3. Remove the two screws, and slide the ignition coil out of the distributor housing.

F22B2 engine:

1. Turn the ignition switch OFF.
2. Disconnect the 4-P connector and ignition coil wire.
3. Remove the three 6 mm bolts.

Except F22B1/F22B2 engine:

1. Turn the ignition switch OFF, remove the distributor cap, distributor rotor, and cap seal, then remove the leak cover.

2. Disconnect the BLK/YEL and WHT/BLU wire from the terminals by removing the two screws.

3. Remove the two screws, and slide the ignition coil out of the distributor housing.

Ignition System

Ignition Control Module (ICM) Input Test

NOTE:

- See section 11 when the malfunction indicator lamp (MIL) turned on.
- Perform an input test for the ignition control module (ICM) after finishing the fundamental tests for the ignition system and the fuel and emissions systems.
- The tachometer should operate normally if the ICM is OK.

1. Remove the distributor cap, the distributor rotor, and the leak cover.
2. Disconnect the wires from the ICM.

F22B1 engine:

Except F22B1 engine:

3. Turn the ignition switch ON (II). Check for voltage between the BLK/YEL wire and body ground. There should be battery voltage.

- If there is no battery voltage, check the BLK/YEL wire between the ignition switch and the ICM.
- If there is battery voltage, go to step 4.

4. Turn the ignition switch ON (II). Check for voltage between the *1 wire and body ground. There should be battery voltage.

- If there is no battery voltage, check:
- Ignition coil
- *1 wire between the ignition coil and the ICM
- If there is battery voltage, go to step 5 .

5. Check the YEL/GRN wire between the ECM and the ICM.
6. Check the BLU ${ }^{2}$ wire between the tachometer and the ICM.
7. If all tests are normal, replace the ICM.
*1: BLU ${ }^{1}$ wire (F22B1 engine)
GRN wire (F 22 B 2 engine)
WHT/BLU wire (Except F22B1, F22B2 engine)

Distributor Top End Inspection

1. Check for rough or pitted rotor and cap terminals.
2. Scrape or file off the carbon deposits.

Smooth the rotor terminal with an oil stone or \#600 sandpaper if rough.

3. Check the distributor cap for cracks, wear and damage. If necessary, clean or replace it.

Ignition Wire Inspection and Test

CAUTION: Carefully remove the ignition wires by pulling on the rubber boots. Do not bend the wires; you might break them inside.

1. Check the condition of the wire terminals. If any terminal is corroded, clean it, and if it is broken or distorted, replace the wire.

Check for broken,
corroded, or bent
terminals
2. Connect ohmmeter probes and measure resistance.

Ignition Wire Resistance:
$25 \mathrm{k} \Omega$ max. at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

3. If resistance exceeds $25 \mathrm{k} \Omega$, replace the ignition wire.

Ignition System

Spark Plug Inspection

1. Inspect the electrodes and ceramic insulator for:

Burned or worn electrodes may be caused by:

- Advanced ignition timing
- Loose spark plug
- Plug heat range too low
- Insufficient cooling

Fouled plug may be caused by:

- Retarded ignition timing
- Oil in combustion chamber
- Incorrect spark plug gap
- Plug heat range too high
- Excessive idling/low speed running
- Clogged air cleaner element
- Deteriorated ignition coil or ignition wires

2. Check the electrode gap.

- Adjust the gap with a suitable gapping tool.

Electrode Gap

- Replace the plug if the center electrode is rounded as shown below:

NOTE: Use only the spark plugs listed below.
Spark Plugs

- F22B1 engine
- F22B2 engine

ZFR5F-11 (NGK)	For all normal			
KJ16CR-L11 (Nippondenso)	driving	$	$	For hot climates or
:---				
ZFR6F-11 (NGK)				
KJ20CR-L11 (Nippondenso)				
speed driving				

- F20B3 engine
- F22B5 engine

ZFR6F-11 (NGK) KJ20CR-L11 (Nippondenso)	For all normal driving
ZFR5F-11 (NGK)	For cold climates KJ16CR-L11 (Nippondenso) (Except F22B5 engine)
ZFR7F-11 (NGK) KJ22CR-L11 (Nippondenso)	For hot climates or continuous high speed driving

3. Apply a small quantity of anti-seize compound to the plug threads, and screw the plugs into the cylinder head finger-tight. Then torque them to $18 \mathrm{~N} \cdot \mathrm{~m}$ ($1.8 \mathrm{kgf} \cdot \mathrm{m}, 13 \mathrm{lbf} \cdot \mathrm{ft}$).

Charging System

Component Location Index

ALTERNATOR
Alternator and Regulator Test, page 23-114
Replacement, page 23-119
Overhaul, page 23-120

NOTE:
The alternator/engine combinations are shown in the table below.

F22B1 engine	
F22B2 engine	NIPPONDENSO $(90 \mathrm{~A})$
F22B5 engine	
F20B3 engine	NIPPONDENSO $(80 \mathrm{~A})$

Charging System

Description

Alternator Control System (KH model)

To improve fuel economy, the alternator control system within the ECM changes the voltage generated at the alternator in accordance with driving conditions.
 and
ENGINE SPEED between $1,800 \mathrm{rpm}$ and $2,800 \mathrm{rpm}$ and
ENGINE COOLANT TEMPERATURE above $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$)
and
A/C SWITCH OFF
and
INTAKE AIR TEMPERATURE above $18^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{F}\right)$

Circuit Diagram (KH model)

Charging System

C Circuit Diagram (Except KH model)

Troubleshooting

NOTE:

- Before troubleshooting check:
— Tightness of the alternator belt (see page 23-123, 124).
- That the malfunction indicator lamp (MIL) of the ECM does not blink. If it indicates DTC 20, refer to section 11.
- Troubleshoot by performing following tests in the order listed below.

Malfunction:

- Charging system light does not go off.
- Charging system light does not go on
- Battery is dead or low.

1. Test the operation of the alternator and regulator (see page 23-114),
2. Test the operation of the charging system light (see page 23-115).
(KH model) (Except KH model)
3. Check the IG and C terminal voltages of the alternator connestor (see page 23-116).
4. Check the IG and S terminal voltages of the alternator connestor (see page 23-117).

Charging system light does not go off because the engine idle speed is too low:

- Check the idle speed.

Charging System

Troubleshooting (cont'd)

Alternator/Regulator Operation Test:

1. Be sure to use a good battery (see page 23-69). Connect an ammeter, and a voltmeter as shown.
2. Start the engine, and let it idle until it reaches normal operating temperature (cooling fan comes on two times).
3. Raise the engine speed to $2,000 \mathrm{rpm}\left(\mathrm{min}^{-1}\right)$ and hold it there. Turn the headlights (High beam) on and check the voltage at the battery terminals.

Is the voltage between 13.9 and 15.1 V ?
YES Test the alternator (see page 23-118).

1. Turn the blower motor and the rear window defogger on, and check the battery voltage.

Is the battery voltage less than 13.5 V ?
YES NO

Turn also the stereo radio/cassette player, brake lights, etc. on

Is the battery voltage less than 13.5 V ?

YES	NO
Test the alternator (see page 23-118).	

| 1. Read the amperage. |
| :--- | :--- |
| Are there more than *A? |
| YES NO
 Test the alternator (see page 23-118). |

Alternator/Regulator operation is OK. Test the charging system light operation (see page 23-115).

CAUTION: As the headlights warm up considerably, do not cover them.

*A: F22B2, F22B5, F20B3 engine 65 A F22B1 engine 70 A

Charging System Light Test:

1. Turn the ignition switch on (II).

Does the charging system light come on?
YES

| 1. Turn the ignition switch off.
 2.Disconnect the 4-P connector and short its L
 (WHT/BLU) terminal to body ground.
 3. Turn the ignition switch on (II). |
| :--- | :--- |
| Does the charging system light come on? |
| YES |
| - Blown bulb
 - An open in the WHT/BLU wire
 - Loose/disconnected terminal |

Charging system light circuit is OK. Check the voltages at the IG and C (S) terminals (see page 23-116, 117).

Start the engine.			
Does the charging system light go off?			
YES			NO
1. Turn the ignition switch off. 2. Disconnect the 4-P connector. 3. Turn the ignition switch on (II).			
Does the charging system light go off?			
	YES		NO
	- Disconnect the ABS control unit and the integrated control unit as applicable. If the charging system light stays on. - Short in the WHT/ BLU terminal wire		

Check the voltages at the IG and C (S) terminals (see page 23-116, 117).

Charging system light circuit is OK.

Check the voltages at the IG and C (S) terminals (see page 23-116, 117).

View from terminal side
(cont'd)

Charging System

- Troubleshooting (cont'd)

Voltage Checks at IG and C Terminals (KH model):

1. Turn the ignition switch off.

Are the B terminal, the 4-P connector and under-hood fuse/relay box terminals securely tightened?

1. Disconnect the 4-P connector and turn the ignition switch on.
2. Measure the voltage between body ground and the IG terminal of the 4-P connector.

Is there battery voltage?
YES NO

- Blown No. 4 (7.5 A) fuse in the under-dash fuse/relay box
- An open in the BLK/YEL wire

1. Connect the 4-P connector.
2. Start the engine and turn the headlights (High beam) on.
3. Measure the voltage between the C terminal of the 4-P connector and the positive terminal of the battery.
is voltage 1 V or less?

YES
1. Stop the engine and connect the ECU test harness (see section 11). 2. Check for continuity between the C terminal of the 4-P connector and the A16 terminal of the test harness. Is there continuity? YES An open in the WHT/GRN wire

1. Check for continuity between the C terminal and body ground, and between the A 16 terminal and body ground.
Is there continuity?
YES
No
Faulty ECM

Short in the WHT/GRN wire

Check the battery (see page 23-69)

CAUTION: Be sure to use a voltmeter with its plus terminal connected to battery plus and its minus terminal to the C terminal of the 4-P connector.

CAUTION: The ECU test harness must not touch the ECM.

Voltage Checks at IG and S Terminals (Except KH model):	
1. Turn the ignition switch off.	
Are the B terminal, the 4-P connector and under-hood fuse/relay box terminals securely tightened?	
YES Tighten or reconnect the terminals securely.	

1. Disconnect the 4-P connector and turn the ignition switch on (II).
2. Measure the voltage between body ground and the IG terminal of the 4-P connector.
Is there battery voltage?
YES NO

- Blown No. 4 (7.5 A) fuse in the under-dash fuse/relay
- An open in the BLK/YEL wire

1. Measure the voltage between body ground and the S terminal of the 4-P connector.
Is there battery voltage?

YES \quad NO
-Blown No. relay box - An open in the WHT/GRN wire

Check the battery (see page 23-69)

Charging System

Troubleshooting

Alternator Test:

NOTE: Because an overall check is necessary to avoid misleading conclusions, test the alternator in the order described below.

Alternator Replacement

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Remove the power steering pump (see section 17).
3. Disconnect the 4-P connector from the alternator.
4. Remove the terminal nut and the BLK (WHT) wire from the B terminal.

BLK: F22B1 engine
WHT: Except F22B1 engine

5. Loosen the through bolt, then loosen the adjustment locknut, and remove the adjusting bolt.

6. Remove the belt from the alternator.
7. Remove the adjustment bolt and nut.
8. Remove the through bolt, then remove the alternator.
9. After installing the alternator, adjust the alternator belt tension (see page 23-123, 124).

Charging System

Alternator Overhaul

NOTE: Do not remove the pulley unless the front bearing needs replacement.

To loosen the pulley locknut, use 10 mm and 22 mm wrenches. If necessary, use an impact wrench.

$115 \mathrm{~N} \cdot \mathrm{~m}$ (11.5 kgf.m, $83 \mathrm{lbf} \cdot \mathrm{ft})$

Rectifier Test

NOTE: The diodes are designed to allow current to pass in one direction while blocking it in the opposite direction. Since the alternator rectifier is made up of eight diodes (four pairs), each diode must be tested for continuity in both directions with an ohmmeter that has diode checking capability; a total of 16 checks.

1. Check for continuity in each direction, between the B and P, and between the E (ground) and P terminals of each diode pair. All diodes should have continuity in only one direction.

2. If any of the eight diodes fails, replace the rectifier assembly. (Diodes are not available separately.)

Alternator Brush Inspection

1. Remove the end cover, then take out the brush holder by removing its two screws.
2. Measure the length of the brushes with a vernier caliper.

Alternator Brush Length:

Standard: $\quad 10.5 \mathrm{~mm}$ (0.41 in)
Service Limit: 1.5 mm (0.06 in)

If the brushes are less than the service limit, replace the alternator brush assembly.

Charging System

Rotor Slip Ring Test

1. Check that there is continuity between the slip rings.

2. Check that there is no continuity between the slip rings and the rotor or rotor shaft.
3. If the rotor fails either continuity check, replace the alternator.

Stator Test

1. Check that there is continuity between each pair of leads.

2. Check that there is no continuity between each lead and the coil core.
3. If the coil fails either continuity check, replace the alternator.

Alternator Belt Inspection and Adjustment (Without A/C)

Deflection Method:

Apply a force of 98 N ($10 \mathrm{kgf}, 22 \mathrm{lbf}$), and measure the deflection between the alternator and the crankshaft pulley.

Deflection: 10.5-12.5 mm (0.41-0.49 in)

NOTE: On a brand-new belt (one that has been run for less than five minutes), the deflection should be 8 $10 \mathrm{~mm}(0.31-0.39 \mathrm{in})$ when first measured. If the belt is worn or damaged, replace it.

If adjustment is necessary:

1. Loosen the through bolt and adjustment locknut.
2. Turn the adjusting bolt to obtain the proper belt tension, then retighten the nut and through bolt.
3. Recheck the belt deflection.

NOTE: For the power steering pump belt adjustment, refer to section 17.

Belt Tension Gauge Method:

Following the gauge manufacturer's instructions, attach the belt tension gauge to the belt, and measure the tension.

Tension: 290-440 N (30-45 kgf, 66-99 lbf)
NOTE: On a brand-new belt (one that has been run for less than five minutes), the deflection should be 540 740 N (55-75 kgf, 120-170 lbf) when first measured. If the belt is worn or damaged, replace it.

ADJUSTMENT LOCKNUT $22 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{2 . 2} \mathbf{~ k g f} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$

If adjustment is necessary:

1. Loosen the through bolt and adjustment locknut.
2. Turn the adjusting bolt to obtain the proper belt tension, then retighten the nut and through bolt.
3. Recheck the tension of the belt.

NOTE: For the power steering pump belt adjustment, refer to section 17.

Charging System

- Alternator Belt Inspection and Adjustment (With A/C)

Deflection Method:

Apply a force of $98 \mathrm{~N}(10 \mathrm{kgf}, 22 \mathrm{lbf})$, and measure the deflection between the alternator and the crankshaft pulley.

Deflection: 8-10.5 mm (0.31-0.41 in)
NOTE: On a brand-new belt (one that has been run for less than five minutes), the deflection should be 5 $7 \mathrm{~mm}(0.20-0.28 \mathrm{in})$ when first measured. If the belt is worn or damaged, replace it.

If adjustment is necessary:

1. Loosen the through bolt and adjustment locknut.
2. Turn the adjusting bolt to obtain the proper belt tension, then retighten the nut and through bolt.
3. Recheck the belt deflection.

NOTE: For the power steering pump belt adjustment, refer to section 17.

Belt Tension Gauge Method:

Following the gauge manufacturer's instructions, attach the belt tension gauge to the belt, and measure the tension.

Tension: 440 - 590 N ($\mathbf{4 5} \mathbf{- 6 0} \mathbf{k g f}$, $99 \mathbf{- 1 3 2 ~ l b f) ~}$
NOTE: On a brand-new belt, (one that has been run for less than five minutes), the tension should be 950 1150 N (95-115 kgf, $209-254 \mathrm{lbf}$) when first measured. If the belt is worn or damaged, replace it.

If adjustment is necessary:

1. Loosen the through bolt and adjustment locknut.
2. Turn the adjusting bolt to obtain the proper belt tension, then retighten the nut and through bolt.
3. Recheck the tension of the belt.

NOTE: For the power steering pump belt adjustment, refer to section 17.

Fan Controls

Component Location Index

NOTE: LHD type is shown, RHD type is similar.

Radiator Fan Control:
When the engine coolant temperature is above approximately $106^{\circ} \mathrm{C}\left(223^{\circ} \mathrm{F}\right)$ after the engine has stopped, the radiator fan will run for about 15 minutes. Engine coolant temperature (ECT) switch A is in the thermostat housing. ECT switch B is located behind the water outlet housing. The radiator fan control module is located behind the glove box.

Fan Controls

Circuit Diagram

NOTE: Different wires with the same color have been given a number suffix to distinguish them (for example, WHT ${ }^{1}$ and WHT ${ }^{2}$ are not the same).

Troubleshooting

NOTE: The numbers in the table show the troubleshooting sequence.

												$\begin{aligned} & 0 \\ & \stackrel{C}{3} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	
Only one fan runs (with engine running and $A(C O N$).						2	3					$\begin{aligned} & \text { G201 } \\ & \text { G301 } \end{aligned}$	WHT ${ }^{1},{ }^{*}{ }^{1} Y E L{ }^{1},{ }^{* 2}{ }^{\text {Y }}$ EL ${ }^{3}$, *2BLK/YEL ${ }^{2}$, YEL/WHT, BLU/BLK, BLU/YEL or GRN
Fans do not run.	Under all conditions				1			2		3		$\begin{aligned} & \text { G101 } \\ & \text { G402 } \\ & \text { G404 } \end{aligned}$	*2BLK/YEL ${ }^{2}$, or GRN
	A/C ON										1		
Radiator fan control module fails to function properly.			1	2					3	4		$\begin{aligned} & \text { G } 101 \\ & \text { G402 } \\ & \text { G404 } \end{aligned}$	WHT¹, BLK/YEL', WHT/GRN, * ${ }^{\text {Y YEL }}$ ' or YEL/WHT

*1: KH model
*2: Except KH model

Fan Controls

Radiator Fan Control Module Terminals

NOTE: See section 22 for the input test.

Terminal Wire

Connects to

A	${ }^{*}$ YEL'	Radiator fan relay (Coil \oplus)
	${ }^{*}$ YEL/NHT	Condenser fan relay (Coil \oplus)
B	BLK/YEL ${ }^{2}$	Power supply (For radiator fan and condenser fan relays via radiator fan control module with ignition switch ON)
C	${ }^{*}$ YEL/WHT	Condenser fan relay (Coil \oplus)
D	BLK	Ground (G402, G404)
E	WHT/GRN	Engine coolant temperature (ECT) switch B
F	WHT ${ }^{1}$	Power supply (For radiator fan control module with ignition switch OFF)
G	BLK/YEL'	IG1 (Control module reset signal)
H	GRN	Radiator fan and condenser fan relays (Coil Θ)

*1: KH model
*2: Except KH model

Fan Motor Test

1. Disconnect the 2-P connectors from each fan motor.

View from terminal side
2. Test the motor by connecting battery power to the A terminal, and ground the B terminal.
3. If the motor fails to run or does not run smoothly, replace it.

Engine Coolant Temperature (ECT) Switch Test

NOTE: Bleed air from the cooling system after installing the engine coolant temperature (ECT) switch (see section 10).

1. Remove ECT switch A from the thermostat housing and ECT switch B from the water outlet housing.
2. Suspend each ECT switch in a container of water or engine oil as shown.

NOTE: The illustration shows ECT switch A.

Gauge Assembly

Component Location Index

NOTE: LHD type is shown, RHD type is similar.
gauge assembly
Gauge/Terminal Locations Index, page 23-131
Removal, page 23-134
Bulb Locations, page 23-136
Disassembly, page 23-137

FUEL GAUGE SENDING UNIT
Test, page 23-142

VEHICLE SPEED SENSOR (VSS)
Troubleshooting, page 23-138
Replacement, page 23-140

ENGINE COOLANT TEMPERATURE (ECT) GAUGE SENDING UNIT
Test, page 23-144

Gauge/Terminal Locations Index

TACHOMETER:
Indicates 100 rpm at 200 pulses per minute of the ignition control module (ICM).

SPEEDOMETER:

Indicates $60 \mathrm{~km} / \mathrm{h}$ [60 mph] at
637 [1,026] rpm of the
vehicle speed sensor (VSS).

ENGINE COOLANT TEMPERATURE (ECT) GAUGE:
Gauge Test, page 23-144
Sending Unit Test, page 23-144

SAFETY INDICATOR:
See page 23-154

FUEL GAUGE:
Gauge Test, page 23-141
Sending Unit Test, page 23-142

Gauge Assembly

Circuit Diagram

Gauge Assembly

Removal

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the rear console.

2. Remove the front console panel.

3. Remove the stereo radio/cassette player.
4. Remove the switches from the instrument panel.

5. Remove the instrument panel.

If necessary, disconnect the air mix control cable from the heater unit (see section 21).

6. Remove the four screws, and spread a protective cloth on the upper column cover.
7. Tilt the steering wheel down with the tilt adjustment lever.

PROTECTIVE CLOTH
8. Pry the gauge assembly out, and disconnect the connectors.

9. Carefully remove the gauge assembly.

10. Install in the reverse order of removal.

Gauge Assembly

Bulb Locations

Disassembly

Speedometer/Trip Meter/Odometer

Troubleshooting

NOTE: The numbers in the table show the troubleshooting sequence.

Odometer and trip meter work, but speedometer does not.		1		2			
Speedometer works, but odometer and trip meter do not.			1	2		3	
Speedometer, odometer, and trip meter do not work.	1				2		3

VSS Input Test (At harness side of 3-P connector)

No. Wire	Test condition	Test: Desired result	Possible cause if result is not obtained	
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- An open in the wire - Poor ground (G101)
2	YEL	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse - Short to ground
3	ORN	Ignition switch ON (II)	Check for voltage to ground: There should be about 5 V.	- Short to ground - An open in the wire

NOTE: A short to ground in the ORN wire can be caused by a short in any component connected to it.

VSS Test

Speedometer does not work.

1. Inspect No. $1(10 \mathrm{~A})$ fuse in the under-dash fuse/relay box before testing.
2. Disconnect the 3-P connector at the VSS.
3. Turn the ignition switch ON (II).
4. Measure voltage between the YEL wire terminal and the BLK wire terminal in the harness side of the 3-P connector.

- Is there battery voltage?

(To next page)

View from wire side

(From previous page)
(From previous page)

1. Measure voltage between the ORN and the BLK wire terminals.

- Is there about 5 V ?

YES	NO		
Repair open in the ORN wire or short to body ground.			

1. Connect the Test Harness (07LAJ - PT30200) between the VSS and the engine wire harness.
2. Raise the front of the car, and support it with safety stands.
3. Connect the GRN Test Harness clip to the positive probe of a voltmeter, and connect the RED Test Harness clip to the negative probe.
4. Put the car in neutral with the ignition switch ON (II).
5. Slowly rotate one wheel with the other wheel blocked.

- Does voltage pulse from 0 to about 5 V ?

YES

No
Replace the VSS (see page 23-140).

1. Disconnect the 16-P connector at the speedometer.
2. Touch a probe to the ORN wire, and connect it to body ground through a voltmeter.
3. Slowly rotate one wheel with the other wheel blocked.

- Does the meter indicate pulsing voltage?

1. Disconnect the Test Harness.
2. Reconnect the 3-P connector at the VSS.

Vehicle Speed Sensor (VSS)

Replacement

1. Disconnect the 3-P connector from the vehicle speed sensor (VSS).
2. Remove the mounting bolts, then remove the VSS.

NOTE: The VSS drive link is a very small part, be careful not to lose it.

3. Install in the reverse order of removal.

Engine Low Oil Pressure Indicator System

Switch Test

1. Remove the YEL/RED wire from the engine oil pressure switch.
2. Check for continuity between the positive terminal and the engine (ground).

- There should be continuity with the engine stopped.
- There should be no continuity when the engine runs.

3. If the switch fails to operate, check the engine oil level. If the engine oil level is OK, check the engine oil pressure and, if necessary, inspect the oil pump (see section 8).

Gauge Test

NOTE: Refer to page 23-133 for the fuel gauge system circuit.

1. Check the No. $1(10 \mathrm{~A})$ fuse in the under-dash fuse/relay box before testing.
2. Remove the access panel from the floor.
3. Disconnect the 3-P connector from the fuel gauge sending unit.

4. Connect the voltmeter positive probe to the YEL/BLU terminal and the negative probe to the BLK terminal, then turn the ignition switch ON (II). There should be between 5 and 8 V .

- If the voltage is as specified, go to step 5 .
- If the voltage is not as specified, check for:
- An open in the YEL/BLU or BLK wire
- Poor ground (G751)

5. Turn the ignition switch OFF. Attach a jumper wire between the YEL/BLU and BLK terminals, then turn the ignition switch ON (II).
Check that the pointer of the fuel gauge starts moving toward the " F " mark.

CAUTION: Turn the ignition switch OFF before the pointer reaches " F " on the gauge dial. Failure to do so may damage the fuel gauge.

NOTE: The fuel gauge is a bobbin (cross-coil) type, hence the fuel level is continuously indicated even when the ignition switch is OFF, and the pointer moves more slowly than that of a bimetal type.

- If the pointer of the fuel gauge does not move at all, replace the gauge.
- If the gauge is OK, inspect the fuel gauge sending unit.

Fuel Gauge

Sending Unit Test

A warning Do not smoke while working on the fuel system. Keep open flames away from your work area.

1. Open the trunk.
2. Remove the fuel tank access panel.
3. With the ignition switch OFF, disconnect the 3-P connector from the fuel gauge sending unit.

4. Remove the five nuts, and take the fuel gauge sending unit out of the fuel tank.

5. Measure the resistance between the A and B terminals at E (EMPTY), $1 / 2$ (HALF FULL) and F (FULL) by moving the float.

Float Position	E	$1 / 2$	F
Resistance (Ω)	$105-110$	$25.5-39.5$	$3-5$

Top of the workbench (Bottom of the fuel tank)

If unable to obtain the above readings, replace the fuel gauge sending unit.

Indicator Light Test

NOTE: Refer to page 23-133 for the diagram of the low fuel indicator circuit.

1. Park the car on level ground.

A WARNING Do not smoke while working on the fuel system. Keep open flame away from the work area. Drain fuel only into an approved container.
2. Drain the fuel into an approved container.

Then install the drain bolt with a new washer.
3. Add less than 8.6ℓ (2.2 U.S. Gal, 1.9 Imp . Gal) of fuel, and turn the ignition switch ON.
The low fuel indicator light should come on within four minutes.

LOW FUEL INDICATOR LIGHT

- If the light goes on within four minutes, go on to step 5.
- If the light does not go on within four minutes, go on to step 4.

4. Remove the fuel tank access panel, and disconnect the 3-P connector from the fuel gauge sending unit. Connect the LT GRN/RED terminal to the BLK terminal with a jumper wire.

- If the light comes on, the problem is the sending unit.
- If the light does not come on, the problem is an open in the LT GRN/RED wire to the gauge assembly, no power to the gauge, a bad bulb, or poor ground.

5. Add one more gallon of fuel [approx. 4ℓ (0.9 Imp . Gal, 1.1 U.S. Gal).
The light should go off within four minutes.

Engine Coolant Temperature (ECT) Gauge

- Gauge Test

NOTE: Refer to page 23-133 for the wiring description of the engine coolant temperature (ECT) gauge circuit diagram.

1. Check the No. $1(10 \mathrm{~A})$ fuse in the under-dash fuse/ relay box before testing.
2. Make sure the ignition switch is OFF, then disconnect the YEL/GRN wire from the ECT gauge sending unit and ground it with a jumper wire.

3. Turn the ignition switch $O N$. Check that the pointer of the ECT gauge starts moving toward the " H " mark.

CAUTION: Turn the ignition switch OFF before the pointer reaches " H " on the gauge dial. Failure to do so may damage the gauge.

- If the pointer of the gauge does not move at all, check for an open in the YEL/GRN wire. If the wires are OK, replace the ECT gauge.
- If the ECT gauge works, test the ECT sending unit.

ECT Sending Unit Test

1. Disconnect the YEL/GRN wire from the ECT sending unit.
2. With the engine cold, use an ohmmeter to measure resistance between the positive terminal and the engine (ground).

3. Check the temperature of the coolant.
4. Run the engine and measure the change in resistance with the engine at operating temperature (the radiator fan comes on).

Temperature	$56^{\circ} \mathrm{C}\left(133^{\circ} \mathrm{F}\right)$	$85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)-$ $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$
Resistance (Ω)	142	$49-32$

5. If the obtained readings are substantially different from the specifications above, replace the sending unit.

Brake System Indicator

Parking Brake Switch Test

1. Remove the rear console and disconnect the connector from the switch.
2. Check for continuity between the terminals in each switch position according to the table.

Position	Positive Terminal	Body Ground
BRAKE LEVER UP		0
BRAKE LEVER DOWN		0

Brake Fluid Level Switch Test

1. Remove the reservoir cap. Check that the float moves up and down freely; if it doesn't, replace the reservoir cap assembly.
2. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A	B
FLOAT UP		
FLOAT DOWN	O	0

Interlock System (KH model)

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

Description

The car is equipped with the following devices to prevent inadvertent shifting:

- Key cylinder with interlocked ignition key (Key Interlock System)
- Shift lever with shift lock (Shift lock System)

Key Interlock System:

When the shift lever is in any other position than P or is not securely locked in P (shift lock pin switch is ON), a solenoid is activated, making it impossible to remove the ignition key from the ignition switch.
To be able to remove the key, the shift lever must be in \boldsymbol{P} and must be securely locked in this position (shift lock pin switch must be turned off by the lock pin).

The shift lever is in any other position than P and the shift lock pin switch is ON:

The shift lever is in \boldsymbol{P} and the shift lock pin switch is OFF:

(cont'd)

Interlock System (KH model)

Description (cont'd)

Shift Lock System:

The shift lock system prevents the shift lever from moving to \boldsymbol{B} or from position \mathbf{D} unless you step on the brake pedal.
NOTE:

- The shift lever cannot be shifted when the brake pedal and the accelerator are depressed at the same time.
- In case of system malfunction, the shift lever can be released by pushing a key into the release slot near the shift lever.

Circuit Diagram

NOTE: Several different wires have the same color. They have been given a number suffix to distinguish them (for example, GRN/WHT ${ }^{1}$ and GRN/WHT ${ }^{2}$ are not the same).

Interlock System (KH model)

Control Unit Input Test

1. Disconnect the 8-P connector from the interlock control unit.
2. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If a test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, substitute a known-good control unit, and recheck the system. If the check is OK, the control unit must be faulty; replace it.
NOTE: If the shift lock solenoid clicks when the ignition switch is turned ON (II) and you step on the brake pedal (with the shift lever in P), the shift lock system is electronically normal; if the shift lever cannot be shifted from [P] test the A/T gear position switch as described on page 23-168, and see section 14.

Shift Lock System:

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
		Ignition switch ON (II), brake pedal pushed	Check for voltage to ground: There should be battery voltage.	- Blown No. 30 (20 A) fuse in the under-hood fuse/relay box - Faulty transmission control module - Faulty brake switch - Faulty throttle position (TP) sensor - An open in the wire
1	WHT/GRN	Ignition switch ON, brake pedal and accelerator pushed at the same time	Check for voltage to ground: There should be less than battery voltage.	
2	GRN/ WHT^{2}	Shift lever in P	Check for continuity to ground: There should be continuity.	- Faulty A/T gear position switch - Poor ground (G402, G404) - An open in the wire
3	GRN	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse - Faulty shift lock solenoid - An open in the wire

Key Interlock System:

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	GRN/WHT ${ }^{2}$	Shift lever in ${ }^{\text {P }}$	Check for continuity to ground: There should be continuity.	- Faulty A/T gear position switch - Poor ground (G402, G404) - An open in the wire
3	WHT/RED WHT/BLU	Ignition switch turned to ACC (I), the key pushed all the way in	Check for voltage to ground: There should be battery voltage.	- Blown No. 30 (20 A) fuse in the under-hood fuse/relay box - Faulty steering lock assembly (key interlock solenoid) - An open in the wire
4	WHT/BLK	Shift lever in \boldsymbol{P}, push button pressed	Check for continuity to ground: There should be continuity.	- Faulty shift lock pin switch - Poor ground (G402, G404) - An open in the wire
		Shift lever in Φ, push button released	Check for continuity to ground: There should be no continuity.	- Faulty shift lock pin switch - Short to ground

Key Interlock Solenoid Test

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

1. Remove the dashboard lower cover and knee bolster.

DASHBOARD LOWER COVER
2. Disconnect the 8-P connector from the main wire harness.

3. Check for continuity between the terminals in each switch position according to the table.

Position Terminal		4 (WHT/YEL)	6 (WHT/BLU)	7 (WHT/RED)
Ignition switch ACC (I)	key pushed in	O	O-	\bigcirc
	key released		\bigcirc	-

4. Check that the key cannot be removed with power and ground connected to the No. 4 and No. 7 terminals.

- If the key cannot be removed, the key interlock solenoid is OK.
- If the key can be removed, replace the steering lock assembly (the interlock solenoid is not available separately).

Interlock System (KH model)

Shift Lock Solenoid Test/Replacement

Test:

1. Remove the front console, then disconnect the shift lock solenoid 3-P connector from the main wire harness.

NOTE: Do not connect power to the $\mathrm{B}(-)$ terminal (reverse polarity) or you will damage the diode inside the solenoid.
2. Connect battery power to the A terminal and ground to the B terminal momentarily. Check the solenoid. If it does not work, replace it.

NOTE:

- When the shift lock solenoid is ON, check that there is a clearance of $3.9 \pm 0.5 \mathrm{~mm}(0.15 \pm 0.020$ in) between the top of the shift lock lever and the lock pin groove (see clearance check on this page).
- When the shift lock solenoid is OFF, make sure that the lock pin is blocked by the shift lock lever.
- If it is not, adjust the position of the shift lock solenoid.

Replacement:

1. Remove the solenoid pin.
2. Remove the self-locking nuts and shift lock solenoid.

3. Install the new shift lock solenoid in the reverse order of removal, and adjust its position.

- When the shift lock solenoid is ON, check that there is a clearance of $3.9 \pm 0.5 \mathrm{~mm}(0.15 \pm 0.020$ in) between the top of the shift lock lever and the lock pin groove, and tighten the self-locking nuts.

NOTE: Use brand-new self-locking nuts.

- When the shift lock solenoid is OFF, make sure that the lock pin is blocked by the shift lock lever.

NOTE: Test the solenoid after you assembled it.

Shift Lock Pin Switch Test

1. Remove the rear console (see page 23-134).
2. Remove the front console panel.
3. Remove the stereo radio/cassette player (see page 23-222).
4. Remove the front console (see section 20).
5. Disconnect the shift lock pin switch 2-P connector from the main wire harness.
6. Check for continuity between the terminals in each switch position according to the table.

Position A Pushinal button Pressed B\quad Released			O

Shift Lock Pin Switch Replacement

1. Remove the rear console (see page 23-134).
2. Remove the front console panel.

3. Remove the stereo radio/cassette player (see page 23-222).
4. Remove the front console (see section 20).
5. Disconnect the shift lock pin switch 2-P connector from the main wire harness.
6. Remove the self-locking nut and shift lock pin switch.

Safety Indicator

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

BRAKE SWITCH
Test, page 23-214 Pedal Height Adjustment, section 19

SAFETY INDICATOR

- Troubleshooting, page 23-159
- Input Test, page 23-160
- Bulb Replacement, page 23-159

CEILING LIGHT
Test/Replacement, page 23-204

Test, page 23-207
HIGH MOUNT BRAKE LIGHT (KH model)
Bulb Replacement, page 23-214

DRIVER'S DOOR SWITCH
Test, page 23-207

Description

Safety Indicator System:

Bulbs are used to indicate when the trunk lid or a door is not fully closed, or when a brake light is faulty. The bulbs will remain ON for about two seconds after the ignition switch has been turned ON (II) to show that the system circuit is functioning.

Brake Light Bulb Failure Indicator: KH and KE models

If all brake light bulbs are OK, the indicator light stays off because the WHT/GRN wire is constantly being grounded by the brake light failure sensor. With the brake light off, the ground is provided through the diode, the failure sensor relay coil, and the bulb filaments. With the brake light on, both relays in the sensor, connected in series, supply ground. If either of the two bulbs is not working, the chain is broken and the WHT/GRN wire is not being grounded. The indicator light comes on.

Brake Light Bulb Failure Indicator: KG model
When the ignition switch is turned ON, the brake indicator light stays on.
When the brake pedal is depressed once, the brake indicator light should go out. If there is defect in the brake system (blown fuse, faulty brake light switch, open or short circuit and blown bulbs), the brake indicator light stays on with the brake pedal operated.

Circuit Diagram (KG and KE models)

Safety Indicator

Circuit Diagram (KG and KE models cont'd)

From
provious page

G404 (KG model) G551 (KE model)

Circuit Diagram (KH model)

Safety Indicator

Circuit Diagram (KH model cont'd)

Troubleshooting

NOTE:

- The numbers in the table show the troubleshooting sequence.
- Make sure that the ceiling light bulb and the trunk light bulb are not blown.

				$\begin{aligned} & \text { O } \\ & \frac{0}{2} \\ & \frac{1}{3} \\ & \frac{0}{0} \end{aligned}$					
No indicators operate.	1		2					$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	YEL
Indicator lights do not come on when the ignition switch is turned to ON (II).			1	2					
Door indicator light does not come on with doors open.			2	3		1			GRN/ORN or GRN/RED
Trunk indicator light does not come on with trunk lid open.			2	3			1	G551	ORN
Brake indicator light does not come on with blown brake light bulb.			1	3	2				WHT/GRN,
Brake indicator light remains on with good brake light bulbs.			2		. 1			$\begin{aligned} & \text { G404 } \\ & \text { or } \\ & \text { G551 } \end{aligned}$	* 1 GRN ${ }^{2}$ or *2 GRN
Ceiling light does not come on with door open (with switch in middle position).		1	2	3					BLKWHT

*1: KG and KE models *2: KH model

Bulb Replacement

1. Remove the gauge assembly (see page 23-134).
2. Remove the printed circuit board from the housing (see page 23-137).
3. Remove the bulb.

23-159

Safety Indicator

Indicator Input Test

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the gauge assembly from the dashboard (see page 23-134), and disconnect the 22-P connector from the gauge assembly.
2. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the printed circuit board A must be faulty; replace it.
*1: GRN/RED ${ }^{1}$ (KG model)
GRN/RED (KH model)
GRN/ORN (KE model)
*2: GRN/ORN (KG and KH models).
GRN/RED' (KE model)
*3: GRN ${ }^{1}$ (KG model)
*4: GRN/RED ${ }^{2}$ (KG and KE modeis)

SRS MAIN HARNESS
(Covered with yellow insulation)

View from wire side

No.	Wire	Test condition	Test: Desired result Possible cause if result is not obtained	
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	YEL	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
3	WHT/GRN	Brake pedal pushed	Check for continuity to ground: There should be less than 200 ohms with the pedal pushed.	- Blown No. 30 (20 A) fuse in the under-hood fuse/relay box - Faulty brake switch - Blown brake light bulbs - Faulty brake light failure sensor - Poor ground (G551) or (G402, G404) - An open in the wire
4	ORN	Trunk lid open	Check for continuity to ground: There should be continuity. NOTE: Before testing, remove No. 37 (7.5A) fuse from the underhood fuse/relay box.	- Faulty trunk latch switch - An open in the wire
5	BLK/WHT	Ceiling light switch in middle position	Connect to ground: The ceiling light should come on.	- Blown No. 37 (7.5 A) fuse in the under-hood fuse/relay box - Faulty ceiling light - An open in the wire
	GRN/ORN	Driver's door open	Check for continuity to ground: There should be continuity. NOTE: Before testing, remove No. 37 (7.5 A) fuse from the underhood fuse/relay box.	- Faulty door switch - An open in the wire
*1	GRN/RED ${ }^{1}$ or GRN/RED	Passenger's door open		
$\begin{aligned} & * 4 \\ & 7 \end{aligned}$	GRN/RED ${ }^{2}$	Ignition switch ON	Attach to ground: The brake system light should come on.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - Blown bulb - An open in the wire
*3	GRN ${ }^{1}$	With brake pedal released, ignition switch OFF to ON	Check for continuity in both directions between the GRN ${ }^{1}$ and BLK terminals: There should be continuity in only one direction as the ignition switch is turned ON, then no continuity in both directions with brake pedal pushed.	- Faulty brake light circuit failure sensor

Safety Indicator

Brake Light Failure Sensor Test

1. First make sure the brake lights come on when the brake pedal is pressed.

- If all the brake lights come on, go to step 2.
- If one of the brake lights does not come on, check whether the bulb is blown. If the bulb is OK, go to step 2.
- If none of the brake lights come on, check the brake light circuit (see page 23-156).

2. Open the trunk lid and the taillight access panel to the left (LHD type) or right (RHD type) taillight. Make sure the BRAKE LAMP light in the safety indicator does not come on and stay on, when the No. 2 (KG model) or No. 1 (KE and KH models) terminal of the 6-P connector is grounded and the ignition switch is turned from OFF to ON (II).

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

- If the BRAKE LAMP light comes on and stays on, check for an open in the WHT/GRN wire between the safety indicator and the No. 2 (KG model) or No. 1 (KE and KH models) terminal of the failure sensor, and whether the safety indicator circuit (printed circuit board) has a problem.
- If the BRAKE LAMP light does not stay on, go to step 3.

3. Make sure the BRAKE LAMP light does not come on when the ignition switch is turned from OFF to ON (II) with the No. 1 (KG model) or No. 2 (KE and KH models) terminal of the 6-P connector grounded and the brake pedal pressed.

- If the BRAKE LAMP light come on and stays on, replace the failure sensor.
- If the BRAKE LAMP does not stay on, check for an open in the BLK wire between the No. 1 (KG model) or No. 2 (KE and KH models) terminal of the failure sensor and ground, and check for a poor ground at G402, G404 (G551).

A/T Gear Position Indicator

Component Location Index

NOTE: LHD type is shown, RHD type is similar.

Test, page 23-168
Replacement, page 23-169

A/T Gear Position Indicator

Circuit Diagram (KG and KE models)

Circuit Diagram (KH model)

A/T Gear Position Indicator

Indicator Input Test

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the gauge assembly (see page 23-134), and disconnect all connectors from it.
2. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the 22-P and 16-P connectors.
- If a test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, but the indicator is faulty, replace the printed circuit board.

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	YEL	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
3	GRN/WHT	Shift lever in \mathbf{P} NOTE: Don't push the brake pedal.	Check for continuity to ground: There should be continuity.	- Faulty A/T gear position switch - Poor ground (G402, G404) - An open in the wire
	GRN/RED	Shift lever in R		
	GRN	Shift lever in \mathbf{N}		
	GRN/BLU	Shift lever in D_{3}		
	GRN/YEL	Shift lever in 2		
	LT GRN/WHT	Shift lever in $\mathbf{1}$		
4	RED/BLK and RED	Combination light switch ON and dash lights brightness control dial on full bright	Check for voltage between RED/BLK and RED terminals: There should be battery voltage.	- Blown No. 32 (15 A) fuse in the under-hood fuse/relay box - Faulty combination light switch - Faulty dash lights brightness control system - An open in the wire
5	$\begin{array}{\|c} * \text { BLU/RED } \\ \text { or } \\ \text { LT GRN/BLK } \\ \hline \end{array}$	Ignition switch ON (II), shift lever in D_{4}	Check for voltage to ground: There should be about 5 V .	- Faulty A/T gear position switch - Faulty TCM - An open in the wire
	LT GRN	Ignition switch ON (II)	Check for voltage to ground: There should be about 5 V .	- Faulty TCM - Faulty ECM - An open in the wire

[^10]
A/T Gear Position Indicator

- A/T Gear Position Switch Test/Adjustment

Test:

1. Remove the front console, then disconnect the 12-P and 2-P connectors from the switch.
2. Check for continuity between the terminals in each switch position according to the table.

- Move the lever back and forth at each position without touching the push button, and check for continuity within the range of free play.
- If there is no continuity within the range of free play, adjust the position of the switch as described below.

A/T Gear
* $:$ With cruise control
Position

Switch \quad\begin{tabular}{l}
Back-up

Neutral

Light

Sosition

Switch
\end{tabular}

$\underbrace{\text { Terminal }}_{\text {Position }}$	* ${ }^{*}$	1.	B	C	D	E	F	J	K	G	H	L	M
1		\bigcirc	-										
[2]	\bigcirc	\bigcirc		\bigcirc									
\square_{3}	\bigcirc	-			-								
D_{4}	\bigcirc	-				\bigcirc							
P		\bigcirc					-					\bigcirc	-
R		\bigcirc						\bigcirc		\bigcirc	-		
N		\bigcirc							\bigcirc			\bigcirc	-

Adjustment:

1. Shift to \mathbf{P} and loosen the mounting nuts.
2. Slide the switch rearward [up to $2.0 \mathrm{~mm}(0.08 \mathrm{in})$] until there is continuity between the "F" and " 1 " terminals within the range of the shift lever.
3. Recheck for continuity between the terminals.

NOTE:

- If adjustment is not possible, check for a damaged shift lever detent and/or bracket. If there is no damage, replace the A / T gear position switch.
- The engine should start when the shift lever is in P anywhere within the range of free play.

Adjust rearward
[Up to 2.0 mm (0.08 in)]

A/T Gear Position Switch Replacement

1. Remove the front console, then disconnect the 12-P and 2-P connectors from the switch.
2. Remove the two mounting nuts and the switch.

3. Position the slider of the new switch to as shown above.
4. Shift the lever to the position.
5. Attach the switch, and tighten the two mounting nuts.
6. Test the switch in the \mathbf{P} and \mathbf{N} positions.

NOTE: The engine should start when the shift lever is in P anywhere within the range of free play.
7. Connect the 12-P and 2-P connectors, clamp the harness, and install the console.

Bulb Replacement

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

CONNECTOR " A " (Carries the SRS indicator signal)

1. Remove the gauge assembly (see page 23-134).
2. Disassemble the gauge assembly (see page 23-137).
3. Replace the bulbs at the printed circuit board.

4. Install in the reverse order of removal.

Integrated Control Unit

Circuit Diagram (KH model)

NOTE: Different wires with the same color have been given a number suffix to distinguish them (for example, $B L K / Y E L^{1}$ and $B L K / Y E L^{2}$ are not the same).

Integrated Control Unit

Input Test (KH model)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Remove the driver's side kick panel, then disconnect the 16-P connector from the integrated control unit.
2. Remove the integrated control unit from the underdash fuse/relay box.

3. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connectors.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the control unit must be faulty; replace it.

Intermittent Wiper System:

View from wire side

No.	Terminal	Test condition	Test: Desired result	Possible cause if result is not obtained
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A9	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. $6(30 \mathrm{~A})$ fuse in the under-dash fuse/relay box - Faulty intermittent wiper relay - An open in the wire
3	A3	Ignition switch ON (II) and wiper switch at INT	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - An open in the wire
4	A4	Ignition switch ON (II) and washer switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. $6(30 \mathrm{~A})$ fuse in the under-dash fuse/relay box - Faulty washer switch - An open in the wire
5	A10	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - An open in the wire

Side Marker Light Flasher System:

Wire/
No.

1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A2	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
3	A13	Combination light switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 32 (15 A) fuse in the under-hood fuse/relay box - Faulty combination light switch - An open in the wire
4	A14	Ignition switch ON (II) and turn signal switch in left turn position	Check for voltage to ground: There should be 0-12-0-12V repeatedly.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - Faulty turn signal system - An open in the wire
5	A7	Ignition switch ON (II) and turn signal switch in right turn position		
6	GRN/WHT	Connect the A2 terminal to the GRN/WHT (or GRN/RED ${ }^{1}$) terminal.	Check front side marker light operation: Left (or Right) front side marker light should come on as the battery is connected.	- Blown bulb - Poor ground G301 (or G201) - An open in the wire
7	GRN/RED ${ }^{1}$			

Integrated Control Unit

Input Test (KH model cont'd)

View from wire side

Seat Belt Reminder and Key-in Warning System:
Wire/
No. Terminal Test condition Test: Desired result Possible cause if result is not obtained

1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A2	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
3	A1	Driver's door open	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door switch - An open in the wire
4	BLU/WHT ${ }^{1}$	Ignition key is inserted into the ignition switch.	Check for voltage to ground: There should be 1 V or less.	- Faulty ignition key switch - An open in the wire - Poor ground (G402, G404)
5	RED/BLU	Driver's seat belt is not buckled.	Check for voltage to ground: There should be 1 V or less.	- Faulty seat belt switch - Poor ground (G501) - Blown bulb
- An open in the wire				

Power Window Key-off Timer System:
Wire/

No.	Terminal	Test condition	Test: Desired result	Possible cause if result is not obtained
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A1	Driver's door open	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door switch - An open in the wire
3	A12	Under all conditions	Check for voltage to ground: There should be battery voltage.	- Blown No. 37 (7.5 A) fuse in the under-hood fuse/relay box - An open in the wire
4	GRN/RED ${ }^{2}$	Passenger's door open	Check for voltage to ground: There should be 1 V or less.	- Faulty door switch - An open in the wire
5	WHT/RED	Connect the A12 terminal to the RED terminal.	Check window operation: Power windows should operate as the switch is turned.	- Faulty power window relay - Poor ground (G401, G403) - An open in the wire

View from wire side

Entry Light Timer System:

Wire/
No. \quad Terminal

Test condition	Test: Desired result	Possible cause if result is not obtained		
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A12	Under all conditions	Check for voltage to ground: There should be battery voltage.	- Blown No. $37(7.5 \mathrm{~A})$ fuse in the under-hood fuse/relay box - An open in the wire
3	WHT/BLK	Under all conditions	Attach to ground: Ignition key light should come on.	- Blown LED - An open in the wire
4	A1	Driver's door open	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door switch - An open in the wire

Lights-on Reminder System:

No.	Terminal	Test condition	Test: Desired result	Possible cause if result is not obtained
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A13	Combination light switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 32 (15 A) fuse in the under-hood fuse/relay box - Faulty combination light switch - An open in the wire
3	A2	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
4	A1	Driver's door open	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door switch - An open in the wire - Poor ground (G402, G404)

Integrated Control Unit

- Input Test (KH model cont'd)

View from wire side
Rear Window Defogger Timer Circuit:
No. Terminal

Test condition	Test: Desired result	Possible cause if result is not obtained		
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A6	Defogger switch pushed	Check for continuity to ground: There should be continuity as the switch is pushed.	- Faulty defogger switch - Poor ground (G402, G404) - An open in the wire
3	A5	Ignition switch ON (II)	Attach to ground: Rear window defogger should work and the defogger switch indi- cator light should come on.	- Blown No. 8 (7.5 A) fuse in the under-dash fuse/relay box - Faulty defogger relay - Blown bulb - An open in the wire
4	A2	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire

Oil Pressure Indicator Flasher System:

No.	Wire/ Terminal	Test condition	Test: Desired result	Possible cause if result is not obtained
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A2	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - An open in the wire
3	WHT/BLU ${ }^{1}$	Engine running	Check for voltage to ground: There should be 1 V or less	- Faulty charging system - An open in the wire
4	YEL/RED	Ignition switch OFF	Check for continuity to ground: There should be continuity.	- Faulty oil pressure switch - An open in the wire
		Ignition switch ON (II)	Check light operation. If the light does not come on, attach the YEL/RED terminal to ground: Light should come on as the ignition switch is turned ON (II).	- Blown bulb - An open in the wire
		Start the engine.	Check for voltage to ground: There should be battery voltage.	- Insufficient oil - Improper lubrication - Faulty oil pressure switch

Circuit Diagram (KG and KE models)

NOTE: Different wires with the same color have been given a number suffix to distinguish them (for example, $B L K / Y E L^{1}$ and $B L K / Y E L^{2}$ are not the same).

Integrated Control Unit

Input Test (KG and KE models)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has'an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Remove the driver's side kick panel, then disconnect the 8-P connector from the integrated control unit.
2. Remove the integrated control unit from the underdash fuse/relay box.
3. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connectors.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the control unit must be faulty; replace it.

*: KG model
View from wire side

Entry Light Timer System:
Wire/

No. Terminal	Test condition	Test: Desired result	Possible cause if result is not obtained	
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A12	Under all conditions	Check for voltage to ground: There should be battery voltage.	- Blown No. $37(7.5$ A) fuse in the under-hood fuse/relay box - An open in the wire
3	WHT/BLK	Under all conditions	Attach to ground: Ignition key light should come on.	- Blown LED - An open in the wire
$\mathbf{4}$	A1	Driver's door open	Check for voltage to ground: There should be 1 Vor less.	- Faulty driver's door switch - An open in the wire

Lights-on Reminder System:

| No. Terminal | Test condition | | Test: Desired result | Possible cause if result is not obtained |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 1 | A8 | Under all conditions | $\begin{array}{l}\text { Check for continuity to ground: } \\ \text { There should be continuity. }\end{array}$ | $\begin{array}{l}\text { - Poor ground (G402, G404) } \\ \text { - An open in the wire }\end{array}$ |
| 2 | A13 | $\begin{array}{l}\text { Combination light } \\ \text { switch ON }\end{array}$ | $\begin{array}{l}\text { Check for voltage to ground: } \\ \text { There should be battery voltage. }\end{array}$ | $\begin{array}{l}\text { - Blown No. 32 (15 A) fuse in the } \\ \text { under-hood fuse/relay box } \\ \text { - Faulty combination light switch } \\ \text { - An open in the wire }\end{array}$ |
| 3 | A2 | Ignition switch ON (II) | $\begin{array}{l}\text { Check for voltage to ground: } \\ \text { There should be battery voltage. }\end{array}$ | $\begin{array}{l}\text { - Blown No. 1 (10 A) fuse in the } \\ \text { under-dash fuse/relay box }\end{array}$ |
| - An open in the wire | | | | |$\}$

Integrated Control Unit

Input Test (KG and KE models cont'd)

*: KG model
View from wire side

Intermittent Wiper System:

No.	erminal	Test condition	Test: Desired result	Possible cause if result is not obtained
1	A8	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	A9	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - Faulty intermittent wiper relay - An open in the wire
3	A3	Ignition switch ON (II) and wiper switch at INT	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - An open in the wire
4	A4	Ignition switch ON (II) and washer switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - Faulty washer switch - An open in the wire
5	A10	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - An open in the wire
6	A11	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 6 (30 A) fuse in the under-dash fuse/relay box - Faulty under-dash fuse/relay box

BRAKE LIGHT FAILURE SENSOR CHECK SYSTEM (KG model):

No.Wire/ Terminal
Test condition Test: Desired result Possible cause if result is not obtained 1 A8 Under all conditions Check for continuity to ground: There should be continuity. - Poor ground (G402, G404) - An open in the wire 2 WHT/YEL Under all conditions Check for voltage to ground: There should be battery voltage. - Blown No. 37 (7.5 A) fuse in the under hood fuse/relay box - An open in the wire 3 WHT/GRN Brake pedal pushed Check for continuity to ground: There should be continuity. - Faulty brake light failure sensor - An open in the wire - Poor ground (G551) 4 GRN Ignition switch ON Attach to ground: Brake indicator light in the safety indicator should come on. - Faulty safety indicator (in the gauge assembly) 5 GRN/WHT An open in the wire

Key-in Reminder System (KH model)

Entry Light Timer System

Ignition Key Switch Test

NOTE: Refer to page 23-170 for the diagram of the keyin beeper circuit, and page 23-174 for the input test of the beeper circuit.

When the ignition key is not removed, the key-in beeper in the integrated control unit senses ground through the closed ignition key switch. When you open the driver's door, the beeper circuit senses ground through the closed door switch. With ground at the "BLU/WHT" and "A1" terminals, the beeper sounds.

1. Remove the dashboard lower cover and knee bolster (see page 23-70).
2. Disconnect the 8-P connector from the main wire harness.

3. Check continuity between terminals No. 5 and No. 8.

- There should be continuity with the key in the ignition switch.
- There should be no continuity with the key removed.

Ignition Key Light Test

1. Remove the dashboard lower cover and knee bolster (see 23-70).
2. Disconnect the 8-P connector from the main wire harness.

3. The LED should come on when power is connected to terminal No. 4, and ground is connected to terminal No. 2.
If the LED does not come on, replace it.

Seat Belt Reminder System (KH model)

Seat Belt Switch Test

1. Slide the driver's seat to the middle position, then disconnect the 2-P connector from the back of the seat.
2. Check for continuity between the A and B terminals in each condition according to the table.

Condition Terminal	A	B
UNBUCKLED		
BUCKLED		

NOTE: Refer to page 23-170 for the diagram of the seat belt reminder circuit.
3. If necessary, replace the seat belt switch.

- Component Location Index

Adjustment, page 23-196 Replacement, page 23-195

HEADLIGHT ADJUSTER UNIT (KG and KE models)
Input Test, page 23-193

VANITY MIRROR LIGHT (KH model) Test, page 23-202

SIDE TURN SIGNAL LIGHT (KG and KE models) Replacement, page 23-198

FRONT TURN SIGNAL LIGHT
Replacement, page 23-198

FRONT PARKING/FRONT SIDE MARKER LIGHT (KH model)
Replacement, page 23-197

Lighting System

 Component Location Index

Circuit Diagram (KH model)

Lighting System

Circuit Diagram (KG and KE models)

Circuit Diagram (KG and KE models)

Lighting System

Combination Light Switch Test (KG and KE models)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows the LHD type. RHD type is symmetrical to LHD type.

1. Remove the dashboard lower cover.
2. Disconnect the $20-\mathrm{P}$ connector from the main wire harness.
3. Inspect the connector terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, check for continuity between them in each switch position according to the table.
- If there is no continuity between any of them, check for continuity in the switch harness.
- If there is continuity in the switch harness, replace the combination light switch.
- If there is no continuity in the switch harness, replace it.

(Covered with yellow insulation)

Headight/Dimmer/Passing Switch:

(KG model)

(KE model)

Turn Signal Switch:

Lighting System

Combination Light Switch Test (KH model)

1. Remove the dashboard lower cover and knee bolster.
2. Disconnect the 20-P connector from the main wire harness.
3. Inspect the connector terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, check for continuity between them in each switch position according to the table.
- If there is no continuity between any of them, check for continuity in the switch harness.
- If there is continuity in the switch harness, replace the combination light switch.
- If there is no continuity in the switch harness, replace it.

Headlight/Dimmer/Passing Switch

Terminal		20	17	18	5	6
Headlight switch	OFF					
		\bigcirc				-
	LOW	\bigcirc		\bigcirc	O	\bigcirc
	HIGH	\bigcirc	\bigcirc	-	\bigcirc	-
Passing switch (Headlight switch "OFF")	OFF					
	ON		O-	O	-	
Passing switch (Headlight switch "•")	OFF			\bigcirc		
	ON			O	-	

Turn Signal Switch

Position Rerminal RIGHT	9	8	7
Neutral	O		-
LEFT			

Combination Light Switch Replacement

CAUTION

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Remove the dashboard lower cover and knee bolster (KH).

2. Remove the steering column covers.

3. Disconnect the connector from the combination light switch, then remove the two screws and the switch.

COMBINATION LIGHT SWITCH

Lighting System

Headlight Adjuster Switch Removal (KG and KE models)

1. Carefully pry the headlight adjuster switch out of the front console panel.

NOTE: Be careful not to damage the switch and front console panel when prying the switch out.
2. Disconnect the 5-P connector from the switch.

NOTE: KE model is shown, KG model is symmetrical.

Headlight Adjuster Switch Test (KG and KE models)

1. Remove the switch from the front console panel.
2. Measure the resistance between the A and B terminals at $0,1,2$, and 3 positions by moving the knob. Replace the switch if the resistance is not within specifications.

Knob Position	0	1	2	3
Resistance [Approx. (Ω)]	681	301	115	0

Headlights Adjuster Unit Input Test (KG and KE models)

NOTE: Before testing, check for

- blown No. 5 (10 A) fuse in the under-dash fuse/relay box.
- bent, loose, or corroded terminals.

1. Disconnect the 3-P connectors from each headlight adjuster unit.

View from wire side
2. Check for continuity between the BLK terminal and body ground. There should be continuity.

- If there is no continuity, check for - an open in the wire. - poor ground (G402, G404).
- If there is continuity, go to step 3.

3. Check for voltage between the YEL/GRN terminal and body ground with the ignition switch ON.
There should be battery voltage.

- If there is no voltage, check for an open in the wire.
- If there is battery voltage, go to step 4.

4. Using an ohmmeter, measure resistance between the BLU terminal and body ground in position " O " of the headlight adjuster switch. There should be approximately 750 ohms.

- If resistance is not within specification, check for - an open in the wire.
- faulty headlight adjuster switch.
- If resistance is within specification, go to step 5.

5. If all tests normal, but the headlight adjuster unit does not operate, check for frozen, stuck or improperly installed headlight adjuster unit. If the mechanical check is OK, replace the headlight adjuster unit.
6. After installing, recheck the system.

Lighting System

Rear Fog Light Switch Removal (KG and KE models)

1. Carefully pry the rear fog light switch out of the front console panel.
2. Disconnect the 8-P connector from the rear fog light switch.

NOTE: KG model is shown, KE model is symmetrical.

REAR FOG

Rear Fog Light Switch Test (KG and KE models)

1. Carefully pry the rear fog light switch out of the front console panel.
2. Disconnect the 8-P connector from the rear fog light switch.
3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	B		F	A		E	G
OFF	\bigcirc	0	O				
ON	O	O	\bigcirc				

23-194

Replacement

CAUTION:

- Halogen headlights can become very hot in use; do not touch them or the attaching hardware immediately after they have been turned off.
- Do not try to replace or clean the headights with the lights on.

1. Remove the front turn signal lights.
2. Remove the front bumper.

3. Remove the screw, and separate the front parking/ front side marker lights from the headlight assembly.
4. Disconnect the 2-P connector(s) from the front parking/front side marker light.

- FRONT PARKING/FRONT SIDE MARKER LIGHT (KH model)
- FRONT PARKING LIGHT (KG and KE models)

5. Disconnect the connectors from the headlight.
6. Remove the mounting bolts and headlight.

Headlights

Bulb Replacement

CAUTION:

- Halogen headlights can become very hot in use; do not touch them or the attaching hardware immediately after they have been turned off.
- Do not try to replace or clean the headlights with the lights on.
- Do not touch the glass of the halogen bulbs.

1. Disconnect the connector(s) from the headlight.

KH model:

- Turn the bulb holder(s) counterclockwise, and remove the bulb(s).

KG and KE models:

- Turn the retaining spring(s) out, and remove the

Adjustment

CAUTION:

- Halogen headlights can become very hot in use; do not touch them or the attaching hardware immediately after they have been turned off.
- Do not try to replace or clean the headlights with the lights on.

1. Adjust the headlights to local requirements by turning the adjusters.

NOTE: As the outer lenses are made of a resin material, don't cover the headlights when they are turned on.

KH model:

KG and KE models:

Front Parking/Front Side Marker Lights

Replacement

KH model:

1. Remove the screw, and separate the front parking/ front side marker lights from the headlight assembly.

NOTE: Be careful not to damage the headlight and the front fender

FRONT PARKING/FRONT SIDE MARKER LIGHT
2. Disconnect the 2-P connectors from the light.
3. Turn the bulb socket 45° counterclockwise, remove it from the light housing, then replace the bulb.

KG and KE models:

1. Remove the screw, and separate the front parking light from the headlight assembly.

NOTE: Be careful not to damage the headlight and the front fender.

2. Disconnect the 2-P connector from the light.
3. Turn the bulb socket 45° counterclockwise, remove it from the light housing, then replace the bulb.

Front Turn Signal Lights

Replacement

1. Remove the screw, and pull the front turn signal light assembly out of the front bumper.

2. Disconnect the 2-P connector from the light.
3. To replace the bulb, turn the bulb socket 45° counterclockwise, and remove it from the housing.

Side Turn Signal Lights (KG and KE models)

Replacement

1. Push the retaining spring, and remove the side turn signal light.
2. Remove the bulb socket from the light housing, then replace the bulb.

Replacement

1. Open the trunk lid, and remove the taillight access panel.
2. Disconnect the $8-P$ connector from the taillight assembly.
3. Remove the four mounting nuts and the taillight assembly.

NOTE:

- Inspect the gasket; replace it if it is distorted or stays compressed.
- After installing them, run water over the lights to make sure they do not leak.

Bulb Replacement

1. Open the trunk lid, and remove the taillight access panel.

2. Remove the faulty bulb by pushing it in and then turning it 45° counterclockwise.

KG and KE models:

(1) BRAKE LIGHT/TAILLIGHT BULB ($21 / 5 \mathrm{~W}$)
(2) TURN SIGNAL LIGHT BULB (21 W)
(3) BACK-UP LIGHT BULB (21 W)

KH model:
(1) BRAKE LIGHT/TAILLIGHT BULB (43/3CP)
(2) TURN SIGNAL LIGHT BULB (32CP)
(3) BACK-UP LIGHT BULB (32CP)

Rear Fog Light (KG and KE models)

Replacement

1. Remove the two screws from the rear fog light, and then pull the light out of the rear bumper.
2. Disconnect the 2-P connector from the light.

Bulb Replacement

1. Remove the lens from the rear fog light housing.
2. Push and turn the bulb, and then take the bulb out of the housing.

NOTE:

- Inspect the gasket; replace if it is distorted or stays compressed.
- After installation, run water over the lights to make sure they do not leak.

Rear Side Marker Lights (KH model)

License Plate Lights

Replacement

1. Remove the two screws from the license plate light assembly.
2. Take the lens off, then replace the bulb.

KH model:

KG and KE models:

Replacement

1. Remove the screw from the rear side marker light assembly.
2. Carefully pry the light out of the rear bumper, and disconnect the 2-P connector from it.

NOTE: Be careful not to damage the rear bumper.

3. Remove the bulb socket by turning it 45° counterclockwise.

Glove Box Light

Test

1. Open the glove box, and disconnect the 2-P connector.

NOTE: If necessary, remove the glove box.
2. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A		B
CLOSE (OFF)			
OPEN (ON)	O	-	-

GLOVE BOX LID

Vanity Mirror Light (KH model)

Test

NOTE: There is only a passenger's vanity mirror light.

1. Remove the two screws from the sunvisor bracket.
2. Disconnect the connector, and remove the sunvisor.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	POSITIVE TERMMINAL		MOUNT BASE
CLOSE (OFF)			
OPEN (ON)	O-	Q	-

4. If necessary, pry off the lens, and replace the bulb.

At MOUNT BASE

Ceiling/Courtesy/Trunk Lights

Circuit Diagram

Ceiling/Courtesy/Trunk Lights

Ceiling Light Test (With Sunroof)

1. Turn the light switch OFF.
2. Pry off the lens.
3. Remove the two mounting nuts and the housing.

4. Disconnect the 3-P connector from the housing.
5. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A	B or B^{\prime}	C		D
OFF			O	0	O
MIDDLE		O	O	0	\bigcirc
ON	\bigcirc		O	0	\bigcirc

From No. 37 (7.5A) FUSE

At MOUNTING NUT

Ceiling Light Test (Without Sunroof)

1. Turn the light switch OFF.
2. Pry off the lens.
3. Remove the four screws and the housing.

4. Disconnect the 3-P connector from the housing.
5. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A or A^{\prime}	B or B^{\prime}	C		D
OFF			\bigcirc	∞	\bigcirc
MIDDLE		O	O	∞	\bigcirc
ON	\bigcirc		O	∞	\bigcirc

From No. 37 (7.5A) FUSE

Ceiling/Courtesy/Trunk Lights

- Trunk Light Test/Replacement

1. Pry off the trunk light lens from the housing.
2. Pry out the light assembly.
3. Disconnect the 2-P connector from the housing.
4. Make sure that the bulb is OK. Check for continuity between the $A(+)$ and $B(-)$ terminals.

View from terminal side

From No. 37 (7.5A) FUSE (Under-hood fuse/relay box)

TO TRUNK LATCH SWITCH

- Latch Switch Test/Replacement

1. Open the trunk lid, and remove the trunk rear trim panel.
2. Disconnect the 2-P connector from the trunk latch.
3. Check for continuity between the terminals in each switch position according to the table.

4. If necessary, remove the three bolts from the trunk lid, then remove the trunk latch assembly. The switch cannot be replaced separately.

Courtesy Lights Replacement

NOTE: The bulb or lens alone can be replaced without removing the door panel.

1. To replace the entire light, remove the door panel (see section 20).
2. Remove the two screws, then remove the light housing from the door panel.
3. Disconnect the 2-P connector, and remove the light.

From No. 37 (7.5A) FUSE (Under-hood fuse/relay box)

To DOOR SWITCH

Door Switch Test

1. Remove the cover and the screw, then pull the switch out.
2. Disconnect the 1-P connector, and remove the switch.

3. Check for continuity between the terminals in each switch position according to the table.

Posminal Position	\oplus TERMINAL	BASE PLATE
CLOSE (OFF)		
OPEN (ON)	\bigcirc	-

Dash Lights Brightness Controller

Circuit Diagram

* No. 15 (100A): F22B1 engine No. 15 (80A) : Except F22B1 engine

Controller Input Test

NOTE: The control unit is built into the dash lights brightness controller.

1. Carefully pry the controller out of the dashboard, then disconnect the 3-P connector from the controller.
2. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the controller must be faulty; replace it.

NOTE: LHD type is shown, RHD type is similar.

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G401, G403) - An open in the wire
2	RED/BLK	Headlight switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 32 (15 A) fuse in the under-hood fuse/relay box - Faulty combination light switch - An open in the wire
3	RED	Headlight switch ON	Connect to ground: Dash lights should come on full bright.	- An open in the wire

Back-up Lights

Circuit Diagram

Test

Manual Transmission:

NOTE: Check the No. 1 (10 A) fuse in the under-dash fuse/ relay box before testing.

1. Test the back-up light switch by moving the shift lever to reverse and turning the ignition switch ON (II).
2. If the back-up lights do not go on, check the back-up light bulbs in the taillight assembly.
3. If the fuse and bulbs are OK, disconnect the connector from the back-up light switch.

4. Check for continuity between the terminals in each switch position according to the table.

Position	Terminal	B
REVERSE	O	-
ALLEXCEPT REVERSE		

- If there is no continuity, replace the back-up light switch.
- If there is continuity, but the back-up lights do not go on, check for:
- Poor ground (G551)
- An open in the YEL or GRN/BLK wire

Automatic Transmission:

NOTE: Check the No. $1(10 \mathrm{~A})$ fuse in the under-dash fuse/ relay box before testing.

1. Test the back-up light switch by shifting the shift lever to [B] and turning the ignition switch ON (II).
2. If the back-up lights do not go on, check the back-up light bulbs in the taillight assembly.
3. If the fuse and bulbs are OK, disconnect the 12-P connector from the A/T gear position switch (backup light switch).

4. Check for continuity between the " G " and " H " terminals. Move the lever back and forth at the \mathbf{R} position without touching the push button, and check for continuity within the range of free play of the shift lever.

- If there is no continuity within the range of free play, adjust the A/T gear position switch (see page 23-168).
- If there is continuity, but the back-up lights do not go on, check for:
- Poor ground (G551)
- An open in the YEL or GRN/BLK wire

Brake Lights and High Mount Brake Light

Circuit Diagram (KH model)

Circuit Diagram (KG and KE models)

Brake Lights and High Mount Brake Light

Brake Switch Test

1. If one of the brake lights does not go on, check the bulb in the taillight or the high mount brake light.
2. If none of the brake lights go on, check the No. 30 (20 A) fuse in the under-hood fuse/relay box.
3. If the fuse and bulbs are OK, disconnect the 2-P or 4-P connector from the brake switch.

Without CRUISE
With CRUISE

4. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	B	C or (A)
RELEASED		
PUSHED	\bigcirc	O

- If there is no continuity, adjust the pedal height (see section 19), and recheck.
- If there is still no continuity, replace the switch.
- If there is continuity, but the brake lights do not go on, check for:
- Poor ground *1 (G402, G404) *2 (G551)
- An open in the WHT/YEL or GRN/WHT wire
- Faulty brake light failure sensor (see page 23162)
(A): Without cruise control

C : With cruise control
*1: KG model
*2: KE and KH models

High Mount Brake Light Replacement (KH model)

1. Open the trunk lid, and disconnect the 2-P connector from the high mount brake light.
2. Remove the two nuts, then remove the high mount brake light from the rear shelf.

3. Install the high mount brake light in the reverse order of removal. Clean the rear window glass before installing the light.

Side Marker/Turn Signal/Hazard Flasher System

Component Location Index

CAUTION

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

COMBINATION LIGHT/TURN SIGNAL SWITCH

(Covered with yellow insulation)
Test, page 23-189, 190
Replacement, page 23-191

Side Marker/Turn Signal/Hazard Flasher System

Circuit Diagram (KG and KE models)

Circuit Diagram (KH model)

Side Marker/Turn Signal/Hazard Flasher System
 Turn Signal/Hazard Relay Input Test

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

- If all the input tests prove OK, the turn signal/
hazard relay must be faulty; replace it.

1. Remove the turn signal/hazard relay from the under-dash fuse/relay box.
2. Inspect the relay and fuse/relay box socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the fuse/relay box socket.
- If any test indicates a problem, find and correct the cause, then recheck the system.

No.		Test condition	Test: Desired result	Possible cause if result is not obtained
1	E	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	B	Ignition switch ON (II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 12 (7.5 A) fuse in the auxiliary fuse holder (KH and KE models) - Blown No. 1 (10 A) fuse in the under-dash fuse/relay box (KG model) - An open in the wire - Faulty hazard warning switch
		Hazard warning switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 35 (15 A) fuse in the under-hood fuse/relay box - An open in the wire - Faulty hazard warning switch
3	L	Hazard warning switch ON; connect the B terminal to the L terminal.	Hazard lights should come on.	- Poor ground (G201, G301, G402, G404, G551) - Faulty hazard warning switch - Faulty side marker flasher circuit - An open in the wire
		Ignition switch ON (II) and turn signal switch in right or left; connect the B terminal to the L terminal.	Right or left turn signal lights should come on.	- Faulty turn signal switch

Hazard Warning Switch Replacement

CAUTION: Be careful not to damage the hazard warning switch or the front console panel when prying the switch out.

1. Carefully pry the hazard warning switch out of the front console panel.
2. Disconnect the 10-P connecter from the hazard warning switch.

3. Install in the reverse order of removal.

Hazard Warning Switch Test

1. Carefully pry the hazard warning switch out of the front console panel.
2. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	G		H	A	B	C	D	E	F	I
OFF	O	O	O			O				O
ON	O	O-	O	O	O			O	O	

Stereo Sound System

Component Location Index

CAUTION:

- AII SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

TWEETERS

Replacement, page 23-228

STEREO RADIO/CASSETTE

PLAYER

Removal, page 23-222, 223
Terminals, page 23-223, 224

Test, page 23-225
Replacement, page 23-226, 227

Circuit Diagram

Stereo Sound System

Removal (KH model)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

(Covered with yellow insulation)

1. Remove the rear console.

2. Remove the front console panel.

3. Remove the two screws. Pull the stereo radio/cassette player out part of the way.
4. Disconnect the 16-P connector and antenna lead, then remove the stereo radio/cassette player.

Stereo Radio/Cassette Player Terminals (KH model)

For ANTENNA LEAD

Terminal Wire
Connects to

1	RED/GRN	Passenger's door speaker \oplus
2	BLU/GRN	Driver's door speaker \oplus
3	RED/BLK	Lights-on signal
4	WHT/YEL	Constant power (Tuning mem- ory)
5	WHT/RED	ACC (Main stereo power supply)
6	YEL/WHT	Radio switched power (To an- tenna)
7	BLU/YEL	Left rear speaker \oplus)
8	RED/YEL	Right rear speaker \oplus
9	BRN/BLK	Passenger's door speaker Θ
10	GRY/BLK	Driver's door speaker Θ
11	-	(not used)
12	-	(not used)
13	-	(not used)
14	BLK	Ground (G405)
15	GRY/WHT	Left rear speaker Θ
16	BRN/WHT	Right rear speaker Θ

Removal (KG and KE models)

CAUTION

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

SRS MAIN HARNESS
(Covered with yellow insulation)

1. Remove the needle remover to pull out the stereo radio/cassette player.

16-P CONNECTOR

Stereo Sound System

Stereo Radio/Cassette Player Terminals (KG and KE models)

KG model:
Terminal Wire
Connects to

A1	-	(not used)
A2	-	(not used)
A3	-	(not used)
A4	WHT/YEL	Constant power (Tuning mem- ory)
A5	YEL/WHT	Radio switched power (To an- tenna)
A6	RED/BLK	Lights-on signal
A7	WHT/RED	ACC (Main stereo power sup- ply)
A8	BLK	Ground (G405)
B1	RED/YEL	Right rear speaker \oplus
B2	BRN/WHT	Right rear speaker Θ
B3	RED/GRN	Passenger's door speaker \oplus
B4	BRN/BLK	Passenger's door speaker Θ
B5	BLU/GRN	Driver's door speaker \oplus
B6	GRY/BLK	Driver's door speaker Θ
B7	BLU/YEL	Left rear speaker \oplus
B8	GRY/WHT	Left rear speaker Θ

KE model:
Terminal Wire
Connects to

A1	-	(not used)
A2	-	(not used)
A3	-	(not used)
A4	WHT/YEL	Constant power (Tuning mem- ory)
A5	YEL/WHT	Radio switched power (To an- tenna)
A6	RED/BLK	Lights-on signal
A7	WHT/RED	ACC (Main stereo power sup- ply)
A8	BLK	Ground (G405)
B1	BLU/YEL	Right rear speaker \oplus
B2	GRY/WHT	Right rear speaker Θ
B3	BLU/GRN	Driver's door speaker \oplus
B4	GRY/BLK	Driver's door speaker Θ
B5	RED/GRN	Passenger's door speaker \oplus
B6	BRN/BLK	Passenger's door speaker Θ
B7	RED/YEL	Left rear speaker \oplus
B8	BRN/WHT	Left rear speaker Θ

Power Antenna Motor Test

1. Remove the trunk side trim panel.
2. Disconnect the 3-P or 4-P connector from the motor, and remove the connector from its clamp.
3. Check for power to the motor at the connector terminals:

- There should be battery voltage between the WHT/BLU (+) and BLK (-) terminals all the time.
- There should be battery voltage between the YEL/WHT (+) and BLK (-) terminals only with the ignition and radio switched ON.

4. Test motor operation:

EXTEND: Connect battery power to the " A " and " B " terminals, and ground the " C " terminal.

RETRACT: Disconnect power from the " B " terminal.

5. If the motor fails to run or does not run smoothly, replace it.

Sticking Antenna:

The antenna sticks in either the up or down position.

1. Remove the antenna nut, spacer, and bushing (see page 23-226).
2. Clean the antenna mast housing threads, and reinstall the spacer and bushing.

3. Tighten the antenna nut to $2.3 \mathrm{~N} \cdot \mathrm{~m}(0.23 \mathrm{kgf} \cdot \mathrm{m}, 1.7$ Ibf.ft). If you overtighten the nut, the antenna may stick. If sticking occurs, back the nut off a little, then turn the radio on and off to raise and lower the antenna again. Repeat until the antenna moves freely.

Stereo Sound System

Antenna Mast Replacement

Removal

NOTE: The antenna mast alone can be replaced without having to remove the power antenna motor.

1. Remove the antenna nut, spacer and bushing.
2. Carefully withdraw the antenna mast while extending it by turning the radio switch ON.

Installation

1. Hold the antenna so the teeth on the drive cable face in the direction shown, then insert the cable into the antenna housing.

Direction of the teeth

2. Check for engagement of the cable teeth with the drive gear by carefully moving the cable up and down.
3. Turn the radio switch "OFF", and let the motor pull the drive cable into the antenna housing.
4. Clean the antenna housing threads, then insert the antenna into the housing. Install the bushing and spacer, and install and tighten the antenna nut to $2.3 \mathrm{~N} \cdot \mathrm{~m}(0.23 \mathrm{kgf} \cdot \mathrm{m}, 1.7 \mathrm{lbf} \cdot \mathrm{ft})$.
5. Check that the antenna mast retracts and extends fully when the radio switch is turned ON and OFF repeatedly. If you overtighten the nut, the antenna may stick. If sticking occurs, back the nut off a little, then raise and lower the antenna again. Repeat until the antenna moves freely.

Power Antenna Motor Replacement

1. Remove the trunk side trim panel.
2. Disconnect the 3-P or 4-P connector and antenna lead from the motor, then remove the antenna nut, spacer, bushing and motor bracket nut.

ANTENNA NUT
2.3 N•m ($0.23 \mathrm{kgf} \cdot \mathrm{m}, 1.7 \mathrm{lbf} \cdot \mathrm{ft})$

3. Remove the motor and antenna as an assembly.
4. Install in the reverse order of removal.

NOTE: Tighten the antenna nut, then tighten the motor bracket nut.

Door Speaker Replacement

1. Remove the door panel
2. Remove the three screws, then disconnect the 2-P connector from the speaker.

3. Install in the reverse order of removal.

Stereo Sound System

Rear Speaker Replacement

1. Remove the three screws from the trunk side, then remove the speaker cover.
2. Remove the three screws, disconnect the 2-P connector from the speaker, and remove the speaker.

3. Install in the reverse order of removal.

Tweeter Replacement

1. Carefully pry the tweeter out of the dashboard, then disconnect the 2-P connector from the tweeter.

2. Install in the reverse order of removal.

Clock

- Circuit Diagram

Removal

1. Remove the rear console (see page 23-134).
2. Remove the front console panel (see page 23-134).
3. Disconnect the 4-P connector from the clock.
4. Remove the two screws.

Terminals

Terminal	Wire	Connects to
A	WHT/YEL	Constant power (Time memory)
B	RED/BLK	Lights-on signal
C	YEL	IG1 (Main clock power supply)
D	BLK	Ground (G402, G404)

Cigarette Lighter

- Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

(Covered with yellow insulation)

CIGARETTE LIGHTER RELAY
Test, page 23-72

Circuit Diagram

Cigarette Lighter

Test/Replacement

1. Remove the rear console (see page 23-134).
2. Remove the front console panel (see page 23-134).
3. Disconnect the 4-P connector from the cigarette lighter.
4. Inspect the connector terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, go to step 5.

5. Turn the ignition switch ON (II).
6. Check for voltage between the A and D terminals. There should be battery voltage.

- If there is no battery voltage, check for
- blown No. 36 (15 A) fuse in the under-hood fuse/relay box.
- blown No. 11 (10 A) fuse in the under-dash fuse/relay box.
- faulty cigarette lighter relay.
- poor ground (G401, G403).
- an open in the wire.

7. Turn the headlight switch ON, and check for voltage between the B and D terminals.
There should be battery voltage.

- If there is no voltage, check for
- blown No. 32 (15 A) fuse in the under-hood fuse/relay box.
- faulty combination light switch.
- an open in the wire.

8. If all tests prove OK, replace the cigarette lighter.

9. Disconnect the thermofuse housing from the socket.
10. Remove the ring nut, and separate the cigarette lighter socket from the thermal protector.
11. When installing the cigarette lighter, align each lug on the face panel, illumination ring, and cigarette lighter socket with the groove in the hole, then position the bulb housing on the thermal protector between the stops in the console panel.

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

- CONTACT RING
(Without cruise control and SRS)
Test, page 23-239
- SLIP RING
(With cruise control, without SRS)
Test, page 23-238, 239
- CABLE REEL
(With cruise control and SRS)
Test, page 23-236, 237

Circuit Diagram (With SRS)

Circuit Diagram (Without SRS)

Horns

Switch Test (With SRS)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED) to the airbag side of the connectors.

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.
- Disconnect the 3-P connector between the driver's airbag and cable reel, then connect the short connector (RED) to the airbag side of the connector.

DRIVER'S
AIRBAG 3-P CONNECTOR

Front Passenger's Side:

- Remove the glove box.

NOTE: Before removing the glove box, remove the glove box damper (see section 20).

- Disconnect the front passenger's airbag 3-P connector from the SRS main harness, and connect the short connecter (RED) to the front passenger's airbag 3-P connector.

3. Remove the dashboard lower cover and knee bolster (KH model).
4. Disconnect the cable reel 6-P connector from the SRS main harness, then connect Test Harness C only to the cable reel side of the 6-P connector.

5. Check for continuity between the No. 3 terminal of the 8-P connector of Test Harness C and body ground with the horn switch pressed.

TEST HARNESS C 07LAZ - SL40300

- If there is continuity, the horn switch is OK.
- If there is no continuity, go to step 6 .

6. Carefully remove the cruise control set/resume switch cover or lid cover by prying between the cover and the switch in the sequence shown.

7. Remove the two TORX ${ }^{\circledR}$ bolts using a TORX ${ }^{\circledR}$ T30 bit, then remove the driver's airbag assembly.

SWITCH COVER or

8. Check for continuity between the horn positive terminal and steering wheel bolt with the horn switch pressed.

- If there is continuity
- replace the cable reel.
- check the set/resume switch.
- If there is no continuity, replace the horn switch.

Horns

Switch Test (Without SRS)

With Cruise Control:

NOTE: RHD type is shown, LHD type is similar.

1. Remove the dashboard lower cover.
2. Disconnect the 20-P connector of the combination light switch harness from the main wire harness.

3. Check for continuity between No. 16 terminal and body ground in each switch position according to the table.

Terminal Horn switch	16	Body ground
PUSH	O	
RELEASE		

- If there is continuity, the horn switch is good.
- If there is no continuity, go to step 4.

4. Remove the steering column upper and lower covers.

STEERING COLUMN UPPER COVER

5. Disconnect the 5-P connector from the slip ring.
6. Check for continuity between No. 16 and No. 25 terminals of the combination light switch harness.

- If there is continuity, go to step 7 .
- If there is no continuity, replace the combination light switch harness.

7. Remove the steering wheel, then turn it over.

8. Check for continuity between No. 3 terminal and hub core in each switch position according to the table.

Horn switch	3	Hub core
PUSH		
RELEASE		

- If there is continuity, check the slip ring (see page 23-240).
- If there is no continuity, replace the horn switch.

Without Cruise Control:

1. Remove the steering wheel, then turn it over.

2. Check for continuity between the contact ring and hub core in each switch position according to the table.

Terminal Horn switch	Hub core	Contact ring
PUSH	O-	
RELEASE		

- If there is no continuity, check the horn switch.

Horns

Test

1. Remove the front bumper (see section 20).
2. Disconnect the 2-P connector, and remove the horn.

3. Test the horn by connecting battery power to one terminal and grounding the other. The horn should sound.

4. If the horn fails to sound, replace it.

Slip Ring Test (With Cruise Control)

1. Remove the steering wheel.
2. Disconnect the 5-P connector from the slip ring.
3. Remove the four screws, then remove the slip ring.

4. Check for continuity between the terminals by rotating the slip ring according to the table.

Terminal Position	B	C	D	A^{\prime}	B^{\prime}	D^{\prime}
	\bigcirc			O		
Rotate the slip ring.		\bigcirc				-

Harness Side:

Component Location Index

NOTE: LHD type is shown, RHD type is symmetrical.

Power Seat

Circuit Diagram

Switch Test

1. Remove the adjuster cover from the driver's seat by removing the two screws.

2. Disconnect the 5-P connector from the driver's power seat up-down switch, then remove the driver's power seat up-down switch from the adjuster cover by removing its two mounting screws.
3. Check for continuity between the terminals in each switch position according to the table.

Position Terminal	A	B	C	D	E
UP	O	O			
DOWN	O			O	

Power Seat Up-down Motor Test

CAUTION: Be careful not to damage the seat, interior trim or body.

1. Remove the driver's seat (see section 20).
2. Disconnect the 2-P connector from the power seat up-down motor.
3. Test the motor:

Terminal	\mathbf{A}	$\mathbf{8}$
Position	\oplus	Θ
UP	Θ	\oplus

CAUTION: When the motor stops running, disconnect battery power immediately.

4. If the motor does not run or fails to run smoothly, replace it (see section 20).

Rear Window Defogger

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

REAR WINDOW DEFOGGER SWITCH
Test, page 23-249
Replacement, page 23-249

Description (KH model)

Function:
The rear window defogger is controlled by the integrated control unit. When the defogger switch in the instrument panel is pushed, it sends a signal to the defogger timer in the integrated control unit, and the defogger stays on for about 25 minutes, or until the ignition is switched off. The indicator light in the switch comes on when the defogger is on.

Circuit Diagram (KG and KE models)

Rear Window Defogger

Circuit Diagram (KH model)

Troubleshooting

NOTE: The numbers in the table show the troubleshooting sequence.

										을 응 응	
Defogger works, but indicator light does not go on.	1										BLK/YEL or * ${ }^{*}$ YEL/GRN
Defogger does not work and indicator light does not go on.		1	${ }^{* 14}$	**3					2	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	YEL, * ${ }^{*}$ BLK/YEL or ${ }^{*}$ Y YEL/WHT
Defogger does not work, but indicator light goes on.					1	2	3	4		G801	WHT/GRN, BLK/GRN or *2YEL/GRN
Operation time is too long or too short. Normal operation time is about 25 minutes.			*11								YEL/WHT

*1: KH model
*2: KG and KE models

Noise Condenser Capacity

Test:

1. Use a commercially available condenser tester. Connect the tester probes and measure the condenser capacity.

NOTE: Do not confuse the tester probes or you may damage the condenser.
Noise condenser capacity: 0.47 ± 0.09 microfarads ($\mu \mathrm{F}$)

2. If not within the specification, replace the noise condenser.

Rear Window Defogger

Function Test

CAUTION: Be careful not to scratch or damage the defogger wires with the tester probe.

1. Check for voltage between the positive terminal and body ground with the ignition switch and defogger switch ON.
There should be battery voltage.

- If there is no voltage, check for
- faulty defogger relay.
- faulty defogger switch.
- faulty integrated control unit (KH model).
- an open in the BLK/GRN wire.
- If there is battery voltage, go to step 2.

NEGATIVE TERMINAL

POSITIVE TERMINAL

2. Turn the defogger switch OFF. Check for continuity between the negative terminal and body ground.

- If there is no continuity, check for an open in the defogger ground wire.
- If there is continuity, go to step 3.

3. Touch the voltmeter positive probe to the halfway point of each defogger wire, and the negative probe to the negative terminal.
There should be approximately 6 V with the ignition switch and the defogger switch ON.

- If the voltage is as specified, the defogger wire is OK.
- If the voltage is not as specified, repair the defogger wire.
- If it is more than 6 V , there is a break in the negative half of the wire.
- If it is less than 6 V , there is a break in the positive half of the wire.

Defogger Wires Repair

NOTE: To make an effective repair, the broken section must be no longer than one inch.

1. Lightly rub the area around the broken section with fine steel wool, then clean it with alcohol.
2. Carefully mask above and below the broken portion of the defogger wire with cellophane tape.

3. Using a small brush, apply a heavy coat of silver conductive paint extending about 3 mm ($1 / 8 \mathrm{in}$) on both sides of the break. Allow 30 minutes to dry.

NOTE: Thoroughly mix the paint before use.

4. Check for continuity in the repaired wire.
5. Apply a second coat of paint in the same way. Let it dry three hours before removing the tape.

Switch Replacement

CAUTION: Be careful not to damage the rear window defogger switch or the instrument panel when prying the switch out.

1. Carefully pry the switch out of the instrument panel.
2. Disconnect the 6-P connector from the switch.

3. Install in the reverse order of removal.

Switch Test

1. Remove the rear window defogger switch from the instrument panel.
2. Check for continuity between the terminals in each switch position according to the table.
KH model:

Terminal Position	D	F	A		C	B		E
ON	O	O		O	O	O	0	O
OFF				O				

KG and KE models:

Terminal Position	D	F		A	B		E
ON	\bigcirc	-	(2))	\bigcirc	(0)	-
OFF	\bigcirc		(-)				

KG and KE models:

Sunroof

Component L.ocation Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

SUNROOF SWITCH

Function test, page 23-255

S MAIN HARNESS (Covered with yellow insulation)

SUNROOF MOTOR
Test, page 23-256 Replacement, section 20

SUNROOF CLOSE RELAY
Wire colors: GRY/RED, GRN/RED
GRN, BLK, and YEL/GRN or (GRN/WHT)
(GRN/WHT): KH model
SUNROOF OPEN RELAY
Test, page 23-73
Wire colors: GRY/RED, GRN/RED GRN, BLK, and YEL/GRN or (GRN/WHT) [Test, page 23-73

Description (KH model)

Sunroof Key-off Timer Operation:
The sunroof can still be operated for about 10 minutes after the ignition switch is turned from the " I " to the " 1 " or " O " position, as long as neither of the doors has been opened. This provides a convenience to parked occupants while offering a degree of security against unwanted or accidental sunroof operation.

Sunroof

Circuit Diagram (KG and KE models)

Troubleshooting (KH model)

NOTE: The numbers in the table show the troubleshooting sequence.

												® $\frac{0}{0}$ 3 3 0 \vdots 0 0		을 응 0 0 0	
Sunroof does not move, but motor turns.		1													
Sunroof does not move, and motor does not turn (sunroof can be moved with sunroof wrench).	With either switch		1	2	3	6	4			7	5			$\begin{aligned} & \text { G401 } \\ & \text { G402 } \\ & \text { G403 } \\ & \text { G404 } \end{aligned}$	GRN, WHT/RED, GRN/WHT GRY/YEL or GRY/RED
	With OPEN switch							1	2		3				GRY/YEL or GRY/RED
	With CLOSE switch							2	1		3				GRY/RED or GRY/YEL
The sunroof does not work within 10 minutes after the ignition switch is OFF (neither front doors opened).			1									2	3		

Sunroof

Troubleshooting (KG and KE models)

NOTE: The numbers in the table show the troubleshooting sequence.

						$\begin{aligned} & \frac{\text { I }}{} \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \hline \end{aligned}$				응 0 0 O K 0 0 0	
Sunroof does not move, but motor turns.		1									
Sunroof does not move, and motor does not turn (sunroof can be moved with sunroof wrench).	With either switch		1	2	3			5	4	$\begin{aligned} & \text { G401 } \\ & \text { G402 } \\ & \text { G403 } \\ & \text { G404 } \end{aligned}$	GRN, YEL/GRN, GRY/YEL or GRY/RED
	With OPEN switch					1	2		3		GRY/YEL or GRY/RED
	With CLOSE switch					2	1		3		GRY/RED or GRY/YEL

Function Test

NOTE: Be careful not to damage the switch and the instrument panel.

1. Carefully pry out the switch(es) from the instrument panel.
2. Disconnect the connector(s) from the switch(es).

NOTE: LHD type is shown, RHD type is symmetrical.

3. Connect the GRY/YEL terminal to body ground with a jumper wire, then turn on the ignition switch. The sunroof should open.

- If the sunroof opens, check the switch.
- If the sunroof doesn't open, check for an open in the GRY/YEL wire.

4. Connect the GRY/RED terminal to body ground with a jumper wire, then turn on the ignition switch. The sunroof should close.

- If the sunroof closes, check the switch.
- If the sunroof doesn't close, check for an open in the GRY/RED wire.

5. Check for continuity to body ground on the BLK wire.
There should be continuity.

- If there is continuity, check the switch.
- If there is no continuity, check for an open in the BLK wire.

Sunroof

Switch Test

1. Carefully remove the switch(es) from the instrument panel.
2. Check for continuity between the terminals in each switch position according to the table.

NOTE: The switch contains three diodes. Use an analog ohmmeter, or a digital ohmmeter equipped with a diode tester.

Motor Test

1. Remove the headliner (see section 20).
2. Disconnect the 2-P connector from the sunroof motor.
3. Check the motor by connecting power and ground according to the table.

Terminal	\mathbf{A}	B
Position	Θ	\oplus
OPEN	\oplus	\ominus

4. If the motor does not run, replace it.

NOTE: See closing force check in section 20 for motor clutch test.

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

POWER MIRRORS

Function Test, page 23-260
Test, page 23-262

Power Mirrors

Circuit Diagram (With Defogger)

Circuit Diagram (Without Defogger)

Power Mirrors

Function Test

NOTE:

- To test, remove the driver's door panel (see page 23262), then disconnect all connectors from the door panel.
- Before testing, check the No. 7 (7.5 A) fuse in the under-dash fuse/relay box.
- LHD type is shown, RHD type is similar.

Mirror Actuator Test

One or both inoperative:

1. Check for voltage between the YEL/BLK terminal of the $10-\mathrm{P}$ connector and body ground with the ignition switch ON (II).
There should be battery voltage.

- If there is no voltage, check for an open in the YEL/BLK wire.
- If there is battery voltage, go to step 2.

2. Check for continuity between the BLK terminal and body ground.
There should be continuity.

- If there is no continuity, check for
- an open in the BLK wire.
- poor ground (G401, G403).

Left mirror inoperative:

Connect the YEL/BLK terminal of the 10-P connector to the *1 BLU/GRN or *2 YEL/WHT terminal, and the BLU/WHT (or *1 BLU/ORN or *2 LT GRN) terminal to body ground with jumper wires. The left mirror should tilt down (or swing left) when the ignition switch is turned ON (II).

- If the mirror does not tilt down (or does not swing left), check for an open in the BLU/WHT (or *1 BLU/ORN or *2 LT GRN) wire between the left mirror and the switch. If the wire is OK, check the left mirror actuator.
- If the mirror neither tilts down nor swings left, repair the *1 BLU/GRN or *2 YEL/WHT wire between the left mirror and the switch.
- If the mirror operates properly, check the mirror switch.

Right mirror inoperative:

Connect the YEL/BLK terminal of the 10-P connector to the *1 YEL/WHT or *2 BLU/GRN terminal, and the BLU/WHT (or *1 LT GRN or *2 BLU/ORN) terminal to body ground with jumper wires. The right mirror should tilt down (or swing left) when the ignition switch is turned ON (II).

- If the mirror does not tilt down (or does not swing left), check for an open in the BLU/WHT (or *1 LT GRN or *2 BLU/ORN) wire between the right mirror and the switch. If the wire is OK, check the right mirror actuator.
- If the mirror neither tilts down nor swings left, repair the *1 YEL/WHT or *2 BLU/GRN wire between the right mirror and the switch.
- If the mirror operates properly, check the mirror switch.

Defogger Test (With defogger)

1. Check for voltage between the YEL/BLK terminal of the 2-P connector and body ground with the ignition switch ON (II).
There should be battery voltage.

- If there is no voltage, check for an open in the YEL/BLK wire between the under-dash fuse/relay box and the switch.
- If there is battery voltage, go to step 2 .

2. Connect the YEL/BLK terminal of the 2-P connector to the ORN terminal with a jumper wire.
Both the right and left mirrors should gradually warm up when the ignition switch is turned ON (II).

- If neither warms up, repair the ORN wire.
- If only one fails to warm up, check its mirror defogger element.
- If both warm up, check the switch.

Switch Test

1. Remove the switch as described under "Switch Removal" on page 23-262.
2. Check for continuity between the terminals in each switch position according to the table.

Mirror Switch:

Po^{2}	Terminal on	C	D	E	F	G	1	J
R	OFF	\bigcirc		-	-			\bigcirc
	UP	\bigcirc		\bigcirc	O		-	\bigcirc
	DOWN	\bigcirc		\bigcirc	$-\mathrm{O}$		-	\bigcirc
	LEFT	\bigcirc		0	-		-	-
	RIGHT	\bigcirc					-	\bigcirc
L	OFF		\bigcirc	\bigcirc		-		\bigcirc
	UP		\bigcirc	\bigcirc			-	\bigcirc
	DOWN		\bigcirc	0			-	-
	LEFT		\bigcirc	O				\bigcirc
	RIGHT		\bigcirc	O		-0	-	-

Defogger Switch (With defogger):

Position Terminal ON	L	K	LED	J
OFF	\bigcirc			O

Power Mirrors

- Switch Removal

1. Remove the two screws and the clip, and remove the driver's door panel part of the way.
2. Disconnect the connectors from the driver's door panel, and remove the driver's door panel.

NOTE: LHD type is shown, RHD type is similar.

3. Remove the power mirror switch from the power window master switch by carefully pressing from below.

4. Install in the reverse order of removal.

Power Mirror Test

1. Remove the mirror panel, then disconnect the 8-P connector from the power mirror actuator.

NOTE: LHD type is shown, RHD type is similar.

2. Check mirror actuator operation by connecting power and ground according to the table.

Terminal Position	F	G	H
TILT UP		Θ	\oplus
TILT DOWN		\oplus	Θ
SWING LEFT	Θ	\oplus	
SWING RIGHT	\oplus	Θ	

* : With defogger

With defogger

3. Check for continuity between the C and D terminals ($\mathrm{R} \times 10^{3}$ scale).
There should be continuity.
4. If the power mirror fails to operate properly, replace it.

Power Windows

Component Location Index

NOTE: LHD type is shown, RHD type is symmetrical.

Description

Power Window Key-off Timer Operation (KH model):
The power windows can still be operated for about 10 minutes after the ignition switch is turned from the "II" to the "I" or " O " position, as long as neither of the front doors has been opened. This provides a convenience to parked occupants while offering a degree of security against unwanted or accidental window operation.

Power Windows

Circuit Diagram (KG and KE models)

NOTE:

- "DN" in the switch circuit denotes DOWN.

Circuit Diagram (KH model)

NOTE:

- "DN" in the switch circuit denotes DOWN.

NTEGRATED CONTROL UNIT (Has built -in

Power Windows

Troubleshooting (KG and KE models)

NOTE: The numbers in the table show the troubleshooting sequence.

			$\begin{gathered} \overrightarrow{0} \\ \frac{0}{0} \\ 3 \\ 0 \\ 0 . \\ . \frac{C}{3} \\ \frac{0}{0} \\ 3 \\ 0 . \end{gathered}$										을 응 O \vdots 0 0	
All windows do not work.	1	2	3										$\begin{aligned} & \mathrm{G} 401 \\ & \mathrm{G} 403 \end{aligned}$	YEL/GRN
Driver's window does not work.				1	<1>			2			3	4	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	GRN/WHT
Driver's window does not work in AUTO.						1			2			3		RED
Passenger's window does not work.				<1>	1	2	3			4	5			BLU/BLK

< >: KE model

Troubleshooting (KH model)

NOTE: The numbers in the table show the troubleshooting sequence.

												Power window master switch input	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		믈 응 응 \vdots 0.	
All windows do not work.	1	2	3											4	G401 G402 G403 G404	WHT/RED
Driver's window does not work.				1				2			3	4			$\begin{aligned} & \mathrm{G} 402 \\ & \mathrm{G} 404 \end{aligned}$	GRN/WHT
Driver's window does not work in AUTO.						1			2			3				RED
Passenger's window does not work.					1	2	3			4	5					BLU/BLK
All windows do not work within 10 minutes after the ignition switch is OFF (neither front door opened).		1											2	3		

* (100 A): F22B1 engine (80 A): Except F22B1 engine

Power Windows

Master Switch Input Test

NOTE: The control unit is built into the power window master switch, and only controls driver's door window operations.

1. Remove the driver's door panel, and disconnect the $10-\mathrm{P}$ connector from the master switch.
2. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If a test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the power window master switch must be faulty; replace it.

No.	Wire Test condition		Test: Desired result	Possible cause if result is not obtained
1	BLK ${ }^{1}$	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G401, G403) - An open in the wire
	BLK ${ }^{2}$			
2	GRN/WHT	Ignition switch ON(II)	Check for voltage to ground: There should be battery voltage.	- Blown No. 26 or 28 (20 A) fuse in the under-hood fuse/relay box. - Faulty power window relay - An open in the wire
	BLU/BLK			
3	$\begin{aligned} & \text { RED/BLU } \\ & \text { and } \\ & \text { RED } / \text { EL } \end{aligned}$	Connect the GRN/WHT terminal to the RED/BLU terminal, and the RED/YEL terminal to the BLK ${ }^{2}$ terminal, then turn the ignition switch ON (II).	Check the driver's window motor: It should run (the window moves down).	- Faulty driver's window motor - An open in the wire
4	$\begin{aligned} & \text { BLU/YEL } \\ & \text { and } \\ & \text { BLU } \end{aligned}$	Connect the BLU/BLK terminal to the BLU/YEL terminal, and the BLU terminal to the BLK^{1} terminal, then turn the ignition switch ON (II).	Check the front passenger's window motor: It should run (the window moves down).	- Faulty passenger's window motor - Faulty passenger's window switch - An open in the wire
5	RED and BLK^{2}	Connect the GRN/WHT terminal to the RED/YEL terminal, and the BLK ${ }^{1}$ terminal to the RED/BLU terminal, then turn the ignition switch ON (II).	Check for resistance between the RED and BLK ${ }^{2}$ terminals: Between 20 - 50 ohms should be indicated as the driver's motor runs.	- Faulty pulser - Faulty driver's window motor - An open in the wire

Power Windows

Master Switch Replacement

1. Remove the driver's door panel, and disconnect all connectors.

NOTE: LHD type is shown, RHD type is similar.

2. Remove the power window master switch from the armrest by removing the three mounting screws.

3. Install in the reverse order of removal.

Passenger's Window Switch Replacement

1. Remove the switch from the armrest by removing the mounting screw, then disconnect the 5-P connector from the passenger's window switch.

NOTE: LHD type is shown, RHD type is similar.

2. Install in the reverse order of removal.

Master Switch Test

LHD type:

1. Remove the door panel (see page 23-270).
2. Remove the power window master switch from the armrest.
3. Check for continuity between the terminals in each switch position according to the tables.

Driver's Switch:

The driver's switch is combined with the control unit so you cannot isolate the switch to test it. Instead, run the master switch input test procedures No. 1, 2, 3, and 5 on page 23-268. If the tests are normal, the driver's switch must be faulty.

Passenger's Switch:

Position	Terminal Main Switch	B	C	D	E
OFF	ON	\bigcirc	O	-	
	OFF		\bigcirc	-	
UP	ON	\bigcirc	-	\bigcirc	
	OFF				\bigcirc
DOWN	ON	\bigcirc	\bigcirc	\bigcirc	-
	OFF		\bigcirc		\bigcirc

RHD type:

1. Remove the door panel (see page 23-270).
2. Remove the power window master switch from the armrest.
3. Check for continuity between the terminals in each switch position according to the tables.

Driver's Switch:

The driver's switch is combined with the control unit so you cannot isolate the switch to test it. Instead, run the master switch input test procedures No. 1, 2, 3, and 5 on page 23-268. If the tests are normal, the driver's switch must be faulty.

Passenger's Switch:

Position	Terminal Main Switch	A	B	C	1
OFF	ON	\bigcirc	-	O	
	OFF	\bigcirc	\bigcirc		
UP	ON	\bigcirc	\bigcirc	O	O
	OFF	\bigcirc			\bigcirc
DOWN	ON	\bigcirc		\bigcirc	-
	OFF		\bigcirc		-

Power Windows

Passenger's Window Switch Test

1. Remove the switch from the armrest, then disconnect the 5-P connector.

2. Check for continuity between the terminals in each switch position according to the table.

LHD type:

Position Terminal	A	B	C	D	E
UP	O			-	
OFF					O
DOWN	O	\bigcirc			
			\bigcirc	O	

RHD type:

Terminal	A	B	C	D	E
Position	UP	O	\bigcirc		
OFF					
DOWN	\bigcirc				
		O			

Passenger's Window Motor Test

1. Remove the passenger's door panel.
2. Disconnect the 2-P connector from the motor.

NOTE: LHD type is shown, RHD type is similar.

3. Check window motor operation by connecting power and ground according to the table.

| Direction Terminal 1 2
 UP Θ \oplus
 DOWN \oplus Θ e |
| :---: | :---: | :---: |

CAUTION: When the motor stops running, disconnect one lead immediately.
4. If the motor does not run or fails to run smoothly, replace it.

Driver's Window Motor Test

Motor Test:

1. Remove the driver's door panel (see page 23-270).

NOTE: LHD type is shown, RHD type is similar.

2. Test the motor in each direction by connecting battery power and ground according to the table.

| Terminal 3
 4
 UP Θ
 \oplus
 DOWN \oplus | Θ |
| :---: | :---: | :---: |

CAUTION: When the motor stops running, disconnect one lead immediately.
3. If the motor does not run or fails to run smoothly, replace it.

Pulser Test:

1. Connect the test leads of an analog ohmmeter to the No. 1 and No. 2 terminals.
2. Run the motor by connecting power and ground to the No. 3 and No. 4 terminals. The ohmmeter needle should move back and forth alternately.

Power Door Locks

Component Location Index

NOTE: LHD type is shown, RHD type is symmetrical.

Circuit Diagram (KG and KE models)

Power Door Locks

- Circuit Diagram (KH model)

Troubleshooting (KG and KE models)

NOTE: The numbers in the table show the troubleshooting sequence.

				Driver's door lock knob switch	Passenger's door actuators		$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	
Power door lock system doesn't operate at all.		1				2	$\begin{aligned} & \hline \text { G401 } \\ & \text { G403 } \end{aligned}$	WHT
Doors don't lock or unlock with driver's door lock knob switch.	Both doors		1	2		3	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	BLK/RED or PNK
	One door		1		2		$\begin{aligned} & \hline \text { G401 } \\ & \text { G403 } \end{aligned}$	YEL/RED or WHT/RED

Power Door Locks

Troubleshooting (KH model)

NOTE: The numbers in the table show the troubleshooting sequence.

						Passenger's door key cylinder switch						0 0 0 0 0 0 0 0	
Power door lock system doesn't work at all.		1									2	$\begin{aligned} & \text { G401 } \\ & \text { G403 } \end{aligned}$	WHT
Doors don't lock or unlock with the driver's door lock switch.	Both doors								1		2	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	ORN or BLKNHT
	One door		1				2	3					WHT/RED or YEL/RED
Doors don't lock or unlock with the passenger's door lock switch.	Both doors									1	2	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	ORN or BLKMHT
	One door		1				2	3					WHT/RED or YEL/RED
Doors don't lock or unlock with the driver's door lock knob.	Both doors		1	2							3	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	BLK/RED or PNK
	One door		1				2	3					WHT/RED or YEL/RED
Doors don't lock or unlock with the passenger's door key.	Both doors					1					2	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	ORN or BLK/WHT
	One door		1				2	3					WHT/RED or YEL/RED
Doors don't unlock with the driver's door key.	Driver's door		1				2						WHT/RED or YEL/RED
	* Both doors			2	1						3	$\begin{aligned} & \text { G402 } \\ & \text { G404 } \end{aligned}$	BLU or BLK/RED

*: If the system is working normally, both doors will unlock when you hold the door key in the unlock position (key cylinder switch and door lock knob switch turned ON) for one second or more.

Control Unit Input Test

1. Remove the driver's door panel (see section 20).
2. Disconnect the 14-P or 12-P connector from the control unit.
3. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the control unit must be faulty; replace it.

(cont'd)

Power Door Locks

Control Unit Input Test (cont'd)

Disconnect the 14-P or 12-P connector from the power door lock control unit.

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G401, G403) - An open in the wire
2	WHT/RED and YEL/RED	Connect the YEL/RED terminal to the WHT terminal, and the WHT/RED terminal to the BLK terminal momentarily.	Check door lock operation: Passenger's door (*All doors) should unlock.	- Faulty actuator - An open in the wire - Blown No. 38 (20 A) fuse in the under-hood fuse/relay box
		Connect the WHT/RED terminal to the WHT terminal, and the YEL/RED terminal to the BLK terminal momentarily.	Check door lock operation: Passenger's door (*All doors) should lock.	

Reconnect the 14-P or 12-P connector to the power door lock control unit.

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
3	WHT	Under all conditions	Check for voltage to ground: There should be battery voltage.	- Blown No. 38 (20 A) fuse in the under-hood fuse/relay box - An open in the wire
* 4	BLK/WHT	Driver's door lock switch in LOCK	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door lock switch - Poor ground (G402, G404) - An open in the wire
	ORN	Driver's door lock switch in UNLOCK		
	BLK/WHT	Passenger's door lock switch in LOCK	Check for voltage to ground: There should be 1 V or less.	- Faulty passenger's door lock switch - Poor ground (G402, G404) - An open in the wire
	ORN	Passenger's door lock switch in UNLOCK		
	BLK/WHT	Passenger's door key cylinder in LOCK	Check for voltage to ground: There should be 1 V or less as the switch is turned.	- Faulty passenger's door key cylinder switch - Poor ground (G402, G404) - An open in the wire
	ORN	Passenger's door key cylinder in UNLOCK		
5	PNK	Driver's door lock knob in LOCK	Check for voltage to ground: There should be 1 V or less.	- Faulty driver's door lock knob switch - Poor ground (G402, G404) - An open in the wire
	BLK/RED	Driver's door lock knob in UNLOCK		
*6	BLU	Driver's door key cylinder in UNLOCK	Check for voltage to ground: There should be 1 V or less as the switch is turned.	- Faulty driver's door key cylinder switch - Poor ground (G402, G404) - An open in the wire

*: KH model

CAUTION: To prevent damage to the motor, apply battery voltage only momentarily.

Driver's Door Lock Actuator Test (KH model)

1. Remove the door panel (see section 20).
2. Disconnect the 6-P connector from the actuator.

3. Check actuator operation by connecting power and ground according to the table.

Terminal	4	5
Position	\oplus	\oplus
LOCK	Θ	Θ

CAUTION: To prevent damage to the actuator, apply battery voltage only momentarily.
4. Check for continuity between the terminals in each switch position according to the table.

| Terminal 1 3
 Position 0
 LOCK 0
 UNLOCK 0${ }^{2}$ | | |
| :---: | :---: | :---: | :---: |

Power Door Locks

Driver's Door Lock Knob Switch Test (KG and KE models)

1. Remove the door panel (see section 20).
2. Disconnect the 3-P connector from the knob switch.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	1	2	3
LOCK		\bigcirc	\bigcirc
UNLOCK	\bigcirc	\bigcirc	

4. If the knob switch fails to work properly, replace it.

Passenger's Door Lock Actuator Test

1. Remove the door panel (see section 20).
2. Disconnect the 2-P connector from the actuator.

3. Check actuator operation by connecting power and ground according to the table.

| $\left.\begin{array}{\|l\|l\|}\hline \text { Position Terminal } & 1 \\ 2 \\ \hline \text { LOCK } & \oplus \\ \hline \text { UNLOCK } & \Theta\end{array}\right]$ |
| :---: | :---: | :---: |

CAUTION: To prevent damage to the actuator, apply battery voltage only momentarily.

4. If the actuator fails to work properly, replace it.

Door Lock Switch Test (KH model)

1. Remove the inside handle.
2. Disconnect the 3-P connector from the switch.

NOTE: The driver's door lock switch is shown; the front passenger's door lock switch is similar.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A	B	C
LOCK	0	0	
OFF			
UNLOCK		O	-

Power Door Locks

Driver's Door Key Cylinder Switch Test (KH model)

1. Remove the door panel (see section 20).
2. Disconnect the 3-P connector from the switch.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal	1	2
Position		
UNLOCK		0
OFF		

Passenger's Door Key Cylinder Switch Test (KH model)

1. Remove the door panel (see section 20).
2. Disconnect the 3-P connector from the switch.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	1	2	3
LOCK		0	0
OFF			
UNLOCK	0	0	

23-284

Wiper/Washer

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE:

- RHD type is shown, LHD type is similar.
- Only KE models are equipped with headlight washers.

SRS MAIN HARNESS
(Covered with yellow insulation)

Wiper/Washer

Component Location Index

Test, page 23-296
Replacement, page 23-296

Circuit Diagram

Wiper/Washer

Circuit Diagram (KE model)

Troubleshooting

NOTE: The numbers in the table show the troubleshooting sequence.

Windshield Wiper/Washer:

			$\begin{aligned} & \text { 工 } \\ & \vdots \end{aligned}$	$\begin{aligned} & \frac{\pi}{N} \\ & \frac{\pi}{3} \\ & \frac{\pi}{3} \\ & \frac{0}{2} \end{aligned}$					Combined operation of wiper/washer (In the integrated control unit)				을 은 응 능 0	
Wipers do not work.	In all positions	1	4		2							3	$\begin{aligned} & \text { G401 } \\ & \text { G403 } \end{aligned}$	GRN/BLK
	In INT		1		3			2						GRN, *1 WHT or *2 BLU/WHT ${ }^{1}$
	In LO or HI		1		2									BLU/YEL or BLU
	In MIST			1	2									BLU/YEL
Blades do not return to park position when wipers are turned OFF.			2		1									BLU/WHT
Erratic intermittent cycle or wipers do not work in INT.								1	2					GRN/BLK, GRN, BLUNWHT ${ }^{2}$ or GRN/RED
Little or no washer fluid is pumped.						4	3			1	2		G301	BLK/YEL
Wipers and washer do not work at the same time.									1					BLK/YEL

*1: LHD type *2: RHD type
Headlight Washer:

								$\begin{aligned} & \text { 을 } \\ & 0 \\ & \text { O} \\ & \text { O} \\ & \vdots \\ & 0 . \end{aligned}$	
Little or no washer fluid is pumped.	2	3	4	5	7	1	6	$\begin{aligned} & \text { G301 } \\ & \text { G402 } \\ & \text { G404 } \end{aligned}$	WHT/BLK, YEL/GRN, GRN/WHT or WHT/RED

Wiper/Washer

Headlight Washer Control Unit Input Test (KE model)

1. Remove the dashboard lower cover.
2. Disconnect 6-P connector from the control unit.
3. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals lock OK, make the following input tests at the connector.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the control unit must be faulty; replace it.

No. Wire Test condition
$\left.\begin{array}{|c|c|l|l|l|}\hline 1 & \text { BLK } & \text { Under all conditions } & \begin{array}{l}\text { Check for continuity to ground: } \\ \text { There should be continuity. }\end{array} & \begin{array}{l}\text { - Poor ground (G402, G404) } \\ \text { - An open in the wire }\end{array} \\ \hline 2 & \text { WHT/BLK } & \text { Under all conditions } & \begin{array}{l}\text { Check for voltage to ground: } \\ \text { There should be battery voltage. }\end{array} & \begin{array}{l}\text { - Blown No. 27 (20 A) fuse in the } \\ \text { under-hood fuse/relay box } \\ \text { - An open in the wire }\end{array} \\ \hline 3 & \text { YEL/GRN } & \text { Ignition switch ON } & \begin{array}{l}\text { Check for voltage to ground: } \\ \text { There should be battery voltage. }\end{array} & \begin{array}{l}\text { - Blown No. } 5(10 \text { A) fuse in the } \\ \text { under-dash fuse relay/box }\end{array} \\ \text { - An open in the wire }\end{array}\right]$

Switch Removal

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

SRS MAIN HARNESS
(Covered with yellow insulation)

1. Remove the dashboard lower cover and knee bolster (KH model).

2. Remove the steering column covers.

3. Remove the two screws and the switch.

4. Install in the reverse order of removal.

Wiper/Washer

Wiper/Washer Switch Test

1. Remove the dashboard lower cover and knee bolster (KH model).
2. Disconnect the 7-P connector from the main wire harness.
3. Check for continuity between the terminals in each switch position according to the table.

Windshield Wiper/Washer Switch

Terminal Position	1	2	3	4	5	6	7
OFF					\bigcirc		
INT		O		O			
LO	\bigcirc						
HI	O						
Mist switch"ON"	O						-
Washer switch"ON"		O		O			

Headlight Washer Switch Removal (KE model)

1. Carefully pry the headlight washer switch out of the front console panel.

NOTE: Be careful not to damage the switch and front console panel when prying the switch out.
2. Disconnect the 4-P connector from the switch.

Headlight Washer Switch Test (KE model)

1. Remove the switch from the front console panel.
2. Check for continuity between the terminals in each switch position according to the table.

 Position	B	D	A		C
ON					-
OFF	\bigcirc	\bigcirc			

Wiper/Washer

Windshield Wiper Motor Test

1. Open the hood.
2. Disconnect the 5-P connector from the windshield wiper motor.
3. Test the motor by connecting battery power and ground according to the table.

Terminal Position	A	B	D
LOW SPEED		Θ	\oplus
HIGH SPEED	Θ		\oplus

NOTE: LHD type is shown, RHD type is symmetrical.

View from terminal side
4. If the motor fails to run smoothly, replace it.
5. Connect an analog voltmeter between the E and the C terminals. Run the motor at low or high speed.

NOTE: As (Automatic stop)
The voltmeter should indicate 0 V and 4 V or less alternately.

NOTE:

- Use an analog tester.
- Use the car battery.

Windshield Wiper Motor Replacement

NOTE: LHD type is shown, RHD type is similar.

1. Open the hood, and remove the cap nuts and wiper arms.

NOTE: Remove the wiper arms carefully without damaging the hood.
2. Remove the hood seal and air scoop by prying out their trim clips.

3. Disconnect the 5-P connector from the windshield wiper motor.

4. Remove the wiper linkage assembly by removing the three mounting bolts.
5. Remove the three mounting bolts and the nut from the wiper linkage to remove the windshield wiper motor.

6. Install the windshield wiper motor in the reverse order of removal.
7. Install the windshield wiper arms as shown below.

A: 33 mm (1.3 in)
B: 25 mm (1 in)

Washer Motor(s) Test

1. Remove the inner fender.
2. Disconnect the 2-P connector(s) from the washer motor(s).

3. Test the washer motor operation by connecting battery power and ground according to the table.

	Terminal	A
Battery		B
Disconnected		
Connected	\oplus	Θ

- If the motor fails to run smoothly, replace it.
- If the motor runs smoothly, but little or no washer fluid is pumped, check for a disconnected or blocked washer hose, or a clogged pump outlet in the motor.

Washer Motor(s) Replacement

1. Remove the inner fender.

2. Disconnect the hose and the 2-P connector(s) from the washer motor(s).
3. Remove the washer motor(s) from the washer reservoir.

Washer Replacement

1. Remove the inner fender and the front bumper.
2. Remove the washer filler neck.
3. Disconnect the hose and the 2-P connector(s) from the washer motor(s).
4. Remove the washer reservoir by removing the mounting bolts.
5. Remove the washer motor from the washer reservoir.
6. Remove the washer nozzles and washer hose.

NOTE:

- Take care not to pinch the hoses during reinstallation.
- Install the grommets firmly.
- After installation, adjust the aim of the washer nozzles.

Cruise Control

Component Location Index

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: RHD type is shown, LHD type is similar.

(Covered with yellow insulation)

CRUISE INDICATOR LIGHT
(Built into gauge assembly)

MAIN SWITCH
Test, page 23-303
Replacement, page 23-303

CABLE REEL
Test, page 23-306
SLIP RING
Test, page 23-308
A/T GEAR POSITION SWITCH
Test, page 23-168

LHD type:

RHD type:

ACTUATOR ASSEMBLY
Test, page 23-311
Solenoid Test, page 23-310
Disassembly, page 23-313, 314

Cruise Control

Circuit Diagram (Without SRS)

Cruise Control

Troubleshooting

NOTE:

- The numbers in the table show the troubleshooting sequence.
- Before troubleshooting,
- check the No. 1 (10 A) and No. 4 (7.5 A) fuses in the under-dash fuse/relay box, and the No. 30 (20 A) fuse in the under-hood fuse/relay box.
- check that the horn sounds.
- check the tachometer to see if it works properly.

				Clutch switch and mounting (M/T)					$\begin{aligned} & \stackrel{H}{5} \\ & \frac{3}{3} \\ & \frac{0}{2} \\ & \frac{1}{0} \\ & 0 \end{aligned}$	믈 응 \vdots 응	
Cruise control cannot be set.	1	2	3						5	$\begin{aligned} & \text { G402, } \\ & \text { G404 } \end{aligned}$	LT GRN/RED, LT GRN, GRY, ORN, BRN/WHT, BRN/BLK, BRN or PNK
Cruise control can be set, but indicator light does not go on.							1		2	$\begin{aligned} & \text { G402, } \\ & \text { G404 } \end{aligned}$	YEL or BLU/BLK
Cruise speed is noticeably higher or lower than what was set.						1		2	3		
Excessive overshooting or undershooting when trying to set speed.						2		1	3		
Steady speed is not held even on a flat road with cruise control set.						1		2	3		
Car does not decelerate or accelerate accordingly when SET or RESUME button is pushed.		1							2		LT GRN/BLK LT GRN/RED
Set speed is not cancelled when clutch pedal is pushed (M/T).				1					2		PNK
Set speed is not cancelled when shift lever is moved to $\mathbf{N}(\mathrm{A} / \mathrm{T})$.					1				2		PNK
Set speed is not cancelled when brake pedal is pushed.			1						2		GRN/WHT
Set speed is not cancelled when main switch is pushed OFF.	1								2		LT GRN
Set speed is not resumed when RESUME button is pushed (with main switch on, but set speed is temporarily cancelled).		1							2		LT GRN/BLK LT GRN/RED

Main Switch Test/Replacement

NOTE: Be careful not to damage the switch and the instrument panel.

1. Carefully pry the switches out of the instrument panel, and disconnect the connectors.

2. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A		B	C	D		E
OFF	-	(0)	\bigcirc		\bigcirc	(-)	\bigcirc
ON	\bigcirc	(0)	-	\bigcirc	\bigcirc	(\%)	\bigcirc

- If there is no continuity, replace the switch.

Clutch Switch Test (M/T)

1. Disconnect the 3-P connector from the clutch switch.
2. Check for continuity between the terminals according to the table.

Terminal	B	C
Clutch Pedal		
PUSHED		
RELEASED	O	

3. If necessary, replace the switch or adjust pedal height (see section 12).

Cruise Control

Control Unit Input Test

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

NOTE: RHD type is shown, LHD type is similar.

1. Remove the dashboard lower cover and knee bolster (KH model).
2. Disconnect the $14-\mathrm{P}$ connector from the control unit.
3. Inspect the connector and socket terminals to be sure they are all making good contact.

- If the terminals are bent, loose or corroded, repair them as necessary, and recheck the system.
- If the terminals look OK, make the following input tests at the connector.
- If any test indicates a problem, find and correct the cause, then recheck the system.
- If all the input tests prove OK, the control unit must be faulty; replace it.

No.	Wire	Test condition	Test: Desired result	Possible cause if result is not obtained
1	BLK	Under all conditions	Check for continuity to ground: There should be continuity.	- Poor ground (G402, G404) - An open in the wire
2	LT GRN	Ignition switch ON (II) and main switch ON	Check for voltage to ground: There should be battery voltage.	- Blown No. 4 (7.5 A) fuse in the under-dash fuse/relay box - Faulty main switch - An open in the wire
3	LT GRN/ BLK	Resume button pushed	Check for voltage to ground: There should be battery voltage.	- Blown No. 30 (20 A) fuse in the under-hood fuse/relay box - Faulty set/resume switch - Faulty cable reel - An open in the wire
4	LT GRN/ RED	Set button pushed		
5	PNK	M / T : Clutch pedal released A/T: Shift lever in 2, \square_{3} or D_{4}	Check for continuity to ground: There should be continuity. NOTE: There should be no continuity when the clutch pedal is depressed or when the shift lever is in other positions.	- Faulty or misadjusted clutch switch (M / T) - Faulty A/T gear position switch - Poor ground (G402, G404) - An open in the wire
6	ORN	Ignition switch ON (II) and main switch ON; raise the front of the car, and rotate one wheel slowly.	Check for voltage between the ORN \oplus and BLK Θ terminals: There should be $0-5 \mathrm{~V}$ or more $-0-5 \mathrm{~V}$ or more repeatedly.	- Faulty vehicle speed sensor (VSS) - An open in the wire
7	GRY	Ignition switch ON (II), main switch ON and brake pedal pushed, then released	Check for voltage to ground: There should be 0 V with the pedal pushed and battery voltage with the pedal released.	- Faulty brake switch - An open in the wire
8	GRN/WHT	Brake pedal pushed, then released	Check for voltage to ground: There should be battery voltage with the pedal pushed, and 0 V with the pedal released.	- Blown No. 30 (20 A) fuse in the under-hood fuse/relay box - Faulty brake switch - An open in the wire
9	BLU/BLK	Ignition switch ON (II)	Attach to ground: Cruise indicator light in the gauge assembly comes on.	- Blown bulb - Blown No. 1 (10 A) fuse in the under-dash fuse/relay box - Faulty dimming circuit in the gauge assembly - An open in the wire
10	BRN/WHT	Under all conditions	Check for resistance to ground: There should be 80-120 Ω.	- Faulty actuator solenoid - An open in the wire
11	BRN/BLK	Under all conditions	Check for resistance to ground: There should be 70-110 Ω.	
12	BRN	Under all conditions	Check for resistance to ground: There should be $40-60 \Omega$.	

Cruise Control

Set/Resume Switch Test (With SRS)

CAUTION:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Before disconnecting any part of the SRS wire harness, connect the short connectors.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

(Covered with yellow insulation)

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED) to the airbag side of the connectors.

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.
- Disconnect the 3-P connector between the driver's airbag and cable reel, then connect the short connector (RED) to the airbag side of the connector.

Front Passenger's Side:

- Remove the glove box.

NOTE: Before removing the glove box, remove the glove box damper (see section 20).

- Disconnect the front passenger's airbag 3-P connector from the SRS main harness, and connect the short connecter (RED) to the front passenger's airbag 3-P connector.

3-P CONNECTOR
SHORT CONNECTOR (RED)
3. Remove the dashboard lower cover and knee bolster (KH model).
4. Disconnect the cable reel 6-P connector from the SRS main harness, then connect Test Harness C only to the cable reel side of the 6-P connector.

5. Check for continuity between the terminals of Test Harness C in each switch position according to the table.

Position	3	2	1
SET (ON)	\bigcirc	-	
RESUME (ON)	\bigcirc		\bigcirc

- If there is continuity, and it matches the table, the switch is OK.
- If there is no continuity in one or both positions, go to step 6.

6. Carefully remove the cruise control set/resume switch cover by prying between the cover and the switch in the sequence shown.

7. Remove the two screws and cruise control set/ resume switch.

8. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	A	A^{\prime}	B	C
OFF	\bigcirc	-		
SET (ON)	\bigcirc			
RESUME (ON)	\bigcirc			-

- If there is no continuity in one or both positions, replace the switch.
- If there is continuity and it matches the table, replace the cable reel.

Cruise Control

- Set/Resume Switch Test (Without SRS)

1. Remove the dashboard lower cover.
2. Disconnect the combination light switch 20-P connector from the main wire harness.

3. Check for continuity between the terminals in each switch position according to the table.

Terminal Position	1	2	3	4
SET (ON)		\bigcirc	\bigcirc	
RESUME (ON)	\bigcirc		\bigcirc	

- If there is continuity, the switch is OK.
- If there is no continuity in any position, go to step 4.

4. Remove the steering column upper and lower covers.

StEERING COLUMN UPPER COVER

5. Disconnect the 5-P connector from the slip ring.
6. Check for continuity between the terminals of the

- If there is no continuity in any position, replace the switch harness.
- If there is continuity, go to step 8.

7. Remove the steering wheel, then turn it over.

8. Check for continuity between the terminals in each switch position at the slip ring side according to the table.

Terminal Position	1	2	3	4
SET (ON)			\bigcirc	\bigcirc
RESUME (ON)		\bigcirc	\bigcirc	

- If there is continuity, check the slip ring.
- If there is no continuity, replace the set/resume switch.

Set/Resume Switch Replacement (Without SRS)

1. Remove the steering wheel.
2. Remove the covers.
3. Remove the three screws and the set/resume switch from the steering wheel.

Cruise Control

Brake Switch Test

1. Disconnect the 4-P connector from the switch.

2. Check for continuity between the terminals according to the table.

Brake Pedal	A	B	C	D
PUSHED		\bigcirc	O	
RELEASED	\bigcirc			\bigcirc

3. If necessary, replace the switch or adjust pedal height (see section 19).

Actuator Solenoid Test

1. Disconnect the 4-P connector from the actuator.

2. Check for resistance between the terminals according to the table.

Terminal Resistance (Ω)	A	B	C	D
VENT SOLENOID $40-60 \Omega$			O	-
VACUUM SOLENOID $30-50 \Omega$		\bigcirc		-
SAFETY SOLENOID $40-60 \Omega$	$\bigcirc-$			-

NOTE: Resistance will vary slightly with temperature; specified resistance is at $20^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$.

Actuator Test

1. Disconnect the actuator cable from the actuator rod, and disconnect the 4-P connector.
2. Connect battery power to the D terminal and ground to the A, B, and C terminals.
3. Connect a vacuum pump. Then apply vacuum to the actuator.

4. The actuator rod should pull in completely. If the rod pulls in only part-way or not at all, check for a leaking vacuum line or defective solenoid.

5. With voltage and vacuum still applied, try to pull the actuator rod out by hand. You should not be able to pull it out. If you can, it is defective.

6. Disconnect ground from the C terminal. The actuator rod should return. If it does not return, but the vent hose and filter are not plugged, the solenoid valve assembly is defective.
7. Repeat steps 2 through 5, and disconnect ground from the A terminal. The actuator rod should return. If it does not return, but the vent hose and filter are not plugged, the solenoid valve assembly is defective.
8. If you replace the solenoid valve assembly, be sure to use new O-rings on each solenoid.

Cruise Control

Actuator/Cable Replacement

1. Disconnect the 4-P connector from the actuator.
2. Remove the two mounting bolts and the actuator with the bracket.

NOTE: LHD type is shown. RHD type is similar.

3. Remove the EVAP purge control solenoid valve from the actuator bracket (LHD type).
4. Remove the vacuum hose.
5. Remove the three nuts.
6. Disconnect the actuator cable from the actuator rod by releasing the clip from the rod with a screwdriver as shown.

7. Loosen the locknut, then disconnect the actuator cable from the throttle linkage.

8. Install in the reverse order of removal, and adjust free play at the throttle linkage after connecting the actuator cable.

Cruise Control

- Actuator Disassembly (RHD type)

Actuator Cable Adjustment

1. Check that the actuator cable moves smoothly with no binding or sticking.
2. Start the engine. Hold the engine at $3,000 \mathrm{rpm}$ with no load (A/T in \mathbf{N} or \mathbf{P} position, M / T in neutral) until the radiator fan comes on, then let it idle.
3. Measure the amount of movement of the output linkage and the inner cable until the engine speed starts to increase. At first, the output linkage should be turned to the fully closed position. Free play at A and B should be $5 \pm 0.5 \mathrm{~mm}(0.20 \pm 0.02 \mathrm{in})$.

FREE PLAY (A, B): $5 \pm 0.5 \mathrm{~mm}(0.20 \pm 0.02 \mathrm{in})$

4. If the free play is not within specs, move the cable to the point where the engine speed starts to increase, and tighten the locknut and adjusting nut.

5. Turn the adjusting nut until it is $5 \pm 0.5 \mathrm{~mm}(0.20 \pm$ 0.02 in) away from the bracket.

$$
5 \pm 0.5 \mathrm{~mm}(0.02 \pm 0.02 \mathrm{in})
$$

6. Pull the cable so that the adjusting nut touches the bracket, and tighten the locknut.

Supplemental Restraint System (SRS)

Component Location Index 23-318
Description 23-320
Circuit Diagram 23-321
Wiring Locations 23-322
Precautions/Procedures 23-324
Troubleshooting 23-329
Airbag Assembly Replacement 23-346
Disposal 23-350
Cable Reel
Replacement 23-352
Dash Sensor
Replacement 23-356
SRS Unit
Replacement 23-358

Supplemental Restraint System (SRS)

Component Location Index (LHD)

Replacement, page 23-356

Component Location Index (RHD)

Supplemental Restraint System (SRS)

Description

The SRS is a safety device which, when used in conjunction with the seat belt, is designed to help protect the driver and front passenger in a frontal impact exceeding a certain set limit. The system consists of left and right dash sensors, the SRS unit (including safing sensor), the cable reel and driver's airbag, and a front passenger's airbag.

NOTE: The illustration shows LHD type. RHD type is symmetrical to LHD type.

Operation

As shown in the diagram below, the left and right dash sensors are connected in parallel. The parallel set of sensors is connected in series to each airbag inflator circuit and the car battery. In addition, a back-up power circuit is connected in parallel with the car battery. The back-up power circuit and the safing sensor are located inside the SRS unit.

For the SRS to operate:

(1) One or both sets of safing sensor contacts must close, and one or both dash sensors must activate.
(2) Electrical energy must be supplied to the airbag inflators by the battery, or the back-up power circuit if the battery voltage is too low.
(3) The inflator charges must ignite and deploy the airbags.

It takes about 0.1 second from the beginning of an airbag's deployment until it is completely deflated.

Self-diagnosis system

A self-diagnosis circuit is built into the SRS unit; when the ignition switch is turned ON (II), the SRS indicator light comes on and goes off after about six seconds if the system is operating normally. If the light does not come on, or does not go off after six seconds, or if it comes on while driving, it indicates an abnormality in the system. The system must be inspected and repaired as soon as possible.

Supplemental Restraint System (SRS)

Wiring Locations (LHD)

CAUTION: Make sure all SRS ground locations are clean and grounds are securely attached.

NOTE:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

Wiring Locations (RHD)

CAUTION: Make sure all SRS ground locations are clean and grounds are securely attached.

NOTE:

- All SRS electrical wiring harnesses are covered with yellow insulation.
- Replace the entire affected SRS harness assembly if it has an open circuit or damaged wiring.

Supplemental Restraint System (SRS)

General Precautions

- Carefully inspect any SRS part before you install it. Do not install any part that shows signs of being dropped or improperly handled, such as dents, cracks or deformation:
- Airbag assemblies
- Dash sensors
- Cable reel
- SRS unit

- Use only a digital multimeter to check the system. If it's not a Honda multimeter, make sure its output is $10 \mathrm{~mA}(0.01 \mathrm{~A})$ or less when switched to the smallest value in the ohmmeter range. A tester with a higher output could damage the airbag circuit or cause accidental deployment and possible injury.
- Do not install used SRS parts from another car. When making SRS repairs, use only new parts.
- Except when performing electrical inspections, always disconnect both the negative cable and positive cable from the battery before beginning work.
- Replacement of the combination light and wiper/ washer switches and the cruise control switch can be done without removing the steering wheel:
- Combination light and wiper/washer switch replacement (see page 23-191)
- Cruise control set/resume switch replacement (see page 23-307)

Airbag Handling and Storage

Do not try to disassemble the airbag assembly. It has no serviceable parts. Once an airbag has been operated (deployed), it cannot be repaired or reused.

For temporary storage of the airbag assembly during service, please observe the following precautions:

- Store the removed airbag assembly with the pad surface up.

A warning If the airbag is improperly stored face down, accidental deployment could propel the unit with enough force to cause serious injury.

- Store the removed airbag assembly on a secure flat surface away from any high heat source (exceeding $100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$) and free of any oil, grease, detergent or water.

CAUTION: Improper handling or storage can internally damage the airbag assembly, making it inoperative. If you suspect the airbag assembly has been damaged, install a new unit, and refer to the Deployment/Disposal Procedures for disposing of the damaged airbag.

Wiring Precautions

- Never attempt to modify, splice or repair SRS wiring.

NOTE: All SRS electrical wiring harnesses are covered with yellow insulation.

- Be sure to install the harness wires so that they are not pinched or interfering with other car parts.

- Make sure all SRS ground locations are clean and grounds are securely fastened for optimum metal-tometal contact. Poor grounding can cause intermittent problems that are difficult to diagnose.

Connecting the Short Connectors

A warning To avoid accidental deployment and possible injury, always connect the protective short connectors on the driver's (and passenger's airbag) connector(s) before working near any SRS wiring.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED):

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.

- Disconnect the 3-P connector between the driver's airbag and cable reel, then connect the short connector (RED) to the airbag side of the connector.

Supplemental Restraint System (SRS)

Wiring Precautions (cont'd)

Front Passenger's Side:

- Remove the glove box damper (see section 20), and then remove the glove box.
- Disconnect the 3-P connector between the front passenger's airbag and SRS main harness, then connect the short connector (RED) to the airbag side of the connector.

FRONT PASSENGER'S

AIRBAG

Disconnecting the SRS Connector from the Under-dash Fuse/Relay Box:

CAUTION: Avoid breaking the connector; it's doublelocked.

1. First lift the connector lid with a thin screwdriver, then press the connector tab down and pull the connector out.

2. To reinstall the connector, push it into position until it clicks, then close its lid.

Steering-related Precautions

Steering Wheel and Cable Reel Alignment

NOTE: To avoid misalignment of the steering wheel or airbag on reassembly, make sure the wheels are turned straight ahead before removing the steering wheel.

Rotate the cable reel clockwise unit it stops. Then rotate it counterclockwise (approximately two turns) until:

- The yellow gear tooth lines up with the alignment mark on the cover.
- The arrow mark on the cable reel label points straight up.

Steering Column Removal

CAUTION:

- Before removing the steering column, first disconnect the connector between the cable reel and the SRS main harness.
- If the steering column is going to be removed without dismounting the steering wheel, lock the steering by turning the ignition key to 0-LOCK position or remove the key from the ignition so that the steering wheel will not turn.

Do not replace the original steering wheel with any other design; it will make it impossible to properly install the airbag (use only genuine Honda replacement parts).

After reassembly, confirm that the wheels are still turned straight ahead and that the steering wheel spoke angle is correct. If minor spoke angle adjustment is necessary, do so only by adjustment of the tie-rods, not by removing and repositioning the steering wheel.

Supplemental Restraint System (SRS)

Sensor Inspection

CAUTION: Take extra care when painting or doing body work in the area below the dashboard.
Avoid direct exposure of the sensors or wiring to heat guns, welding, or spraying equipment.

A warning

- Disconnect both the negative and positive battery cables.
- Connect the short connectors before working below the dashboard near the dash sensors.
- After any degree of frontal body damage, inspect both dash sensors. Replace a sensor if it is dented, cracked, or deformed.

- Be sure the sensors are installed securely.

Inspection After Deployment

After a collision in which the airbags were deployed, inspect the following:

1. Inspect the dash sensors for physical damage. If the sensors are damaged, replace them.
2. Inspect all the SRS wire harnesses. Replace, don't repair, any damaged harnesses.
3. Inspect the cable reel for heat damage. If there is any damage, replace the cable reel.
4. After the car is completely repaired, turn the ignition switch ON (II). If the SRS indicator light comes on for about six seconds and then goes off, the SRS system is OK. If the indicator light does not function properly, go to SRS Troubleshooting.

Troubleshooting

Self-diagnosis Function

The SRS unit includes a self-diagnosis function. If there is a failure in the sensors, SRS unit, inflator, or their circuits, the SRS indicator light in the gauge assembly comes ON.

As a system check, the SRS indicator light also comes on when the ignition is first turned ON to the (II) position. If the light goes off after approximately six seconds, the system is OK.
If the SRS indicator light remains on (or fails to come on in the system check mode), one of the SRS components (or the wiring/connectors in-between) is faulty.

Troubleshooting Precautions

- Always use the test harness. Do not use test probes directly on component connector terminals or wires; you may damage them or the SRS unit.
- When connecting any of the test harnesses to the system, push the connectors straight-in; do not bend the connector terminals.
- Before disconnecting any part of the SRS wire harness, connect the short connectors (RED) to the driver's airbag (and the front passenger's airbag).

SRS Indicator Light Troubleshooting

Possible conditions:

1. SRS indicator light does not come on at all - see page 23-332.
2. SRS indicator light stays on constantly - see page 23-334.
3. SRS indicator light comes on in combination with a failure of another electrical system (charging system light). Check for damage/corrosion at the underdash fuse/relay box connector.

NOTE:

- Before starting the applicable troubleshooting, check the condition of all SRS connectors and ground points.
- If the fault is not found after completing the applicable troubleshooting, substitute a knowngood SRS unit, and check whether the indicator light goes off.

Supplemental Restraint System (SRS)

Connecting the Short Connectors

A Warning To avoid accidental deployment and possible injury, always connect the protective short connectors to the driver's airbag connector land front passenger's airbag) before working near any SRS wiring.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED):

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.

- Disconnect the connector between the driver's airbag and the cable reel, then connect the short connector (RED) to the airbag side of the connector.

Front Passenger's Side:

- Remove the glove box damper (see section 20), and then remove the glove box.

FRONT PASSENGER'S

SRS MAIN HARNESS

- Disconnect the connector between the front passenger's airbag and SRS main harness, then connect the short connector (RED) to the airbag side of the connector.

Test Harnesses and Attachment Points

Test Harness A

Test Harness B
 ROW B (WIRE HARNESS END)

Test Harness C

07LAZ - SL. 40300

Test Harness D
SRS MAIN HARNESS

1	2
3	4

Supplemental Restraint System (SRS)

Troubleshooting

The SRS Indicator Does Not Light

CAUTION: Use only a digital multimeter to check the system. If it's not a Honda multimeter, make sure its output is $10 \mathrm{~mA}(0.01 \mathrm{~A})$ or less when switched to the smallest value in the ohmmeter range. A tester with a higher output could damage the airbag circuit or cause accidental airbag deployment and possible injury.

Check the SRS indicator light and the No. 1 fuse:

1. Disconnect the battery negative cable, then disconnect the positive cable. Connect the short connectors to the airbags (see page 23-330).
2. Reconnect the battery positive cable, and then the negative cable.
3. Turn the ignition switch ON (II).

Does the charging system light come on (in the gauge assembly)?

YES

1. Inspect the No. 1 (10 A) fuse (in the underdash fuse/relay box).

Is No. 1 fuse OK?

Repair open in dashboard wire harness between the No. 1 fuse and gauge assembly.

Check the SRS unit and SRS indicator light:

1. Turn the ignition switch OFF.
2. Disconnect the SRS main harness 18-P connector from the SRS unit.
3. Turn the ignition switch $O N$ (II).

Does the SRS indicator light come on?

Faulty SRS unit; replace the SRS unit.

Check the SRS indicator light and SRS main harness:

1. Turn the ignition switch OFF.
2. Disconnect the SRS main harness 4-P connector from the main wire harness.
3. Turn the ignition switch ON (II).

Does the SRS indicator light come on?
YES NO

Check the SRS indicator light bulb and dashboard wire harness:

1. Turn the ignition switch OFF.
2. Remove the gauge assembly, then inspect the SRS indicator light bulb.
Is the SRS indicator light bulb OK?

YES	NO
	Replace the indicator light bulb.

SRS MAIN HARNESS 4-P CONNECTOR
(From page 23-332)

Check for short or open in the dashboard wire harness:

1. Connect a voltmeter between the No. 12 terminal (+) of the 14-P connector and body ground (-).
2. Turn the ignition switch $O N$ (II).

Is there less than 8.5 V ?
YES NO
Short in BLU wire of the dashboard wire harness; replace the dashboard wire harness.

Check for open in the dashboard wire harness, poor ground, faulty SRS indicator circuit, or faulty SRS unit:

1. Turn the ignition switch OFF.
2. Connect the voltmeter between the No. 5 terminal (+) and the No. 9 terminal (-) of the dashboard wire harness 14-P connector.
3. Turn the ignition switch ON (II).
4. Measure the voltage between the No. 5 terminal (+) and the No. 9 terminal (-).
Is there battery voltage?
YES NO

Check for open in the dashboard wire harness or gauge assembly, or poor ground:

1. Check for continuity between the No. 9 terminal and body ground.
Does continuity exist?
YES
Repair open in the BLK wire (No. 9 terminal) between the gauge assembly and body ground, or look for a poor ground (G402, G404).

Repair open in the YEL wire (No. 5 terminal) of the dashboard wire harness between the gauge assembly and the No. 1 (10 A) fuse.

Check the SRS unit and SRS indicator circuit:

1. Turn the ignition switch OFF.
2. Reconnect each connector to the gauge assembly and SRS unit, then connect Test Harness A to the SRS unit.
3. Turn the ignition $O N$ (II), and measure the voltage between the No. 13 terminal (+) and body ground (-) for six seconds after the ignition has been turned ON (II).

Is there more than 8.5 V ?	
YES NO	

Faulty SRS unit; replace the SRS unit.
Faulty SRS indicator circuit (in the gauge assembly); replace the gauge assembly.

(cont'd)

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

SRS Indicator Light Stays on Continuously

NOTE: Before troubleshooting, make sure that battery voltage is 12 V or more. Otherwise you'll obtain wrong test readings.

1. Make a photocopy of the chart on page 23-335.
2. Connect Test Harness A to the SRS unit as shown.

3. Turn the ignition switch ON (II).

- Voltages in the chart assume the car's "battery voltage" is about 12 volts. Less than 12 volts will result in different or possibly false readings.
- Do not disconnect the airbags from the circuit when checking SRS unit voltages.

4. First, check for voltage between Test Harness Terminal No. 12 (+) and ground (-).

- If no voltage is indicated, go to step 8, and continue checking all the other terminals.
- If voltage is indicated, there is a poor ground at the SRS unit. Read the following NOTE, and then go on to step 5.

5. Disconnect the battery negative cable, then disconnect the positive cable. Connect the short connectors (RED) to the airbags (see page 23-330).
6. Connect Test Harness B between the SRS unit and SRS main harness 18-P connector.

7. Check for continuity between the B5 terminal and body ground, and B15 terminal and body ground.

TEST HARNESS B
07MAZ - SP00500

- If there is continuity at either terminal, the SRS unit is faulty. Replace it, reconnect the airbags and battery cables, and check the voltages according to the chart on page 23-335.
- If there is no continuity at either terminal, the SRS unit ground, the SRS unit component grounds or the SRS main harness is faulty. Check the grounds (check wire and SRS unit mounting bolts), and, if necessary, replace the SRS main harness. Reconnect the airbags and battery cables, then check the voltages according to the chart on page 23-335.

8. Record your voltage readings, for each terminal, in the row of blank boxes near the top of the chart.
9. Compare each reading with the voltage ranges listed in the column below it. If the reading is within a range, circle that range.

Circle the range if your reading is within it.

- If you circled all the Failure Mode ranges across any row, check the car for the Probable Failure Mode listed at the end of the row. (Refer to the letter for that mode on the following pages.)

$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\begin{gathered} 8.4 \\ -10.9 \end{gathered}$	-	-	- Short in one dash B sensor - Short to driver's or passenger's airbag inflator (body ground)
$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\begin{gathered} 8.4 \\ -10.9 \end{gathered}$	-	-	Short in safing sensor or C open in both dash sensors
$\begin{array}{r} 2.0 \\ -8.5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.4 \\ -\quad 10.9 \\ \hline \end{array}$	-		D Open in one dash sensor
$\begin{gathered} 2.0 \\ -8.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 8.4 \\ -\quad 10.9 \\ \hline \end{array}$			E Open in driver's airbag inflator or cable reel

If you circled all the ranges in this row, follow the troubleshooting procedure under failure mode " C " on the following pages.

- If you did not circle all the ranges across any row, replace the SRS unit with a known-good unit, and retest.
- If all your voltage readings are now normal, replace the original SRS unit.
- If your voltage readings are still not normal but they don't fit within a complete row of Failure Mode ranges, check the condition of the terminals in each of the SRS connectors shown in the system diagram on page 23-322.

NOTE: Do not disconnect the airbags or battery cables when checking SRS unit voltages.

Test Harness Terminal	$\begin{gathered} 1 \\ \text { SADH } \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{SAPH} \end{gathered}$	-	$\begin{gathered} 4 \\ \mathrm{VCC} \end{gathered}$	$\begin{gathered} 5 \\ \text { SV } \end{gathered}$	-	-	8 SADC	-	$\begin{gathered} 10 \\ \text { BUC1 } \end{gathered}$	-	$\begin{gathered} 12 \\ \text { GND } \end{gathered}$	$\begin{gathered} 13 \\ \text { IDC } \end{gathered}$	$\begin{array}{r} 14 \\ \mathrm{M} 1 \end{array}$	-	-	
Normal Voltage	$\begin{gathered} 4.3 \\ -5.6 \\ \hline \end{gathered}$	$\begin{gathered} 4.3 \\ -5.6 \end{gathered}$	-	$\begin{gathered} 4.5 \\ --5.5 \end{gathered}$	$\begin{array}{\|c\|} 12.0 \\ -14.3 \end{array}$	-	-	$\begin{gathered} 5.6 \\ -7.3 \end{gathered}$	--	$\left[\left.\begin{array}{c} 11.5 \\ -14.5 \end{array} \right\rvert\,\right.$	-	0	$\begin{gathered} 8.5 \\ -13.6 \end{gathered}$	$\begin{gathered} 8.4 \\ -10.9 \end{gathered}$	-	-	Probable Failure Mode
Your Voltage Reading		-	-			-	-		-		-				-	-	
Failure Mode Voltage	$\begin{gathered} 2.8 \\ -3.7 \end{gathered}$	$\begin{gathered} 2.8 \\ -3.7 \end{gathered}$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\begin{array}{\|c\|} \hline 12.0 \\ -14.3 \\ \hline \end{array}$	-	-	$\begin{gathered} 3.7 \\ -4.9 \end{gathered}$	-	$\left.\begin{array}{\|c\|} 11.5 \\ -14.5 \end{array} \right\rvert\,$	-	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\left\lvert\, \begin{gathered} 8.4 \\ -10.9 \end{gathered}\right.$	-	-	A Open in one safing sensor contact
	0	0	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\left\|\begin{array}{c} 12.0 \\ -14.3 \end{array}\right\|$	-	-	0	-	$\left\|\begin{array}{c} 11.5 \\ -14.5 \end{array}\right\|$	-	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\left\lvert\, \begin{gathered} 8.4 \\ -10.9 \end{gathered}\right.$	-	-	- Open in both safing sensor contacts - Short in one dash 8 sensor - Short to driver's or passenger's airbag inflator (body ground)
	$\left\lvert\, \begin{gathered} 8.6 \\ -11.3 \end{gathered}\right.$	$\left\|\begin{array}{c} 8.6 \\ -11.3 \end{array}\right\|$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\left\|\begin{array}{c} 12.0 \\ -14.3 \end{array}\right\|$	-	-	$\left\|\begin{array}{c} 11.2 \\ -14.6 \end{array}\right\|$	-	$\left\|\begin{array}{c} 11.5 \\ -14.5 \end{array}\right\|$	\cdots	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\left\|\begin{array}{c} 8.4 \\ -10.9 \end{array}\right\|$	-	-	Short in safing sensor or C open in both dash sensors
	$\begin{gathered} 5.7 \\ -7.4 \end{gathered}$	$\begin{gathered} 5.7 \\ -7.4 \end{gathered}$	-	$\begin{gathered} 4.5 \\ -5.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 12.0 \\ -14.3 \\ \hline \end{array}$	-	-	$\begin{gathered} 7.4 \\ -9.7 \end{gathered}$	-	$\begin{array}{\|c\|} 11.5 \\ -14.5 \\ \hline \end{array}$	-	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\left\|\begin{array}{c} 8.4 \\ -10.9 \end{array}\right\|$	-	-	D Open in one dash sensor
	$\begin{array}{\|c\|} \hline 8.6 \\ -11.3 \end{array}$	$\begin{gathered} 2.9 \\ -3.7 \end{gathered}$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\begin{array}{\|c\|} 12.0 \\ -14.3 \\ \hline \end{array}$	-	-	$\begin{gathered} 3.7 \\ -4.9 \end{gathered}$	-	$\begin{array}{\|c\|} \hline 11.5 \\ -14.5 \\ \hline \end{array}$	-	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\begin{array}{\|c\|} 8.4 \\ -10.9 \\ \hline \end{array}$	-	-	E Open in driver's airbag inflator or cable reel
	$\begin{gathered} 2.9 \\ -3.7 \end{gathered}$	$\begin{array}{\|c\|} \hline 8.7 \\ -11.2 \end{array}$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\begin{gathered} 12.0 \\ -14.3 \end{gathered}$	-	-	$\begin{gathered} 3.7 \\ -4.9 \end{gathered}$	-	$\begin{array}{\|c\|} 11.5 \\ -14.5 \\ \hline \end{array}$	-	0	$\begin{gathered} 2.0 \\ -8.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 8.4 \\ -10.9 \\ \hline \end{array}$	-	-	F Open in front passenger's airbag inflator
	$\left\lvert\, \begin{gathered} 8.6 \\ -11.3 \end{gathered}\right.$	$\begin{gathered} 8.6 \\ -11.3 \end{gathered}$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\begin{gathered} 12.0 \\ -14.3 \end{gathered}$	-	-	0	-	$\left\|\begin{array}{c} 11.5 \\ -14.5 \end{array}\right\|$	-	0	$\begin{gathered} 2.0 \\ -8.5 \end{gathered}$	$\left\|\begin{array}{c} 8.4 \\ -10.9 \end{array}\right\|$	-	-	Open in driver's and G passenger's airbag inflator
	$\begin{gathered} 4.3 \\ -5.6 \\ \hline \end{gathered}$	$\begin{gathered} 4.3 \\ -5.6 \end{gathered}$	-	0	0	-	-	$\begin{gathered} 5.6 \\ -7.3 \end{gathered}$	-	$\left[\left.\begin{array}{c} 11.5 \\ -14.5 \end{array} \right\rvert\,\right.$	-	0	$\begin{gathered} 2.0 \\ -8.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 8.4 \\ -10.9 \\ \hline \end{array}$	-	-	Hlown SRS fuse (No. 3 10 A) or open in the wire
	$\begin{gathered} 4.3 \\ -5.6 \end{gathered}$	$\begin{gathered} 4.3 \\ -5.6 \end{gathered}$	-	$\begin{gathered} 4.5 \\ -5.5 \end{gathered}$	$\left[\begin{array}{c} 12.0 \\ -14.3 \end{array}\right]$	-	-	$\begin{gathered} 5.6 \\ -7.3 \end{gathered}$	-	$\left\|\begin{array}{c} 11.5 \\ -14.5 \end{array}\right\|$	-	0	0 8.5 $-13.6)$	$\left.\begin{gathered} 8.4 \\ -10.9 \end{gathered} \right\rvert\,$	-	-	Short (or open) in SRS indicator wire harness

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

Mode A: Open in one safing sensor contact

- The SRS unit is faulty. Substitute a known-good SRS unit, and recheck the voltages according to the chart on page 23-335.

Mode B:

- Short to driver's or passenger's airbag inflator (body ground)
- Short in dash sensor
- Open in both safing sensor contacts

1. Disconnect the battery negative cable, and then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
2. Connect Test Harness B between the SRS unit and SRS main harness 18-P connector.

3. Reconnect the driver's airbag connector, then check continuity between the B1 terminal and body ground, and between the B7 terminal and body ground.

TEST HARNESS B
07MAZ - SP00500

- If there is continuity at either terminal, go to step 6.
- If there is no continuity at either terminal, go to step 4.

4. Reconnect the front passenger's airbag connector, then check continuity between the B2 terminal and body ground, and between the B8 terminal and body ground.

TEST HARNESS B

07MAZ-SP00500

- If there is continuity at either terminal, go to step 10.
- If there is no continuity at either terminal, go to step 5.

5. Check continuity between body ground and each terminal of both dash sensors.

TEST HARNESS B
07MAZ - SP00500

- If there is continuity at any of the terminals, go to step 12.
- If there is no continuity at any terminal, go to step 13.

6. Disconnect the cable reel 6-P connector from the SRS main harness, then connect Test Harness C only to the cable reel side of the 6-P connector.

CABLE REEL 6-P CONNECTOR

7. Check continuity between the No. 4 terminal and body ground, and between the No. 5 terminal and body ground.

- If there is continuity at either terminal, go to step 8 .
- If there is no continuity at either terminal, the SRS main harness is faulty. Replace it, and recheck the voltages according to the chart on page 23-335.

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

8. Disconnect the driver's airbag 3-P connector from the cable reel, then connect Test Harness C to the driver's airbag 3-P connector.

9. Check continuity between the No. 7 terminal and body ground, and between the No. 8 terminal and body ground.

- If there is continuity at either terminal, the driver's airbag inflator is faulty. Replace it, and recheck the voltages according to the chart on page 23-335.
- If there is no continuity at either terminal, the cable reel is faulty. Replace it, and recheck the voltages according to the chart on page 23-335.

10. Disconnect the front passenger's airbag 3-P connector from the SRS main harness, then connect Test Harness C to the airbag side of the connector.

FRONT PASSENGER'S AIRBAG 3-P CONNECTOR

FRONT PASSENGER'S

11. Check continuity between the No. 7 terminal and body ground, and between the No. 8 terminal and body ground.

TEST HARNESS C

07LAZ - SL40300

- If there is continuity at either terminal, the front passenger's airbag inflator is faulty. Replace it, and recheck the voltages according to the chart on page 23-335.
- If there is no continuity at either terminal, the SRS main harness is faulty. Replace it, and recheck the voltages according to the chart on page 23-335.

12. Connect Test Harness D between the dash sensor and SRS main harness 2-P connector. Check continuity between the No. 1 terminal and body ground, and between the No. 2 terminal and body ground.

TEST HARNESS D 07LAZ - SL40400

- If there is continuity at either terminal, the dash sensor is faulty. Replace it and recheck the voltages according to the chart on page 23-335.
- If there is no continuity at either terminal, the SRS main harness is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

13. Measure the resistance between the left dash sensor terminals B12 and B16, and between the right dash sensor terminals B4 and B6.

TEST HARNESS B
07MAZ - SP00500

- If resistance is $3.8-4.2 \mathrm{k} \Omega$ for both sensors, the SRS unit is faulty. Substitute a known-good SRS unit, and recheck the voltages according to the chart on page 23-335.
- If resistance is less than $3.8 \mathrm{k} \Omega$ for either sensor, go to step 14.

14. Connect Test Harness D between the dash sensor and SRS main harness 2-P connector. Measure the resistance between the No. 1 terminal and No. 2 terminal.

TEST HARNESS D 07LAZ - SL40400

- If resistance is $3.8-4.2 \mathrm{k} \Omega$, the SRS main harness is faulty. Replace it and recheck the voltages according to the chart on page 23-335.
- If resistance is less than $3.8 \mathrm{k} \Omega$, the dash sensor is faulty. Replace it and recheck the voltages according to the chart on page 23-335.
(cont'd)

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

Mode C: Short in one safing sensor, or open in both dash sensors
Mode D: Open in one dash sensor

1. Disconnect the battery negative cable, then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
2. Connect Test Harness B between the SRS unit and SRS main harness 18-P connector.

3. Measure the resistance between the left dash sensor terminals B12 and B16, and between the right dash sensor terminals B4 and B6.

TEST HARNESS B
07MAZ - SP00500

- If resistance is more than $5 \mathrm{k} \Omega$ for either set of terminals, go to step 4.
- If resistance is less than $5 \mathrm{k} \Omega$ for both sets of terminals, the SRS unit is faulty. Substitute a knowngood SRS unit, and recheck the voltages according to the chart on page 23-335.

4. Connect Test Harness D between the dash sensor and SRS main harness 2-P connector. Measure the resistance between the No. 1 terminal and No. 2 terminal.

TEST HARNESS D 07LAZ - SL40400

- If resistance is more than $5 \mathrm{k} \Omega$, the dash sensor is faulty. Replace the dash sensor, and recheck the voltages according to the chart on page 23-335.
- If resistance is less than $5 \mathrm{k} \Omega$, the SRS main harness is faulty. Replace the SRS main harness, and recheck the voltages according to the chart on page 23-335.

Mode E: Open in driver's airbag inflator or cable reel

1. Disconnect the battery negative cable, then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
2. Connect Test Harness B between the SRS unit and the SRS main harness 18-P connector.

3. Reconnect the driver's airbag connector, then measure the resistance between the B1 and B7 terminals.

TEST HARNESS B
O7MAZ-SP00500

- If resistance is more than $0.2 \mathrm{k} \Omega$, go to step 4 .
- If resistance is less than $0.2 \mathrm{k} \Omega$, the SRS unit is faulty. Substitute a known-good SRS unit, and recheck the voltages according to the chart on page 23-335.

4. Disconnect the cable reel 6-P connector from the SRS main harness, then connect Test Harness C only to the cable reel side of the connector.

CABLE REEL 6-P CONNECTOR

5. Measure the resistance between the No. 4 terminal and the No. 5 terminal.

TEST HARNESS C
07LAZ-SL40300

- If resistance is more than $0.2 \mathrm{k} \Omega_{\text {g }}$ go to step 6 .
- If resistance is less than $0.2 \mathrm{k} \Omega$, the SRS main harness is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

6. Disconnect the driver's airbag 3-P connector from the cable reel, then connect Test Harness C to the driver's airbag 3-P connector.

7. Measure the resistance between the No. 7 terminal and the No. 8 terminal.

TEST HARNESS C 07LAZ-SL40300

- If resistance is more than $0.2 \mathrm{k} \Omega$, the driver's airbag inflator is faulty. Replace the airbag assembly, and recheck the voltages according to the chart on page 23-335.
- If resistance is less than $0.2 \mathrm{k} \Omega$, the cable reel is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

Mode F: Open in front passenger's airbag inflator

1. Disconnect the battery negative cable, then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
2. Connect Test Harness B between the SRS unit and SRS main harness 18-P connector.

TEST HARNESS B 07MAZ - SP00500
3. Reconnect the front passenger's airbag connector, then measure the resistance between the B2 terminal and the B8 terminal.

TEST HARNESS B
07MAZ - SP00500

- If resistance is more than $0.2 \mathrm{k} \Omega$, go to step 4.
- If resistance is less than $0.2 \mathrm{k} \Omega$, the SRS unit is faulty. Substitute a known-good SRS unit, and recheck the voltages according to the chart on page 23-335.

4. Disconnect the front passenger's airbag 3-P connector from the SRS main harness, then connect Test Harness C to the front passenger's airbag side of the connector.

5. Measure the resistance between the No. 7 terminal and the No. 8 terminal.

TEST HARNESS C
 07LAZ - SL40300

- If resistance is more than $0.2 \mathrm{k} \Omega$, the front passenger's airbag inflator is faulty. Replace the front passenger's airbag assembly, and recheck the voltages according to the chart on page 23-335.
- If resistance is less than $0.2 \mathrm{k} \Omega$, the SRS main harness is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

Mode H: Blown SRS No. 3 fuse, or open in the wire

1. Check the SRS No. $3(10 \mathrm{~A})$ fuse in the under-dash fuse/relay box. If it's OK, go to step 2. If it's blown, replace it with a new 10 A fuse, then turn the ignition switch ON (II):

- If the fuse doesn't blow, go on to step 2.
- If the fuse blows, troubleshoot as necessary to find the short.

2. Disconnect the battery negative cable, then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
3. Connect Test Harness B between the SRS unit and the SRS main harness $18-\mathrm{P}$ connector.

4. Reconnect the positive and negative cable to the battery.
5. Measure the voltage between the B13 terminal (+) and body ground (-) with the ignition switch ON (II).

TEST HARNESS B
07MAZ - SP00500

- If there is battery voltage, the SRS unit is faulty. Replace it and recheck the voltages according to the chart on page 23-335.
- If there is less than battery voltage, the SRS main harness is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

Supplemental Restraint System (SRS)

Troubleshooting (cont'd)

Mode I: Short or open in SRS indicator wire harness

1. Disconnect the SRS main harness 4-P connector from the main wire harness.

MAIN WIRE HARNESS

SRS MAIN HARNESS 4-P CONNECTOR
2. Turn the ignition switch $O N$ (II), and wait for six seconds. Measure the voltage between the No. 4 terminal (+) and body ground (-) on the SRS main harness 4-P connector side.

View from wire side
3. Disconnect the battery negative cable, then disconnect the positive cable. Then connect the short connectors (RED) to the airbags (see page 23-330).
4. Connect Test Harness B between the SRS unit and the SRS main harness 18-P connector.

5. Reconnect the battery positive cable and negative cable.
6. Check for continuity between the B11 terminal and body ground.

TEST HARNESS B
07MAZ-SP00500

- If there is continuity, the SRS main harness is shorted. Replace the SRS main harness, and recheck the voltages according to the chart on page 23-335.
- If there is no continuity, go to step 7.

7. Check for continuity between the B11 terminal of Test Harness B and the No. 4 terminal of the SRS main harness 4-P connector.

TEST HARNESS B
07MAZ - SP00500

View from wire side

- If there is continuity, the SRS unit is faulty. Replace it and recheck the voltages according to the chart on page 23-335.
- If there is no continuity, there is an open in the SRS main harness. Replace the SRS main harness, and recheck the voltages according to the chart on page 23-335.

8. Reconnect the SRS main harness 4-P connector to the main wire harness. Disconnect the dashboard wire harness $14-\mathrm{P}$ connector from the gauge assembly.

9. Turn the ignition switch $O N$ (II), and wait for six seconds. Measure the voltage between the No. 12 terminal (+) and body ground (-).

View from wire side

- If voltage is more than 8.5 V , the SRS indicator circuit is faulty (in the gauge assembly). Replace the gauge assembly, and recheck the voltages according to the chart on page 23-335.
- If voltage is less than 8.5 V , the dashboard wire harness (or the main wire harness) is faulty. Replace it and recheck the voltages according to the chart on page 23-335.

Supplemental Restraint System (SRS)

Airbag Assembly Replacement

A warning Store a removed airbag assembly with the pad surface up. If the airbag is improperly stored face down, accidental deployment could propel the unit with enough force to cause serious injury.

CAUTION:

- Do not install used SRS parts from another car. When repairing, use only new SRS parts.
- Carefully inspect the airbag assembly before you install it. Do not install an airbag assembly that shows signs of being dropped or improperly handled, such as dents, cracks or deformation.
- Always keep the short connectors (RED) on the airbags when the harness is disconnected.
- Do not disassemble or tamper with the airbag assembly.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Connect the short connectors (RED) to the airbag side of the connectors:

Driver's Side:

- Remove the access panel from the steering wheel, then remove the short connector (RED) from the panel.
- Disconnect the 3-P connector between the driver's airbag and cable reel, then connect the short connector (RED) to the airbag side of the connector.

Front Passenger's Side:

- Remove the glove box damper (see section 20), then remove the glove box.
- Disconnect the front passenger's airbag 3-P connector from the SRS main harness, and connect the short connector (RED) to the front passenger's airbag 3-P connector.

3. Remove the airbags:

Driver's Side:

- Remove the two TORX* bolts using a TORX ${ }^{*}$ T30 bit, then remove the driver's airbag assembly.

Front Passenger's Side:

- Remove the five mounting nuts, then lift the front passenger's airbag out of the dashboard.

NOTE: Do not confuse the lower mounting nuts with the upper mounting nuts. The upper mounting nuts are not self-locking.

Supplemental Restraint System (SRS)

Airbag Assembly Replacement (cont'd)

CAUTION: Be sure to install the SRS wiring so that it is not pinched or interfering with other car parts.
4. Install the new airbags:

Driver's Side: Place the driver's airbag assembly in the steering wheel, and secure it with new TORX ${ }^{\circledR}$ bolts.

Front Passenger's Side:

- Place the front passenger's airbag assembly in the dashboard.
- Loosely install all five mounting nuts.
- Tighten the upper two nuts first, then the lower three nuts.

5. Remove and properly store the short connectors, then reconnect the airbag connectors.

Front Passenger's Side:

- Attach the SRS main harness 3-P connector to the connector holder.
- Then reinstall the glove box on the dashboard.

Driver's Side:

- Remove the short connector (RED) from the driver's airbag connector, then connect the airbag 3-P connector to the cable reel 3-P connector.
- Attach the short connector (RED) to the access panel, then reinstall the panel on the steering wheel.

6. Connect the battery positive cable, then connect the negative cable.
7. After installing the airbag assembly, confirm proper system operation:

- Turn the ignition ON (II): The instrument panel SRS indicator light should come on for about six seconds and then go off.
- Make sure both horn buttons work.
- Take a test drive, and make sure the cruise control switches work.

Supplemental Restraint System (SRS)

Airbag Assembly Disposal

Before scrapping any airbags (including those in a whole car to be scrapped), the airbags must be deployed. If the car is still within the warranty period, before you deploy the airbags, the Honda District Service Manager must give approval and/or special instructions. Only after the airbags have been deployed (as the result of vehicle collision, for example), they can be scrapped.
If the airbags appear intact (not deployed), treat them with extreme caution.
Follow this procedure:

Deploying the Airbags: In-car

NOTE: If an SRS car is to be entirely scrapped, its airbags should be deployed while still in the car. The airbags should not be considered as salvageable parts and should never be installed in another car.

A warning Confirm that each airbag assembly is securely mounted; otherwise, severe personal injury could result from deployment.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Confirm that the special tool is functioning properly by following the check procedure on the label of the tool set box, or on page 23-351.

Driver's Airbag:

3. Remove the access panel, then disconnect the 3-P connector between the driver's airbag and the cable reel.

Front Passenger's Airbag:

4. Remove the glove box damper (see section 20), then remove the glove box. Then disconnect the 3-P connector between the front passenger's airbag and SRS main harness.

FRONT PASSENGER'S
AIRBAG

5. Cut off the airbag connector, strip the ends of the airbag wires, and connect the special tool alligator clips to the airbag. Place the special tool approximately 10 meters (thirty feet) away from the airbag.

6. Connect a 12 volt battery to the tool:

- If the green light on the tool comes on, the airbag igniter circuit is defective and cannot deploy the airbag. Go to Damaged Airbag Special Procedure.
- If the red light on the tool comes on, the airbag is ready to be deployed.

7. Push the tool's deployment switch. The airbag should deploy (deployment is both highly audible and visible a loud noise and rapid inflation of the bag, followed by slow deflation).

- If audible/visible deployment happens and the green light on the tool comes on, continue with this procedure.
- If the airbag doesn't deploy, yet the green light comes ON, its igniter is defective. Go to Damaged Airbag Special Procedure.

A warning During deployment, the airbag assembly can become hot enough to burn you. Wait thirty minutes after deployment before touching the assembly.
8. Dispose of the complete airbag assembly. No part of it can be reused. Place it in a sturdy plastic bag, and seal it securely.

CAUTION:

- Wear a face shield and gloves when handling a deployed airbag.
- Wash your hands and rinse them well with water after handling a deployed airbag.

Deploying the Airbag: Out-of-car

NOTE: If an intact airbag assembly has been removed from a scrapped car, or has been found defective or damaged during transit, storage or service, it should be deployed as follows:

A WARNING Position the airbag assembly face up, outdoors on flat ground at least 10 meters (thirty feet) from any obstacles or people.

1. Confirm that the special tool is functioning properly by following the check procedure on this page or on the tool box label.
2. Remove the short connector from the airbag connector.
3. Follow steps 5, 6, 7, and 8 of the in-car deployment procedure.

Damaged Airbag Special Procedure

A WARNING If an airbag cannot be deployed, it should not be treated as normal scrap; it should still be considered a potentially explosive device that can cause serious injury.

1. If installed in a car, follow the removal procedure on page 23-346.
2. In all cases, make sure a short connector is properly installed on the airbag connector.
3. Package the airbag in exactly the same packaging that the new replacement part came in.
4. Mark the outside of the box "DAMAGED AIRBAG NOT DEPLOYED" so it does not get confused with your parts stock.
5. Contact your Honda District Service Manager for how and where to return it for disposal.

Deployment Tool: Check Procedure

1. Connect the yellow clips to both switch protector handles on the tool; connect the tool to a battery.
2. Push the operation switch: green means the tool is OK; red means the tool is faulty.
3. Disconnect the battery and the yellow clips.

Supplemental Restraint System (SRS)

Cable Reel Replacement

A WARNING Store a removed airbag assembly with the pad surface up. If the airbag is improperly stored face down, accidental deployment could propel the unit with enough force to cause serious injury.

CAUTION:

- Carefully inspect the airbag assembly before installing it. Do not install an airbag assembly that shows signs of being dropped or improperly handled, such as dents, cracks or deformation.
- Always keep the short connectors on the airbags connector when the harness is disconnected.
- Do not disassemble or tamper with the airbag assembly.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Make sure the wheels are aligned straight ahead.
3. Remove the dashboard lower cover and knee bolster.

4. Remove the glove box damper (see section 20), then remove the glove box.
5. Connect the short connectors to the airbags.

Front Passenger's Side:

6. Remove the driver's airbag assembly from the steering wheel (two T30 TORX ${ }^{\oplus}$ bolts), then remove the steering wheel bolt.

7. Disconnect the connectors from the horn and cruise control set/resume switches, then remove the cable reel 3-P connector from its clip.

8. Remove the steering wheel using a commercially available steering wheel puller.

9. Remove the upper and lower column covers.

10. Disconnect the 6-P connector between the cable reel and SRS main harness, then remove the connector holder from the steering column.

11. Remove the cable reel from the column.
(cont'd)

Supplemental Restraint System (SRS)

Cable Reel Replacement (cont'd)

CAUTION:

- Before installing the steering wheel, the front wheels should be aligned straight ahead.
- Be sure to install the harness wires so that they are not pinched or interfering with other car parts.
- After reassembly, confirm that the wheels are still turned straight ahead and that the steering wheel spoke angle is correct (road test). If minor spoke angle adjustment is necessary, do so only by adjustment of the tie-rods, not by removing and repositioning the steering wheel.

12. Align the cancel sleeve grooves with the cable reel projections.

13. Carefully install the cable reel on the steering column shaft. Then attach the connector holder to the steering column.

14. Install the steering column upper and lower covers.
15. Center the cable reel. Do this by first rotating the cable reel clockwise until it stops. Then rotate it counterclockwise (approximately two turns) until:

- The yellow gear tooth lines up with the alignment mark on the cover.
- The arrow mark on the cable reel label points straight up.

16. Install the steering wheel, and attach the cable reel 3-P connector to the clip.

17. Connect the horn connector and cruise control set/ resume switch connector.
18. Install the steering wheel bolt.

TORX BOLTS
$9.8 \mathrm{~N} \cdot \mathrm{~m}$ (1.0 kgf.m, $7.2 \mathrm{lbf} \cdot \mathrm{ft})$
Replace.
Use a TORX ${ }^{\text {E }}$ T30 bit.

19. Install the driver's airbag assembly.
20. Connect the cable reel 6-P connector to the SRS main harness, then install the knee bolster and dashboard lower cover.

21. Remove and properly store the short connectors (RED), then reconnect the airbag connectors (and reinstall the glove box).
22. Reconnect the battery positive cable, then the negative cable.
23. After installing the cable reel, confirm proper system operation:

- Turn the ignition ON (II); the instrument panel SRS indicator light should come on for about six seconds and then go off.
- Make sure both horn buttons work.
- Make sure the headlight and wiper switches work.
- Go for a test drive, and make sure the cruise control switches work.
- Rotate the steering wheel counterclockwise to make sure the yellow gear tooth lines up with the slot on the cover.

Supplemental Restraint System (SRS)

Dash Sensor Replacement

CAUTION:

- Do not damage the sensor wiring.
- Do not install used SRS parts from another car. When repairing an SRS, use only new parts.
- Replace a sensor if it is dented, cracked, or deformed.

1. Disconnect the battery negative cable, then disconnect the positive cable.
2. Remove the glove box damper (see section 20), then remove the glove box.
3. Connect the short connectors to the airbags.

Driver's Side:

DRIVER'S

Front Passenger's Side:

FRONT PASSENGER'S

4. Driver's side:

Remove the footrest and steering joint cover, then pull the carpet back and pull the rubber floor pad up.

5. Front passenger's side:

Remove the door sill molding and pull back the carpet, then remove the ECU. Pull the rubber floor pad up.

6. Remove the two mounting bolts, then remove the dash sensor.

CAUTION:

- Be sure to install the harness wires so that they are not pinched or interfering with other car parts.
- Carefully inspect the dash sensors for signs of being dropped or improperly handled, such as dents, cracks or deformation.
- For the SRS to function properly, the right and left sensors must be installed on the proper sides.

7. Install the sensor securely.

DASH SENSOR MOUNTING BOLTS
$8 \mathrm{~mm} \times 1.25$
$22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$ Replace.
8. Reinstall all other removed parts.
9. Remove and properly store the short connectors (RED), then reconnect the airbag connectors (and reinstall the access panel and the glove box).
10. Reconnect the battery positive cable, then the negative cable.
11. After installing the dash sensor, confirm proper system operation: Turn the ignition ON (II): the instrument panel SRS indicator light should come on for about six seconds and then go off.

Supplemental Restraint System (SRS)

SRS Unit Replacement

CAUTION:

- Before disconnecting any part of the SRS wire harness, connect the short connectors (RED) to the airbags.
- Do not damage the SRS unit terminals or connectors.
- Do not disassemble the SRS unit; it has no serviceable parts.
- Store the SRS unit in a clean, dry area.
- Do not use any SRS unit which has been subjected to water damage or shows signs of being dropped or improperly handled, such as dents, cracks or deformation.

1. Disconnect the battery negative cable, then the positive cable.
2. Connect the short connectors to the airbags.

Driver's Side:

Front Passenger's Side:

3. Pull down the carpeting from both sides of the heater unit and front console.
4. Disconnect the SRS main harness 18-P connector from the SRS unit.

5. Remove the four TORX ${ }^{\circledR}$ bolts from the SRS unit, then pull out the SRS unit from the left side.

CAUTION: Be sure to install the SRS wiring so that it is not pinched or interfering with other car parts.
6. Install the new SRS unit.

7. Connect the SRS main harness 18-P connector to the SRS unit, then push it into position until it clicks.

8. Put the carpet back in place.
9. Remove and properly store the short connectors, then reconnect the airbag connectors (and reinstall the access panel and the glove box).
10. Reconnect the battery positive cable, then the negative cable.
11. After installing the SRS unit, confirm proper system operation: Turn the ignition ON (II): the instrument panel SRS indicator light should come on for about six seconds and then go off.

Wiring Diagrams

Index
Air Conditioner 17, 18
Anti-lock Brake System 19
Battery 1
Blower Controls 17
Charging System 1
Cigarette Lighter 11
Cruise Control 16
Clock 11
Engine Control Module (ECM) 20, 21
Fan Controls 17
Gauges 3
Heater Controls 18
Horn 10
Ignition Switch 1
Ignition System 2
Indicators
ABS Indicator 3
A/T Gear Position Indicator 5
Cruise Indicator 3
High Beam Indicator 3
Low Fuel Indicator 3
Low Engine Oil Pressure Indicator 3
Malfunction Indicator Lamp (MIL) 3
Safety Indicator 4
SRS Indicator 3
Turn Signal Indicator 3
Integrated Control Unit 6
Interlock System 5
Lights, Exterior
Back-up Lights 10
Brake Lights 4
Front Side Marker Lights 6
Hazard Warning Lights 9
Headlights 7, 8
Headlight Adjuster
High Mount Brake Light 4
License Plate Lights 7. 8
Parking Lights 7, 8
Rear Side Marker Lights 8
Rear Fog Light 7
Taillights 7, 8
Turn Signal Lights 9
Lights, Interior
Ashtray Light 11
Courtesy Lights 4
Ceiling Light 4
Dash Lights Brightness Controller 7, 8
Glove Box Light 7, 8
Trunk Light. 4
Vanity Mirror Light 8
Lighting System 7, 8
Power Door Locks 13
Power Mirrors 14
Power Windows 12
Power Seat 10
Rear Window Defogger 14, 15
Side Marker/Turn Signal/Hazard
Flasher system 9
Starting System 1
Stereo Sound System 11
Sunroof 12
Supplemental Restraint System (SRS) 16
Transmission Control Module (TCM) 18
Vehicle Speed Sensor (VSS) 3
Wiper/Washers 15
Fuel Injection System DiagramFuel Injection System Connectors

[^0]: \triangle DANGER
 EXPLOSIVE／FLAMMABLE
 CONTACT WITH ACID，WATER OR HEAVY METALS SUCH AS COPPER，LEAD OR MERCURY MAY PRODUCE HARM－ FUL AND IRRITATING GASES OR EXPLOSIVE COM－ POUNDS．STORAGE TEMPERATURES MUST NOT EXCEED $200^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ ．FOR PROPER HANDLING，STORAGE AND DISPOSAL PROCEDURES REFER TO SERVICE MANUAL． SRS SUPPLEMENT．
 POISON
 CONTAINS POISONOUS SODIUM AZIDE AND POTASSIUM NITRATE．
 FIRST AID
 IF CONTENTS ARE SWALLOWED，INDUCE VOMITING．FOR EYE CONTACT，FLUSH EYES WITH WATER FOR 15 MINUTES．IF GASES（FROM ACID OR WATER CONTACT） ARE INHALED，SEEK FRESH AIR．IN EVERY CASE，GET PROMPT MEDICAL ATTENTION．
 KEEP OUT OF REACH OF CHILDREN．

[^1]: *1: 2.2i ES (KE, KG), 2.0i ES (KE, KG) and EX models
 *2: Others

[^2]: - Day to day care (engine oil, ATF and coolant level) should be done practically according to the owner's manual by the customer.

[^3]: Fuel-Injectors PGM-FI Main Relay (Fuel Pump) MIL
 IAC Valve
 A/C Compressor Clutch Relay
 Radiator Fan Relay*1
 Condenser Fan Relay
 ALT* 1
 ICM
 EVAP Purge Control Solenoid Valve
 HO2S Heater
 VTEC Solenoid Valve*2
 FIA Control Solenoid Valve*2 IAR Control Solenoid Valve*3 EGR Control Solenoid Valve Engine Mount Control Solenoid Valve (A/T)

[^4]: Do the ECM Reset Procedure (see page 11-19).

[^5]: View from wire side

[^6]: (A) (STROKE at PEDAL): $142.5 \mathbf{- 1 5 2 . 5 ~ m m ~ (5 . 6 1 - 6 . 0 0 ~ i n) ~}$
 (B) (TOTAL CLUTCH PEDAL FREE PLAY): $9.0-15.0 \mathrm{~mm}$ ($0.35-0.59 \mathrm{in}$) includes the pedal play 1 - 7 mm ($0.04-0.28 \mathrm{in}$)
 (C) (CLUTCH PEDAL HEIGHT): LHD: $184 \mathrm{~mm}(7.24 \mathrm{in})$ to the floor

 RHD: $209 \mathrm{~mm}(8.23 \mathrm{in})$ to the floor
 (D) (CLUTCH PEDAL DISENGAGEMENT HEIGHT): LHD: $46 \mathrm{~mm}(1.81 \mathrm{in})$ minimum to the carpet

 RHD: $\mathbf{7 6} \mathbf{~ m m}(2.99 \mathrm{in})$ minimum to the carpet

[^7]: YELLOW GEAR TOOTH

[^8]: (1) Discharge hose to the compressor ($\mathbf{6 \times 1 . 0 \mathrm { mm } \text {) }) ~ (2)}$ \qquad $9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
 (2) Discharge hose to the condenser ($6 \times 1.0 \mathrm{~mm}$) $9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
 (3) Condenser pipe to the condenser ($6 \times 1.0 \mathrm{~mm}$) $9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
 (4) Condenser pipe to the receiver/dryer $13 \mathrm{~N} \cdot \mathrm{~m}(1.3 \mathrm{kgf} \cdot \mathrm{m}, 9.4 \mathrm{lbf} \cdot \mathrm{ft})$
 (5) Receiver pipe to the receiver/dryer $13 \mathrm{~N} \cdot \mathrm{~m}(1.3 \mathrm{kgf} \cdot \mathrm{m}, 9.4 \mathrm{lbf} \cdot \mathrm{ft})$
 (6) Receiver pipe to the evaporator $13 \mathrm{~N} \cdot \mathrm{~m}(1.3 \mathrm{kgf} \cdot \mathrm{m}, 9.4 \mathrm{lbf} \cdot \mathrm{ft})$
 (7) Suction pipe to the evaporator $31 \mathrm{~N} \cdot \mathrm{~m}(3.2 \mathrm{kgf} \cdot \mathrm{m}, 23 \mathrm{lbf} \cdot \mathrm{ft})$
 (8) Suction hose to the suction pipe $31 \mathrm{~N} \cdot \mathrm{~m}(3.2 \mathrm{kgf} \cdot \mathrm{m}, 23 \mathrm{lbf} \cdot \mathrm{ft})$
 (9) Suction hose to the compressor ($6 \times 1.0 \mathrm{~mm}$) $9.8 \mathrm{~N} \cdot \mathrm{~m}(1.0 \mathrm{kgf} \cdot \mathrm{m}, 7.2 \mathrm{lbf} \cdot \mathrm{ft})$
 (10) Compressor to compressor bracket ($8 \times 1.25 \mathrm{~mm}$) $22 \mathrm{~N} \cdot \mathrm{~m}(2.2 \mathrm{kgf} \cdot \mathrm{m}, 16 \mathrm{lbf} \cdot \mathrm{ft})$
 (11) Compressor bracket to cylinder block ($10 \times 1.25 \mathrm{~mm}$) $49 \mathrm{~N} \cdot \mathrm{~m}(5.0 \mathrm{kgf} \cdot \mathrm{m}, 36 \mathrm{lbf} \cdot \mathrm{ft})$

[^9]: *: Not used

[^10]: LT GRN/BLK (RHD type)

